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Abstract— In this work, we consider the sensor localization
problem from a novel perspective by treating it as a functional
dual of target tracking. In traditional tracking problems, static
location-aware sensors track and predict the position/speed of a
moving target. As a dual, we utilize a moving location-assistant
(LA) (with global positioning system (GPS) or pre-defined moving
path) to help location-unaware sensors to accurately discover
their positions. We call our proposed system Landscape. In
Landscape, an LA (an aircraft, for example) periodically broad-
casts its current location while it moves around or through a
sensor field. Each sensor collects the location beacons, measures
the distance between itself and the LA based on received
signal strength (RSS), and individually calculates their locations
via an Unscented Kalman Filter (UKF) based algorithm. Our
contributions are at least twofold. (1) Landscape is a distributed
scheme, it does not rely on measured distances among neighbors
(as used by most current proposals), which makes it robust to
topology and density; Landscape involves zero sensor-to-sensor
communication overhead, and is highly scalable to network size.
(2) By introducing UKF in sensor localization problem, we
reap multiple benefits: our UKF-based algorithm nicely exploits
the constraints increasingly added by the beacons; it elegantly
solves the nonlinear problem with low computation cost and
complexity; and most importantly, it efficiently reduces the effects
of measurement errors, making Landscape robust to ranging
errors. Extensive simulations and evaluations against the state-
of-the-art systems show that Landscape is a high-performance
sensor positioning scheme for outdoor sensor networks.

Index Terms— Wireless Sensor Networks, Localization algo-
rithm, Unscented Kalman Filter.

I. INTRODUCTION

Future wireless sensor networks (WSNs) may consist of
hundreds to thousands of sensor nodes communicating over
a wireless channel, performing distributed sensing and col-
laborative data processing tasks for a variety of vital military
and civilian applications. Examples of those applications may
include battlefield surveillance, intrusion detection, forest fire
detection, smart environment, and others. In most of these
applications, it is important for the sensor nodes to be aware
of their own locations. The usefulness of sensed data without
spatial coordinates may be highly reduced. Location-aware
sensors may also help to highly enhance the efficiency of rout-
ing protocols [17], [28] by reducing costly message flooding.
However, installing a global positioning system (GPS) receiver
on each sensor node may not be a practical solution for most
applications, because of the constraints in size and cost of
construction of sensor networks.

Most research on sensor positioning exploits distance or
angle measurements from anchor nodes (with GPS or pre-
set location) or neighbors. When the percentage of anchor
nodes (among total nodes) is high enough that each node

has three anchor nodes (non-collinear) in its neighborhood,
then the localization problem is reduced to simple trigonomet-
ric calculations. To minimize the deployment cost, however,
researchers are more interested in solutions which assume
only a small fraction of anchor nodes [2], [6], [12], [24]
or even anchor-free [10], [22]. Location discovery for these
cases has to rely more on the node-to-node distance or angle
measurements, and the problem itself, in effect, becomes a
subset of geometric graph embedding problem [8], [22], [25],
[30], or more generally, a constrained optimization problem
[6], [24]. However, to obtain the optimal solution (estimated
locations), in the context of sensor networks, is challenging.
Previous proposals have to make trade-offs among accuracy,
computation overhead, communication overhead, scalability
and other issues. For example, collecting all constraints (mea-
surements) and resolving the optimization problem centrally
[6] may involve high computation complexity becoming usable
only when the application permits deployment of a central
processor to perform location estimation [20]; on the other
hand, some distributed solutions (such as AFL [22], which
uses mass-spring model for refinement) may be not able to
avoid high volume interactive communications among neigh-
bors. Furthermore, localization methods based on measure-
ments of neighborhood begin to perform acceptably only at
node densities well beyond the density required for network
connectivity [5].

In this work, we propose a novel sensor positioning solution
named Landscape. It is designed for outdoor sensor networks.
In Landscape, by introducing a mobile location-assistant (LA,
could be aircraft, balloon, robot, vehicle, etc.), we investigate
the localization problem from a different perspective by taking
it as a functional dual of target tracking. Traditional tracking
problems utilize one or more static location-aware sensors to
track and predict the position (and/or speed) of a moving
target. In our proposed system, we let each location-unaware
sensor discover its position by passively observing a moving,
location-aware LA (with the GPS or pre-defined moving
path). We resolve this functional dual problem by modeling
and utilizing an Unscented Kalman Filter (UKF) [15] based
algorithm. One scenario involving sensor networks frequently
mentioned in the literature is that of aircraft deployment of
sensors followed by in flight collection of data by cruising the
sensor field [19]. Landscape fits well (however, not limited)
for this kind of sensor applications. We can simply let the
aircraft cruise several rounds above the sensor field, broadcast-
ing beacons periodically while flying. Each beacon contains
the aircraft’s current location. Sensors collect the beacons,
measure the distance between itself and the LA based on
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the received signal strength (RSS), and individually ”track”
its own position through the proposed UKF-based algorithm.
Landscape has significant benefits compared to other methods
applicable for outdoor sensor networks:

� Landscape is fully-distributed and localized making it
highly scalable. Each node discovers its location with
its own measurements and calculations. There is no inter-
sensor communications and dependencies. It is applicable
to large areas of sensor networks with arbitrary densities.

� LA broadcasts the beacons and the sensor nodes lis-
ten passively. There is no interactive sensor-to-sensor
communications involved in this process, which not only
saves the sensor’s energy, but also lessens the channel
congestion. Approaches based on the neighborhood mea-
surements cannot totally avoid message flooding [26],
[27].

� Landscape relies on radio-frequency (RF) RSS to measure
distance. It does not require the sensor node to be
equipped with any ultrasound receiver or antenna array
which is needed for time difference of arrival (TDoA) or
angle of arrival (AoA) measurements. It does not have
any synchronization requirement on the network, which
may be needed for Time of Arrival (ToA) measurement.

� Landscape uses UKF-based algorithms which introduce
only moderate computational cost, compared to other
sequential techniques such as Monte Carlo based methods
[7], [12], [16]. Landscape provides cost-accuracy flex-
ibilities. Each sensor node may use less beacons (less
computations) for a lower accuracy, or vice versa.

� Landscape is robust to range-errors. Our simulations
show that it gives satisfactory result with low compu-
tational cost (and improves further with more beacons)
even when range errors is up to 20%.

� Landscape is suitable to arbitrary network topologies,
and can be used for sensor networks deployed in complex
outdoor environments, thanks to the absence of sensor-
to-sensor connectivity requirement.

Extensive simulations have been conducted to study the per-
formance of Landscape. We have used MDS-MAP [26], [27]
as a reference for evaluation purposes, because MDS-MAP
represents a state-of-the-art approach to sensor localization
based on neighborhood measurements. Extensive simulations
reveal that Landscape gives better results than MDS-MAP with
less computation and communications cost.

The rest of this paper is organized as follows: the next
section presents the related work. We describe our proposed
approach in Section 3 and 4. Performance evaluations of our
proposed system are presented and discussed in Section 5.
Section 6 presents our concluding remarks.

II. RELATED WORK

Sensor localization has attracted significant research effort
in recent years, and various approaches have been proposed
[2], [6], [4], [10], [12], [22], [24]. The majority of them assume
that a small fraction of the nodes (called anchors or beacons)
have a priori knowledge of their locations. Most of them
also follow a common process for location discovery: The

first phase is to make the estimation of distances or angles
to anchors or other neighboring nodes, which is often called
ranging. The second phase is to estimate positions based on
the ranging measurements. Some proposals have an optional
third phase, which is to refine the position estimations utilizing
the local [24], [27] or global information [26]. There are
different ways to categorize the existing approaches by the
techniques used in these phases. We made a thorough survey of
existing methods by classifying the existing methods according
to the raging techniques (ToA/TDoA, AoA, and RSS) in our
technical report (online) [31]. In this paper, however, due to
the space limitation, we only present a brief review of some
most related work. A short discription on MDS-MAP related
algorithms [26], [27] is given in the following subsection, then
we take a glance at Bayesian techniques for robot location
estimations.

A. Multidimensional Scaling for Localization

Multidimensional scaling (MDS) [1] has recently been
successfully used to resolve sensor localization problem [26],
[27], [13]. MDS can be seen as a set of data analysis
techniques that display the structure of distance-like data as a
geometrical picture [1]. One main advantage in using MDS is
that it can always generate relatively high accurate position
estimation even based on limited and error-prone distance
information [13]. Shang et al. first proposed MDS-MAP to
use MDS in sensor location problem in [26]. MDS-MAP is a
centralized algorithm, which consists of three steps:

1) Compute shortest paths between all pairs of nodes in
the sensor field. The shortest path distances are used to
construct the distance matrix for MDS.

2) Apply classical MDS to the distance matrix, retaining
the first 2 (or 3) largest eigenvalues and eigenvectors to
construct a 2D (or 3D) relative map.

3) Given sufficient anchors (3 or more for 2D, 4 or more
for 3D), transform the relative map to an absolute map
based on the absolute positions of anchors.

MDS-MAP(P) [27] is an improved version of MDS-MAP.
In MDS-MAP(P), individual nodes compute their own local
maps using their local information (the range of the local map
may contain one-hop or two-hops neighbors) and then the
local maps are merged to form a global map. If an optional
refinement process is used for each local map before merging,
the algorithm is called MDS-MAP(P,R).

MDS-MAP(P,R) has been shown to have very impressive
performance [27]. For a random uniform sensor network with
6 anchors and connectivity equal to 20, when the proximity
is used, the median location error of MDS-MAP(P,R) is less
than 20% of the radio range; and when the range is used with
5% error, the median location error could be less than 5%.

B. Bayesian Techniques for Robot Localization

Bayesian techniques have been widely investigated in the
context of robot localization [9], [11]. Recently, grid based
Markov localization [3], particle filter (a.k.a. sequential Monte
Carlo) [7], real-time particle filters [16] have been proposed
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and shown to be successful for robot location estimation.
These Bayesian techniques generally require intensive compu-
tation power. There are substantial differences between robot
localization and sensor node positioning. First, while robot
localization locates a robot in a predefined map, localization
in sensor networks works in a free space or unmapped terrain.
Second, while a robot can acquire accurate range, bearing and
orientation measurements to landmarks simultaneously with
relatively expensive equipment, small sensor nodes cannot.
Third, a robot has much more computation power than a sensor
node, and is able to execute complicated location algorithms.

While our work was in progress, we noticed an interesting
work done by Hu and Evans called MCL (Monte Carlo
Localization) [12]. Inspired by the techniques used for robot
localization, they first proposed to use sequential Monte Carlo
(SMC) method for mobile sensor node localization. Our work
is different from theirs in several aspects. (1) MCL requires
a certain percentage of mobile anchors to work well, and it
is designed for mobile sensor nodes. Landscape needs only
one mobile LA, and is mainly for static sensor networks. (2)
MCL utilizes only proximity measurement, with the location
estimation coarse-grained and bounded. In contrast, Landscape
exploits range measurement and is able to acquire high ac-
curacy. (3) With SMC requiring intensive computation power,
upgrading MCL for range measurements might be impractical,
because that would highly increase the computation cost of
MCL. To the best of our knowledge, we are the first to
utilize UKF [14] in location estimation, which is easy to
implement and has high accuracy in the presence of nonlinear
observation functions and non-Gaussian distributions. The
approximations to the nonlinear functions can be accurate to
the second-order Taylor expansion for arbitrary distributions,
while the computations are well controlled and comparable to
linearization.

III. LANDSCAPE LOCALIZATION METHODOLOGY AND

MODEL

A. Landscape Methodology

In this paper, we design our sensor localization system
Landscape with a location assistant (LA), e.g., an airplane,
a mobile robot, a vehicle, a balloon, etc. The LA can be
the carrier disseminating the sensor nodes. Our key idea is to
treat the sensor localization as a functional dual to the target
tracking problems. In target tracking, one (or more) location-
aware sensor node estimates the position (and optionally,
velocity and acceleration) of a moving target based on the
measurable distances or AOAs. As a functional dual, each
location-unaware sensor node utilizes the measured RSS to
estimate its own position aided by the location-aware LA.
From this novel perspective, our Landscape system exploits
varying positions of the LA and the corresponding sensor-to-
LA distances to dynamically determine the positions of sensor
nodes.

Specifically, we determine the sensor localization based on
the RSS. An LA is equipped with the GPS or follows a
predefined path, so that its instant positions are available. It
broadcasts messages via RF to the sensors. Each sensor is

equipped with a receiving antenna, which can measure the
RSS to dictate its distance to the LA. Then the sensor position
is determined by solving the associated state evolvement and
observation dynamics of the positions of the LA and the
measured distances.

B. Landscape Localization Model

For the localization described above, we define the state
variable as the (unknown) 3-D position of a specific sensor
node,

���� � ������� ������ ������� (1)

And we have the following dynamic state and observation
equations:

���� � ����� � ��� ������

���� � ������� � �����
(2)

where ���� and ����, respectively, are state evolvement and
observation functions. ���� may be linear or nonlinear de-
pending on application scenarios, while ���� is usually highly
nonlinear. ���� and ���� are state and observation noise
sequences.

One interesting application considers static sensor localiza-
tion, where the positions of the sensors remain unchanged after
deployment. That is, the state dynamics ���� governing the
sensor positions are simply the identity functions:

����� �� � ����� ������� � � � � �� (3)

with ����� modeling the small position perturbation due to
the wind or other environmental effects. Our algorithm can
be extended to mobile sensors by incorporating time-varying
state dynamics, which is one of our future research lines.

The state dynamics on the LA are controlled or programmed
in advance, which can be delivered to sensor nodes. Equipped
with accurate GPS, the LA knows its current location. The
current position can be transmitted through RF signal to the
ground sensors. The following observation model is commonly
used in practice:

���� �
�

�������� � �������� � �������� � ����� (4)

Here ����� � ����� � �����, ����� � ����� � �����,
����� � ����� � �����. ������� ������ ������ is the current
3-D position of the LA, measured using GPS or controlled by
the pre-defined path. And ���� models the observation error,
which usually comes from the RF distance estimations or the
perturbations to the LA positions. We assume ���� and ����
are zero-mean uncorrelated noise processes.

In general, as long as the LA knows its own instant position
and broadcasts this information to the sensors, each sensor can
use our algorithm to locate itself with the on-line estimations.
The estimation improves with accumulated observations and
recursive update. No inter-sensor or sensor-to-LA communi-
cations is needed. Specifically, we require the LA to broadcast
RF messages to the sensors with constant time intervals,
in which the current LA position ������� ������ ������ is
contained,

������� ������ ������� � ����� 	�� �� ��� (5)
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where �� is the time interval of broadcasting, and ���� is
the locus of the LA. In practice, we often encounter those
applications with a sensor network deployed approximately on
a plane. In this case, we are mainly interested in estimating
the planar sensor positions. We design the LA to move on a
2-D plane parallel to the sensors, then 	� � �����

�
� �
.

This design is useful for the planar sensors, and reduces
the estimation from �-D to 
-D. The third equation in the
state process (3) may be ignored. In Landscape, we apply
the unscented Kalman filter (UKF) which is an elegant and
computationally efficient recursive state estimation technique
and well suited to our applications.

IV. LANDSCAPE STATE ESTIMATION VIA UNSCENTED

KALMAN FILTER

Our Landscape localization system aims at improving the
sensor localization by iteratively updating the position esti-
mates with the current observations. For the system models
defined in the previous section, on-line state estimation need
be performed. Kalman filters and their variants have been de-
signed for this purpose, but their actual performance depends
heavily on the evolvement and observation equations, as well
as the nature of the noise sequences. Due to the nonlinearity of
the observation equation, which is the rooted-sum-of-squares
of position difference, standard Kalman filter (KF) is not
suitable to our applications. Neither is the extended Kalman
filter (EKF), the first-order approximation to the nonlinear
system that is often plagued by the empirical linearization. For
the nonlinear observation function ����, the unscented trans-
formation (UT) [14], [18] is an elegant approach to providing
higher-order approximations. It can accurately compute the
statistical mean and variance up to the third-order of Taylor
series expansion of ���� for Gaussian noise sequences, or
the second-order for arbitrary noise distributions. Higher-order
approximation can also be captured with extended algorithms
[15]. At the same time, UT uses the same order of calculations
as linearization. We shall apply the unscented Kalman filter
(UKF) [14] in our Landscape system.

A. Unscented Transformation

The UT has been developed to handle low-order statistics of
random variables that undergo a nonlinear transform ����. The
knowledge of higher order information can also be partially
incorporated into the sigma point set. Let �� be the dimension
of �, � be the mean, and �� be the variance matrix, the UT
calculates the first two moments in the following way:

1) Generate a set of sigma points � � ������ � � �
�� � � � � 
���, with �� denoting the weight on the mean
point:

�� � �� �� � ���

�� � � � �

�
��

����

����� �� �
����


��

� (6)

�����
� � � �

�
��

����

����������
�

����


��

for � � �� � � � � ��.

2) Propagate the sigma points through the nonlinear trans-
formation

�� � ������ � � �� � � � � 
��� (7)

3) Calculate the mean and variance of the transformed
points

� �

����
���

�����

�� �

����
���

����� � ����� � ��
� �

(8)

The UT can capture the first two statistical moments up to
the second-order of the Taylor series.

B. Unscented Kalman Filter

The Unscented Kalman Filter (UKF) embeds the UT into
the KF’s recursive prediction and update structure. The general
formulation expands the state vector with the process and
observation noise ����� � ��� ������ ������ ����� . The re-
sultant augmented vector is of dimension �� � ����	��
.
The process and observation models for the augmented vector
����� from (2) are

����� � �������� ����

����� � ����������
(9)

The UKF is implemented as follows [14]:

1) Initialization:

����� � ��� ������ ��� ������ � �������� �����
(10)

where � and �, respectively, are the variances for noise
processes ���� and ����.

2) Iteration for �:

a) Applying sigma points procedure to the augmented
system (9), and the resulting sigma points are
���������� � � � �� � � � � 
���.

b) Prediction:

������ � �������� ���� (11)

����� �

����
���

���
����� (12)

����� �

����
���

����
����� ����� (13)

�������� ������ �

���� � ���������� (14)

���� �

����
���

������� (15)
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c) Update:

� �
� ��� �

����
���

������� � �����

������� �����
� � (16)

� �
����� �

����
���

����
����� ������

������� �����
� � (17)

� ��� � � �
�������

�
� ����

��� (18)

���� � ���� ��

�� �������� � ������ (19)

����� � ������� ���� �
� ����

� ���� (20)

With the same order of calculations as the EKF, the UKF
can approximate the second-order Taylor series expansion for
arbitrary distributions. In contrast, the EKF can only approxi-
mate the first order; therefore, the UKF is much more accurate,
as demonstrated by many applications [14] [18]. Compared to
particle filtering (PF), the UKF uses a deterministic set of
sigma points instead of a large number of particles. Thus, the
UKF can be implemented in a well controlled manner. Because
of its implementation simplicity and high accuracy, we exploit
the UKF for state estimation in our Landscape localization
system.

V. PERFORMANCE EVALUATION

A. Evaluation Scenario

As presented in previous sections, Landscape does not
rely on how sensor nodes are distributed and does not have
specific requirements on the LA’s moving trajectory. However,
for simulation purpose, we have selected a simple scenario.
We use a square sensor field (1000 by 1000) with (0,0),
(0, 1000), (1000,1000), and (1000, 0) as the four corners.
Unless explicitly specified, 200 sensor nodes are uniformly
and randomly deployed in the sensor field. We let an aircraft
or a balloon be the LA. As shown in Figure 1, the LA hovers
over the sensor field on a 2-D plane parallel to the sensor
field, moving around following a circle track with (500, 500)
as the center and 700 as the radius. The height of the airplane
is a constant value, for which we used 100 feet here. The LA
periodically broadcasts beacon samples to sensor nodes. Each
beacon sample contains the transmitting power of this beacon
and the LA’s current location. In this scenario, the location of
the LA at time step � �� � �� is simply:

����� � 	� ���� ���
��������� ��� ����� � ��� ����

����� � 	� ���� ����
��������� ��� ����� � ��� ���� (21)

����� � 	��

where 	�, 	�, and 	� are 500, 500, and 100 respectively, and
��� is 700. We assume that the LA broadcasts same number
(������� ��� �����) of beacon samples in each round. In the
evaluation scenario, we assume that the LA has a large radio
range, so that the beacons can be utilized to a maximum by the
sensor nodes. This is a reasonable assumption, however, since

Figure 1. Evaluation Scenario.

the LA does not have the energy constraint as for sensor nodes.
No specific requirement is placed on sensor’s radio range.

We assume distance measurements have Gaussian noise
[26], [27]. A random noise is added to the true distance as
following:

�� � � � �� � �������� � ����� ������ (22)

where � is the true distance, and �� is the measured distance,
����� ����� is a value between [0,1], and �������� is a
standard normal random variable.

B. Evaluation Metrics and Parameters

We code Landscape in Matlab for simulation purposes. To
make our proposal comparable to other positioning schemes,
we have interfaced our algorithm to the localization simula-
tion toolkit designed as part of Berkeley’s Calamari project
[29]. We selected MDS-MAP as a reference for performance
evaluation, since to the best of our knowledge, MDS-MAP is
one of the algorithms which give the best overall performance
among other neighborhood-measurement based approaches.
Three performance metrics are generally considered for sensor
localization:
� Accuracy: The accuracy of sensor positioning is usually

presented by the average distance between estimated
position to true position. For neighborhood-measurement
based approaches (including MDS-MAP), this value is
often normalized to the radio range of sensor node. Since
Landscape does not depend on network connectivity
(average number of neighbors), and sensor node may hold
different radio range than LA, it is more suitable to use
absolute (un-normalized) value in our case. However, for
comparison purpose, we present results (error) in relative
(normalized) value if necessary.

� Computation Overhead: In Landscape, each sensor
individually estimates its position, thus its computation
complexity is 	��� (� is the number of the nodes); which
is same as MDS-MAP(P) [27]. However ,to get more
information and make the comparison more intuitive, we
compared the CPU time used by these two algorithms.
All simulations are conducted on a DELL Precision M50
(1.8-GHz mobile Pentium 4-M processor, 256 MB DDR
SDRAM) laptop with Matlab 7.0 installed. Simulations
are both conducted with Calamari simulation toolkit [29],
and execution time is averaged over each node in seconds.
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TABLE I

COMPARISON OF LANDSCAPE AND MDS-MAP(P,R) IN AN EXAMPLE.

Parameters Results
# of connectivity range total samples absolute CPU time inter-sensor

nodes (�) error samples per round error per node communication overhead
MDS-MAP 200 27.13 20% N/A N/A 34.14 9.41 sec. ����
Landscape 200 N/A 20% 240 15 28.14 0.27 sec. 0
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Figure 2. Relative Position Error vs. Range Error and Density.
Landscape yields better accuracy than MDS-MAP(P,R) for different range errors. MDS-MAP(P,R) highly relies on connectivity, while Landscape has almost
constant accuracy with variant connectivity. The curves for Landscape are not horizontal lines simply because results are normalized to the sensor radio
range �, which is adjusted to have variant connectivity.
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Figure 3. Absolute Position Error vs. Range Error and Density.
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Figure 4. CPU Time vs. Range Error and Density.

� Communication Overhead: Communications are gen-
erally more energy-consuming than computations [21].
One major advantage of Landscape is that it introduces
zero sensor-to-sensor communication overhead. Our cur-
rent simulations did not calculate the communications
involved in MDS-MAP, however, obviously, it is at least
	���.

Since MDS-MAP(P,R) generally achieves better accuracy than
MDS-MAP(P) at the cost of higher computation overhead,
MDS-MAP(P,R) is chosen as the reference when we eval-
uate the accuracy, while MDS-MAP(P) is chosen when we

investigate the computation overhead. For the scenario we
investigated here, sensor nodes are assumed to be deployed on
a 2-D plane. Thus in our simulations, the state vector is two
dimensional: ������� ������. Since this is a static system, it is
reasonable to set the process noise variance matrix with small
values: � � ���������� �����. And the variance matrix for
measurement � is simply ������� ��������.

In the following subsections, we vary different parameters,
such as range error, density, number of beacon samples,
network size, etc., to investigate how Landscape performs in
terms of accuracy and computation cost.
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C. Results vs. Range Error and Density

In this subsection, we investigate the performance of Land-
scape against various range errors. Landscape does not de-
pend on the sensor density/connectivity, However, to compare
it with MDS-MAP, we experimented with different density
values by adjusting the radio range (�) of the sensor nodes,
since the accuracy of MDS-MAP highly relies on sensor-to-
sensor connectivity. For the simulations with Landscape, we
let LA broadcast 15 beacons per round and totally send out
240 beacons (in 16 rounds). We have used 10 anchor nodes
for all the simulations of MDS-MAP. The results of this group
of experiments are shown as Figure 2, 3 and 4. The accuracy
of Landscape and MDS-MAP is compared in Figure 2 with
normalized position error, and in Figure 3 with un-normalized
position error. Figure 4 shows the average CPU time per node
used by the two algorithms. In all three figures, charts labeled
as (a) are for range error of 5% and 10%, while the charts
labeled as (b) are for range error of 15% and 20%. As shown in
these figures, Landscape outperforms MDS-MAP in accuracy
for all the cases, while using much less CPU time than MDS-
MAP. Landscape keeps a constant value of 0.27 second CPU
time for each node, while for MDS-MAP, the averaged CPU
time per node grows very fast when density is increased to
reduce estimation errors. Table 1 compares MDS-MAP(P,R)
with Landscape by listing the parameters and results for an
example case.

D. Results vs. Network Size

We have conducted simulations on different network sizes
to investigate the scalability of Landscape. Figure 5 shows
the CPU time per node used by Landscape and MDS-MAP
for test cases with different number of nodes. From Figure
4, we know that the CPU time per node of MDS-MAP
increases rapidly with connectivity. In this experiment, we
have kept a roughly constant connectivity (19.5 20.5) when
we generates test cases. The range error was set as 10%. As
shown in Figure 5, Landscape uses a constant CPU time for
each node despite of the number of nodes and range error;
while MDS-MAP introduces more computation cost on each
node when network size increases or measurements have larger
noise. Communication cost is at least as important as, if not
more than, computation cost when scalability is evaluated.
Landscape does not rely on interactive communications among
sensors. Thus it is fully scalable in terms of this performance
metric.

E. Results vs. Irregularity

Since the working of Landscape does not rely on neighbor-
hood, it is insensitive to node density and network topology. In
this subsection, we use some simple cases to demonstrate the
robustness of Landscape to two kinds of irregularity: (1) non-
uniform density; (2) irregular shape. As in previous sections,
we still use MDS-MAP(P,R) as the reference. MDS-MAP(P,R)
is a distributed algorithm, so it works well against moderate
irregular situations. However, as a fundamental requirement to
neighborhood based algorithms, it is necessary to keep certain
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Figure 5. CPU Time per Node vs. Network Size.

level of connectivity everywhere to make them work well.
Figure 6 shows the results of MDS-MAP(P,R) and Landscape
for a case with non-uniform node density. In the figures, small
circles represent the original location of sensor nodes, while
small arrows point to the estimated positions. In this case, the
nodes which are closer to the sensor field center have higher
density than those which are further from the center. Although
the average connectivity is as high as 26.8, estimated position
of some nodes which are at the fringe of the sensor field has
been drifted away with significant errors. Figure 7 presents the
results for a case of irregular shape, in which sensor nodes
were deployed in a triangular area with a node density of
12.0. MDS-MAP(P,R) worked well for most sensor nodes in
this case, while some nodes at the corner got large errors since
they have less connectivity than others. Landscape performed
well for both cases, and in fact, it can work well against cases
with more irregularity.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper considers the sensor localization problem as a
functional dual of target tracking. From this new perspective,
we construct an on-line estimation method called Landscape
for sensor localization with a localization assistant. The state
information is obtained using the Unscented Kalman Filter.
Our Landscape method has the following clear advantages: (1)
It needs no inter-sensor and sensor-to-LA communications. It
listens passively to the localization assistant. Because there
is no communication overhead for localization purposes, little
power and communication resources is consumed. (2) It is
fully distributed, allowing high scalability to large networks.
(3) It has high accuracy, and the algorithm is easy to implement
with low computational complexity and low cost. (4) It is
resistant to range errors, and is suitable for sensor networks
with arbitrary density and topology. By experimentally com-
paring to the MDS method, Landscape demonstrated superior
performance.

In our future research, we will extend the localization of
static sensor network to that of slow-moving sensor network
(compared to the speed of the localization assistant). We will
investigate the situations where more complex LA moving
trajectory can benefit. The performance of Landscape will be
studied theoretically. We shall also investigate localization-
based protocols for enhanced resilience and data rate.
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Figure 6. A Case of Non-uniform Node Density.
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Figure 7. A Case of Irregular Shape.
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