RADAR: Rate-Alert Dynamic RTS/CTS Exchange for Performance
Enhancement in Multi-rate Wireless Networ ks *

Ligiang Zhang and Yu-Jen Cheng
Dept. of Computer & Information Sciences
Indiana University South Bend
South Bend, IN 46615, USA

Abstract

Rate adaptation is a common technique to exploit chan-
nel diversity in wireless networks. Despite the many rate
adaptation algorithms proposed for 802.11 networks, the
ARF (Auto Rate Fallback) remains the most widely adopted
scheme in commercial 802.11 products due to its simplicity.
However, ARF suffers from some disadvantages. Our re-
search effort revealed the rate avalanche effect that could
significantly degrade the network performance of heav-
ily loaded 802.11 networks. In this work, we propose
RADAR (Rate-Alert DynAmic Rts/cts exchange) to judi-
ciously exploit dynamic RTS/CTS exchange in multi-rate
802.11 networks. RADAR could effectively suppress the
rate avalanche effect while at the same time minimizes the
transmission overhead of RTS/CTS exchanges. Being fully
compatible with current 802.11 standards, RADAR can be
readily implemented in the NIC driver. Through extensive
simulations using realistic channel propagation and recep-
tion models, we demonstrate that RADAR is a practical and
efficient performance enhancement approach for multi-rate
802.11 networks.

1 Introduction

The highly volatile nature of wireless medium poses
special challenges to the protocol design for wireless net-
works. Supporting multiple transmission rates at the phys-
ical (PHY) layer that use different modulation and cod-
ing schemes is a nature solution to exploit wireless chan-
nel diversity. While many current wireless networking
standards support multi-rate transmissions, the rate adap-
tation schemes that guide the rate selection to match the
time-varying channel conditions are left undefined in the
standards. Recently, a number of rate adaptation schemes

*This work was supported in part by US National Science Foundation
grants CNS-0834230 and CNS-0720524.

Xiaobo Zhou
Dept. of Computer Science

University of Colorado at Colorado Springs
Colorado Springs, CO 80918, USA

have been proposed for 802.11 networks in the literature
[3, 4, 5, 6, 7, 8 10, 13, 14]. These schemes could be
roughly divided into two categories: SINR (Signal to In-
terference plus Noise Ratio)-based [4, 6, 13] and statistics-
based [3, 5,7, 8, 10, 14].

SINR-based approaches are theoretically ideal for rate
adaptations, they are hard to implement in practice, how-
ever, because of their dependences on the following as-
sumptions: (i) the sender should be able to accurately pre-
dict the channel condition (i.e., SINR) at the receiver side,
and (ii) the mapping between SINR and the optimal rates
are node-independent and known a priori. Unfortunately,
these strong assumptions usually do not hold true in to-
day’s wireless networks [15]. Consequently, some approxi-
mations are often used in these schemes [15]. SINR-based
approaches have not been applied in practice so far.

As an alternative to SINR-based approaches, statistics-
based schemes estimate link conditions through maintain-
ing statistics about the transmitted data like the achieved
throughput [3], consecutive transmission successes/losses
[7, 10, 8, 5], and short-term lose ratio [14], etc. For ex-
ample, as the representative statistics-based approaches,
ARF (Auto Rate Fallback) and AARF (Adaptive ARF)
adjust data rates by keeping the track of acknowl-
edged/unacknowledged transmissions. Despite some dis-
advantages, ARF, the first documented rate adaptation
scheme, remains the most widely implemented rate adap-
tion scheme in the 802.11 market [8] due to its simplicity.

Aiming at practical solutions, we focus our effort on
statistics-based schemes with the objective of enhancing
their performance while keeping them compatible with
currently-deployed 802.11 WLANs. Our proposed ap-
proach is driven by the finding of the rate avalanche ef-
fect [15] that could significantly degrade the performance of
heavily loaded ARF/AARF-enabled multi-rate 802.11 net-
works. The rate avalanche effect is a vicious circle that
happens when RTS/CTS exchange is not enabled: high
collision rates not only lead to retransmissions but also
drive nodes to switch to lower data rates; the retransmis-

sions and the longer channel occupation caused by lower
rates will further deteriorate the channel contention, which
yields more collisions. One of the major reasons behind
the rate avalanche effect is that ARF/AAREF lacks the abil-
ity to differentiate frame losses caused by collisions from
those caused by link errors. Our study revealed that the rate
avalanche effect could be effectively ameliorated through
turning on the RTS/CTS mechanism. However, as the
RTS/CTS exchange itself introduces transmission overhead,
the use of the RTS/CTS exchange should be dynamically
tuned. To this end, we propose RADAR (Rate-Alert Dy-
nAmic Rts/cts exchange) which could effectively suppress
the rate avalanche effect while at the same time minimizes
the usage of RT'S/CTS exchanges.

RADAR detects the rate mismatch (i.e., the rate
avalanche effect) through continuously monitoring the
transmission rate used for date frames and the RSSI (Re-
ceived Signal Strength Indicator) measurement of the cor-
responding ACK frames (called AckRSSI in the rest of the
paper). We divide both the rates and AckRSSI values into
three ranges. Two online self-calibrated AckRSSI thresh-
olds are used to map the AckRSSI ranges to the rate ranges.
A rate mismatch is detected when the average rate used is
lower (in terms of range index) than the average AckRSSI
measurement. When this happens, the RTS threshold is de-
creased to enlarge the opportunity of enabling RTS/CTS ex-
change sequence; otherwise, the RTS threshold is increased
gradually. It is worthwhile noting that although RSSI mea-
surements are utilized in RADAR, we assume neither ac-
curate channel measurement nor receiver-sender feedback
loop (e.g., receivers measure the channel, and then send the
result or rate decision back to senders !). We evaluated the
performance of RADAR through ns2 simulator [11] where
we incorporated new realistic channel propagation and re-
ception models. Experimental results revealed that RADAR
could significantly enhance the performance of multi-rate
802.11 networks in all the situations examined.

The rest of the paper is organized as follows. Section II
illustrates through examples the rate avalanche effect that
could significantly degrade the performance of multi-rate
802.11 networks. In section III, we present the detailed de-
sign of RADAR rate-adaptation system. Simulation mod-
eling and performance evaluation results are presented in
section IV. We briefly discuss some related work in section
V. Finally, section VI concludes the paper.

IFor example, in RBAR [6], a widely-known rate adaptation protocol,
receivers estimate the channel conditions based on the RTS frame from
senders, make the rate decision and inform the later through a customized
CTS frame (thus incompatible to the current 802.11 specifications).

2 TheRate Avalanche Effect

In this section, we illustrate the rate avalanche effect
and show how it could significantly degrade the perfor-
mance of heavily-loaded multi-rate 802.11 networks. Here,
by “heavily-loaded networks”, we refer to those highly-
contending wireless environments where many (e.g., 20 or
more) nodes, each of which having intense traffic to trans-
mit, compete to access a common channel. With the great
prevalence of 802.11 WLANSs and ever-growing multime-
dia applications, such highly-contending scenarios are not
rare today. Flash crowds [9] that often happens in public
hotspot WLANS (e.g., in universities, conferences, airports,
and coffee shops) and wireless chaos caused by unplanned
channel settings in private WLANs often worsen the situa-
tions.

To demonstrate the rate avalanche effect, let us start with
a simple scenario: fifty 802.11a wireless nodes are ran-
domly deployed in a square area of 80 X 80 meter?, and
one AP is installed in the center of the area. There is
one UDP-based CBR (constant bit rate) traffic flow sending
from each node to the AP. Each flow has the packet arrival
rate of 200 packets/second. Nodes are static during the ex-
periment. We first turn RTS/CTS on (i.e., set RTS threshold
as 0 byte), and repeat the experiment with different packet
sizes from 64 bytes to 1472 bytes with the step size of 64
bytes. Using the exactly same settings, we repeat the experi-
ments with RTS/CTS turned off (i.e., with RTS threshold set
as 3000 bytes). Fig. 1(a) compares the aggregate through-
put for the cases that RT'S/CTS are turned on and the cases
that RTS/CTS are turned off (referred as rts-on and rts-off
respectively in the rest text). As clearly shown in the figure,
while RTS/CTS-off delivers slightly higher throughput than
RTS/CTS-on when the packet size is smaller than 512 bytes,
it achieves much lower performance than the later when the
packet size is higher than 512 bytes.

The transmission overhead of RTS/CTS exchange can
easily explain the performance gain of rts-off over rts-on.
However, what have caused the performance deterioration
of rts-off after the cross-point in Fig. 1(a)? With hidden
nodes and SINR differences being eliminated from the pos-
sible causes [15], we identified that the major reason is the
sharp rate dropping caused by collisions. With 1 to 8 rep-
resenting the rates from 6 to 54 M bps, Fig. 1(b) compares
the cumulative distribution of the rates used in data trans-
missions in rts-on and rts-off, clearly showing that a much
higher percentage of lower-rates are used in rts-off than in
rts-on. The rate dropping in rts-off is due to the lack of
loss-differentiation ability of ARF — each unacknowledged
transmission, even caused by a collision, is attributed to link
errors and then used to direct the rate adaptations. It is in-
teresting to see that RTS/CTS exchange not only leads to
less collisions but also helps to reduce the fault reactions to

100
’ﬁ%s e
ARE with RTS/CTS Off ——

»
w

/

30000 100
g I
ARF wih RTSICTS Off s 'ARE wih RTSICTS Off e
25000
o
g
£ 20000 £
= @
< e £ w
£ P :
£ 15000 et z
3 e Z
= L z
S T I
8 10000 5 k|
< o g 2
- o UV S
e 20
s000 =
o o by

o 200 400 600 800 1000 1200 1400 1 2 3 4
Packet Size (Bytes)

(a) (b)

20 30 40 50 60
SINR

()

Figure 1. lllustrating the rate avalanche effect. (a) compares the aggregate throughput of rts-off and rts-on with the
setting of 50 nodes and CBR traffic flows; (b) compares the cumulative distribution of the date rates used in (a) for the case with
packet size = 1024 bytes; (c) shows the cumulative distribution of the SINR measured at the receiver for all the frames received with
or without errors, indicating that SINR is not the reason for the rate discrepancy shown in (b).

the unacknowledged transmissions.

It is worthwhile noting that the rate avalanche effect
does not only happen in ARF-enabled multi-rate networks,
instead, it comes with all statistics-based rate adaptation
schemes as long as they lack an effective method to differ-
entiate collisions from link errors. More results and discus-
sions about the rate avalanche effect can be found in [15].

3 TheRADAR Rate-adaptation System

The results presented in the previous section suggest us
to utilize the RTS/CTS exchange wisely in rate adaptations
—to enable it only when necessary, so that the rate avalanche
effect could be effectively suppressed while at the same
time the transmission overhead is minimized. To dynami-
cally enable/disenable RTS/CTS exchange on a per frame
basis, we surely could exploit the RTS threshold. How-
ever, our study reveals [15] that a pre-defined RTS threshold
only leads to sub-optimal network performance. The opti-
mal RTS threshold depends on many factors, such as, the
number of competing nodes, the geographic distribution of
nodes, and node mobility, etc. All of these factors can vary
over time.

Driven by this, besides the rate adaptation loop, RADAR
also embraces an RTS threshold adaptation loop. The rate
adaptation loop could be some original rate controller that
mainly relies on transmission statistics to guide rate switch-
ing, for example, ARF or AARF; while the RTS threshold
adaptation loop is a delicately designed self-calibrated con-
troller that takes advantage of some extra feedback informa-
tion about the wireless channel. These two loops are loosely
coordinated, in the sense that the RTS threshold adaptation
loop does not directly put force on the rate adjustment. In-
stead, it helps to create benign interactions among nodes
that reduces the situations that lead to false-reactions of the
rate controller. On the other side, the rate controller does
nothing directly on the RTS threshold tuning except feed-

Collection for acknowledged data

Statistics-based frames: (ID, rate, length, AckRSSI)

rate controller
(e.g., ARF, AARF)

ﬂ rate settings

Wireless network

Statistical processing
(moving averaging, filtering, etc.)

l l

On-line calibration
of the rate-AckRSSI

AckRSSI collections

ACK statistics

RTS Threshold

interface card RTS adaptation
threshold mapping
ﬁDnrn/A(.‘K/RTS/CTS Frames pate-AckRSSI mapping thresholds

Figure 2. The RADAR rate adaptation system

ing rate settings to the later as a part of statistics collection.
Figure 2 outlines the structure of the RADAR rate adapta-
tion system.

Next we briefly present the basic principles of the RTS
threshold adaptation. Choosing a best RTS threshold at run
time that optimally balances the benefit of using RTS/CTS
exchange on ameliorating the rate avalanche effect against
its transmission overhead is a challenging issue. Firstly, us-
ing the (locally) achieved throughput or its variance as the
feedback to guide the adaptation is inappropriate, since the
throughput depends on not only the RTS threshold setting
but also several other factors, such as, the varying channel
condition caused by node mobility, the local traffic load of
a node, the number of competing nodes, etc. Secondly, the
choice of a RTS threshold value is a per node decision, how-
ever, its impact on the network performance is global (i.e.,
network-wide). This makes a model-based approach diffi-
cult to achieve. Having these considerations in mind, we
choose to use the recent history of data rates and channel
condition measurements to guide the RTS adaptation. The
rationale is rather simple: if data rates does not match the

AckRSSI Data Rate
+ oo
+8
Range 2: 25 T B o
ange 2:
Ly, +e= —+
v) 7 (6, &
20 + mappingThreshold[1] 6
l<— — — f‘— - 5
15 VY 1 g
Range 1: Range 1:
3,6
< v) , —+ 4)
10 4+ mapelngThreshold[O]
[—— = — - — - _] |
iain iy 3
Range O: 5 42 Range O:
[0, x] [1, 3]
—“+1
o+

Figure 3. The dynamic mapping between rate

and AckRSSI ranges

change.

As previously discussed, the rate avalanche effect is
detected by continuously monitoring the data rates and
AckRSSI samples, which are averaged periodically. The
sampling window is bounded by a specific number of
acknowledged data transmissions and a sampling timer,
whichever is reached first. To detect the rate avalanche, we
then need to first identify the indexes for the averaged data
rates and AckRSSI measurements as shown in Figure 3. If
the index of averaged data rate is lower than the averaged
AckRSSI measurements, a rate mismatch is identified. To
avoid unnecessary continuous decreasing of the RTS thresh-
old caused by avalanche-polluted samples, we will skip a
specific number, e.g., 15, of samples each time after the
rate avalanche being detected. This gives the rate adapta-
tion loop some time to correct its rate selection before the
next examine point.

channel condition well, which indicates the influence of rate
avalanche effect, we should lower down the RTS threshold
so that more data frames will be rigged with RTS/CTS ex-
change; otherwise, a higher RTS threshold should be used
to reduce the transmission overhead.

However, in real implementation, we face the following
difficulties: (1) channel condition measurements available
in current wireless cards, for example, RSSI (Received Sig-
nal Strength Indicator) values, are only approximations to
SINR, and are often noisy and uncalibrated; (2) the map-
ping between RSSI and optimal rate is hardware-dependent,
interference-dependent, fuzzy, and unknown a priori. To ad-
dress these issues, instead of applying point-to-point map-
ping, we divide both the rates and RSSI values into three in-
dexed ranges and make use of range-to-range mapping (see
Figure 3). Two online self-calibrated RSSI thresholds are
used to map the RSSI ranges to the rate ranges. To further
simplify the design, we measure the RSSI of ACK frames at
senders, instead of doing the measurements for data frames
at receivers then sending them back. The later approach
needs to modify the format of ACK frame thus incompati-
ble to the 802.11 standard. We present the detailed design
of RTS threshold adaptation and the online self-calibration
of rate-AckRSSI mapping in the followed text.

3.1 The Adaptation of RTS Threshold

The RTS threshold adaptation is described in Algo-
rithm 1, where we adjust the RTS threshold in an addi-
tive increase/multiplicative-decrease (AIMD) manner, sim-
ilar to the way of TCP avoiding congestion. When rate
mismatch is detected (line 20), the RTS threshold is cut
half (line 22); otherwise, it is increased gradually (line 25).
The AIMD algorithm enables a timely reaction to the rate
avalanche effect and a minimized using of RTS/CTS ex-

Algorithm 1 The adaptation of the RTS threshold

1: rtsThresholdAdaptation():

2: while(l)
3. |
4: ackCount = 0;
5: reset sampling timer;
6: while (ackCount < samplingWindow
7: && samplingTimer not expired)
8: {
9: send/resend a data frame at a rate (w/ or w/o RTS/CTS);
10: if (data transmission is acknowledged)
11: {
12: measure the AckRSSI;
13: if (dataFrameLength > RTSThreshold)
14: rateRssiMappingCalibration();
15: ackCount++;
16: }
17: }
18: avgDataRate <= moving average of the rates for acked data frames;
19: avgAckRssi <= moving average of the AckRSSIs;
20: if (dataRateIndex(avgDataRate) < ackRssilndex(avgAckRssi)
21:
22: RTSThreshold = max(RTSThreshold_MIN, RTSThreshold/2);
23: filter out the avalanche-polluted samples;
24: } dse
25: RTSThreshold = min(RTSThreshold_ MAX,
26: RTSThreshold + RTSThresholdIncStep);
27: }
28: }
29: dataRatel ndex():
30: return the index of the range where the rate locates;
31: ackRssilndex():

return the index of the range where the RSSI value locates;

Obviously, the detection of rate mismatch highly de-
pends on the thresholds that map the rate ranges to the RSSI
ranges. To address the noisy and fuzzy nature of the rate-
RSSI mapping, we need to online self-calibrate the map-

ping thresholds. This is reflected in line 14 of Algorithm 1,
where a function named rateRssiMappingCalibration() is
repeatedly invoked. We discuss the details of this function
in the next subsection.

3.2 The Online Self-calibration of the
Rate-AckRSSI Mapping

Let us first get back to Figure 3 which illustrates the idea
of range-to-range mapping. As shown in the figure, the
three ranges for date rates have fixed boundaries, i.e., [1, 3],
(3,6), and [6, 8], while the AckRSSI ranges, namely, [0, z],
(z,y), and [y, +00), are all floating. We define the x and
the y here as the mapping thresholds, which are assigned
some initial values at the beginning and are self-calibrated
through the online learning later.

Algorithm 2 The online self-calibration of the Rate-
AckRSSI mapping
1: rateRssiMappingCalibration():

2: i = dataRateIndex(dataRate);

3: si=ackRssilndex (AckRSSI);

4: indexDifference =ri - si;

5: if (indexDifference > 0)

6: {

7: mappingThresholdTooHighIndicator[ri-1] += indexDifference;
8 if (mappingThresholdTooHighIndicator[ri-1] > 3)

9:
10: if (mappingThresholdTooLowIndicator[ri-1] == 0)
11: dropMappingThreshold(ri-1, indexDifference);
12: resetMappingThresholdIndicators(ri-1);
13: }
14:
15: if (indexDifference < 0)
16: {
17: mappingThresholdTooLowIndicator([ri] += indexDifference;

18: if (mappingThresholdTooLowIndicator(ri] > 3)

20: if (mappingThresholdTooHighIndicator[ri] == 0)
21: raiseMappingThreshold(ri, indexDifference);
22: resetMappingThresholdIndicators(ri);

23:

24: }

25: dropMappingThreshold(i, d):
26: mappingThreshold[i] -=d;
27: adjust adjacent threshold if necessary to avoid boundary crossing;

28: raiseMappingT hreshold(i, d):
29: mappingThreshold[i] +=d;
30: adjust adjacent threshold if necessary to avoid boundary crossing;

31: resetMappingT hresholdlndicator s(i):
32: mappingThresholdTooHighIndicator[i] = O;
33: mappingThresholdTooLowIndicator[i] = 0;

Algorithm 2 presents the details of the online self-
calibration, which has a rather simple rationale behind.
Let’s explain it using an example. If a data frame is trans-
mitted with a rate 5 which has a range index of 1, while

the AckRSSI measurement falls into range 0 according to
the mapping thresholds, we take it as a sign indicating the
mappingT hreshold|0] is too high; it should be lower down
so that the rate and the AckRSSI could fall into the same
range (i.e., 1); on the other hand, if, for the same date frame,
the AckRSSI measurement falls into range 2, then the map-
pingThreshold[1] should be raised for the same reason. To
avoid erroneous reactions as well as to balance the stability
and agility, some filtering processing are applied (e.g., lines
7-10 and 17-20 in algorithm 2) before the mapping thresh-
olds are adjusted.

There is, however, an important issue to address: on
one side we use (rate, AckRSSI) sample pairs to calibrate
mappings thresholds and on the other side we use map-
ping thresholds to judge if a rate is a match to its AckRSSI;
is there an “arguing in a circle” kind of flaw in the pro-
cess? Well, yes, if the sample pairs are not filtered; no, if
we carefully choose the sample pairs to calibrate the map-
ping thresholds. As shown in Algorithm 1, besides filtering
out those avalanche-polluted samples, RADAR only allows
those RTS/CTS enabled sample pairs to be used for calibra-
tion (line 13). We trust the rate controller to guide the rate
to the right track (i.e., providing trustworthy samples to the
online calibration loop) when it is not troubled by the rate
avalanche effect.

4 Performance Evaluation

In the section we presents the performance evaluation
of RADAR. Due to the expensiveness of building a testbed
that contains a large number of 802.11 nodes, we adopt
a simulation-based study using the ns2 [11]. However,
ns2 does not have a concrete PHY implementation that is
needed for our investigation, this has driven us to redesign
the PHY implementation incorporating some important fea-
tures. In the next text, we briefly summarize these features
and then present numerical results to demonstrate the per-
formance of RADAR.

4.1 Simulation Modeling and Set Up

Our simulation setup targets an 802.11a-based multi-
rate network, although the proposed approach applies to
802.11b/g/n networks as well. Two flavors of RADAR are
implemented in ns2: one embraces the ARF as the rate
controller, which we refer to as RADAR(ARF); the other
one embraces AARF as the rate controller, which we re-
fer to as RADAR(AARF). We compare RADAR with orig-
inal ARF/AARF to demonstrate its advantages. To achieve
trustworthy results, we made significant redesign on the
PHY implementation of ns2. The original design in ns2
has two major deficiencies: (1) all the three channel prop-
agation models existed in ns2, namely, Friis free-space

model, two-ray-ground model, and shadowing model, are
not sufficient to accurately simulate the small scale multi-
path fading effects which are critical for modeling mobile
networks; (2) the threshold-based frame reception model
is over-simplified, far from being able to model the error
performance of the 802.11a OFDM-based PHY layer. To
this end, we developed a more realistic channel propagation
model that combines the log-distance path loss model and
the Ricean propagation model, and a FER (frame error rate)
based frame reception model that capture the detailed error
characteristics of modulation/coding schemes employed by
802.11a PHY. For more details please refer to [15].

Unless otherwise specified, for all the experiments re-
ported in this paper, we have the same setting for the
paramters used in Algorithms 1 and 2 as shown in Table 1.

Par ameter Value/lnitial Value
samplingWindow 5
samplingTimer 50 ms
RTSThreshold_MIN 0 byte
RTSThreshold- MAX 2332 bytes
RTSThresholdIncStep 64 bytes
mappingThreshold[1] 30
mappingThreshold[0] 0

Table 1. The setting of parameters for Algo-
rithms 1 and 2

4.2 Numerical Results

Figure 4 compares the performance of RADAR with
ARF and AARF. Here we use a similar scenario setting as
in section 3: fifty 802.11a wireless nodes are randomly de-
ployed in a square area of 80 X 80 meter?, and one AP
is installed in the center of the area. In the experiments for
Figures 4(a) and 4(b), each node sends a pair of H.263 video
streams that are based on the trace file captured for movie
Jurassic Park I, while in the experiments for Figures 4(c)
and 4(d), each node sends a CBR traffic flow with a packet
arrival rate of 200 packets/second. Nodes are static in Fig-
ures 4(a) and 4(c), however, mobile in Figures 4(b) and 4(d).
RWPM mobility model is used with the maximum veloc-
ity bounded by 10 meters/second. As clearly shown in
these figures, RADAR significantly outperforms ARF and
AAREF. For the setting of H.263 video streams, RADAR
achieves about 10% higher aggregate throughput than both
ARF and AARF when the later ones have RT'S/CTS enabled
(i.e., have a RTS threshold value of 0 byte), and more than
200% higher throughput than the later ones when they have
RTS/CTS disabled (i.e., have a RTS threshold value of 3000
bytes). The performance gain of RADAR for CBR traffic
flows depends on the packet size. However, clearly RADAR
again does a much better job than ARF and AARF, no mat-
ter RTS/CTS is turned on or off.

We also investigated how AckRSSI measurement errors
and the link asymmetry problem affect the performance
of RADAR. Our analysis and experimental results demon-
strate RADAR has high robustness against RSSI measure-
ment errors and link asymmetry. We skipped the analysis
and results here, however, due to the space limitations.

5 Reated Work

AREF [7] was originally designed for Lucent Technolo-
gies’ WaveLAN-II WLAN devices. It is a typical statistics-
based rate adaptation algorithm which incrementally in-
creases or decreases the rate by keeping the track of ac-
knowledged/unacknowledged transmissions. Some defi-
ciencies of ARF have been revealed by previous research
efforts: it is unable to adapt effectively to fast-changing
channel conditions [6]; On the other hand, if the channel
conditions do not change at all, or change very slowly, ARF
will try to use a higher rate every 10 consecutive trans-
mission successes or after a timer expiration, which re-
sults in increased retransmission attempts and thus harms
the throughput [10]. Aiming to enhance the performance
of ARF when facing rather stable channel conditions,
AAREF [7] proposes to adapt the threshold for the number
of consecutive successful transmissions after which a higher
rate is tried.

The RTS/CTS exchange was defined as an optional
mechanism in DCF (Distributed Coordination Function) ac-
cess method in IEEE 802.11 standard to deal with the hid-
den node problem. However, in most infrastructure-based
WLAN:S, it is turned off due to the transmission overhead it
introduces. Besides the transmission overhead and its ef-
fectiveness to solve hidden node problem, other possible
effects of the RTS/CTS exchange are rarely studied. One
exception is [2], where Bianchi in the well-known work
pointed out that in a heavily-contending WLAN environ-
ment, the RTS/CTS exchange might help to reduce col-
lisions and therefore enhance network performance even
when no hidden node presents. However, Bianchi’s analyt-
ical model assumed ideal channel conditions (i.e. error-free
links) and only single-rate transmissions were considered.

Recently, several studies have revealed the importance
of the loss differentiation to the performance of DCF [1] as
well as to the rate adaptation schemes [12, 8]. Pang et al. in
[12] and Kim et al. in [8] also revealed that RTS/CTS ex-
change could be utilized to enhance the loss differentiation
ability. However, none of them gave a thorough study on
the impact of RT'S/CTS exchange. Our previous work [15]
investigated the rate avalanche effect and gave a thorough
study on the effect of RTS/CTS exchange on the perfor-
mance of multi-rate 802.11 networks under various network
conditions, which has formed the basis of this work.

25000

RADAR(ARF) —+——
ARF with RTS/CTS On ---x--
ARF with RTS/CTS Off -
(AARF) -8
AARF with RTS/CTS On --#-
AARF with RTS/CTS Off --o

20000
15000 f
10000

% R
é*.%"y%a% o P e e [S

T o AT P

W O R

Aggregate Throughput (kbls)

5000

0 10 20 30 40 50 60 70 80
Time (secs)

(a) Static setting

25000

RADAR(ARF) ——

ARF with RTS/CTS On ---%--
ARF with RTS/CTS Off ---
RF) -8

AARF with RTS/CTS On -~

AAREF with RTS/CTS Off ---o--

g

20000 H

e
g

e B SR

Aggregate Throughput (kbls)
- n
5 5
8 3
g g
S S

0%

K% o % B,
[%*#% S o &*;W'ﬁix% o5 £ v%?%é;%w coo a;

10 20 30 40 50 60 70 80
Time (secs)

(b) Mobile setting

Results for H.263 video trace based VBR streams

25000

RADAR(ARF) —+—

ARF with RTS/CTS On ---x---
ARF with RTS/CTS Off ---*
R(AARF) &

AARF with RTS/CTS On -—-=-—-

20000 |-L__AARF with RTS/CTS Off ~-0 -

15000

10000

Aggregate Throughput (bls)

5000

o 200 400 600 800 1000 1200 1400
Packet Size (bytes)

(c) Static setting

25000

RADAR(ARF) ——
ARF with RTS/CTS On ---x---
ARF with RTS/CTS Off -
DAR(AARF) ---&
AARF with RTS/CTS On —-m-—-
20000 |-L__AARF with RTS/CTS Off ---e--
£ o
S 15000 T
£ R
S e
g o
£ R
g
8 10000
g
5
8
g
5000 =8, %
o
o 200 400 600 800 1000 1200 1400

Packet Size (bytes)

(d) Mobile setting

Results for CBR traffic flows, experiments are repeated for different packet sizes

Figure 4. Performance Comparison: RADAR vs. ARF/AARF

6 Conclusions

In this paper, we proposed a novel rate adaptation ap-
proach called RADAR for 802.11 multi-rate networks.
Rooted from statistics-based schemes, RADAR exploits
channel estimations and dynamic use of RT'S/CTS exchange
to significantly enhance their performance. It inherits some
advantages from both categories of rate adaptation schemes,
i.e., SINR-based and statistics-based. Our performance
evaluation reveals its effectiveness and robustness.

References

[1] 1. Aad, “Quality of Service in Wireless Local Area Networks,” Ph.D.
Dissertation, INRIA, France, Oct. 2002.

[2] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE Journal on Selected Areas in Communi-
cations, vol. 18, No. 3, pp. 535-547, Mar. 2000.

[3] J.Bicket, “Bit-rate Selection in Wireless Networks,” MIT Master The-
sis, 2005.

[4] C. Chen et al., “Rate-adaptive Framing for Interfered Wireless Net-
works,” in Proc. of Infocom’07, Anchorage, Alaska, May 2007.

[5] 1. Haratcherev et al. “Hybrid Rate Control for IEEE 802.11,” in Proc.
of ACM MOBIWAC’04, Philadelphia, PA, Sept. 2004.

[6] G. Holland et al., “A Rate-Adaptive MAC Protocol for Multi-Hop
Wireless Networks,” in Proc. of Mobicom’01, Rome, Italy, July 2001.

[7] A.Kamerman and L. Monteban, “WaveLAN-II: A High-Performance
Wireless LAN for the Unlicensed Band,” Bell Labs Technical Journal,
pp. 118-133, Summer 1997.

[8] J. Kim et al., “CARA: Collision-Aware Rate Adaptation for IEEE
802.11 WLANS,” in Proc. of Infocom’06, Barcelona, Spain, April
2006.

[9]1 A.Jordash et al., “IQU: Practical Queue-based User Association Man-
agement for WLANSs,” in Proc. of Mobicom’06, Marina del Rey, CA,
September 2006.

[10] M. Lacage et al., “IEEE 802.11 Rate Adaptation: A Practical Ap-
proach,” in Proc. of ACM MSWiM’04, Venezia, Italy, Oct. 2004.

[11] The Network Simulator — ns-2, http://www.isi.edu/nsnam/ns.

[12] Q. Pang et al., “A Rate Adaptation Algorithm for IEEE 802.11
WLANs Based on MAC-Layer Loss Differentiation,” in Proc. of
BROADNETS 2005, Boston, MA, October 2005.

[13] B. Sadeghi et al., “Opportunistic Media Access for Multirate Ad Hoc
Networks,” in Proc. of Mobicom’02, Atlanta, Georiga, Sept. 2002.

[14] S. Wong et al., “Robust Rate Adaptation for 802.11 Wireless Net-
works,” in Proc. of Mobicom’06, Los Angeles, CA, Sept. 2006.

[15] L. Zhang, Y. Cheng, and X. Zhou, “Effects of RTS/CTS Exchange
on the Performance of Multi-rate 802.11 WLANS,” technical report,
available at http://www.cs.iusb.edu/"liqzhang/RTSCTS-Multirate.pdf.

