
Lab 3
The High-Low Game

LAB GOALS

To develop a simple windows-based game named “High-Low” using VB .Net.

You will use: Buttons, Textboxes, Labels, Dim, integer, arithmetic operations, conditionals [if-then-else], random
numbers [Randomize(), and Rnd() functions], type conversion functions [CInt (), CStr], Compiler directives such as
Option Strict, Option Explicit, input validation and error checking [IsNumeric() function].

Step 1: Create a new project named HighLow. Once

the main form is displayed, create the
following interface. Make sure to save your
new project on your desktop.

3 Buttons, 3 labels, 1 textbox, and 1
picturebox. Make sure the textbox and the
pink label have proper names associated with
them (since they will be programmatically
manipulated in this lab).

Textbox: TextBoxGuess

Label: LabelFeedback

Buttons: ButtonQuit

 ButtonNewGame

 ButtonSubmit

Also, make sure your Buttons have
appropriate names, so that it is easier to
identify them when you are writing code behind each button. (e.g., ButtonSubmit, ButtonNewGame, and ButtonQuit)

Step 2: Double click the Quit button and write the code that allows your program to properly exit.

 Close()

Now add the following two lines at the beginning of the program (before the line “Public Class Form1”):

Option Explicit On
Option Strict On

Also add the following variable declarations to your program (immediately after the line “Public Class Form1”):

 Dim UserGuess As Integer
 Dim RandomNumber As Integer
 Dim NumberOfGuesses As Integer

Run: Compile and Run your program. If your program does not compile, fix the syntax errors and compile the program again.

Once you are able to successfully run the program, check to see if the Quit button works properly.
Step 3: Save your project and make sure it is saved on you Desktop. (if you have any doubt about this ask me in the lab)

Step 4: Download the following four images from our OnCource resources and save them on your desktop.

Step 5: Load the picturebox with the “HighLow.jpg” image in to the PictureBox.

Step 6: Double click the NewGame button and write the code to initialize your variables. Then use VB’s Random number generator
to generate a random number between 0 and 100:

 NumberOfGuesses = 0 ' Starting a new game
 UserGuess = 50 ' Give it a default value
 LabelFeedback.Text = "Starting a new game, enter your guess above.."

 ' Generate a random number
 Randomize()
 RandomNumber = CInt(Rnd() * 100)

Run: Compile and Run your code again to see if it runs properly. You

should notice that when the NewGame button is pressed, the
feedback “Starting a new game……” should appear in the label.

Step 7: Double click the Submit button and type the following code:

 UserGuess = CInt(TextBoxGuess.Text) 'Take the user's guess and convert it to an integer

 If UserGuess < RandomNumber Then
 LabelFeedback.Text = "Higher.."
 ElseIf UserGuess > RandomNumber Then
 LabelFeedback.Text = "Lower.."
 Else
 LabelFeedback.Text = "You got it !"
 End If

Run: Run your code again to see if it runs properly. Type a number in the textbox, and then click the Submit Button. Follow the
directions of the game to see if you can guess the number randomly generated by the program.

Step 8: Once you are confident that the program is running. Try improving the game:

Question? How would you improve your game? Can you tell the user how many tries it took them to guess the number? Can

you make the program a little more robust? Can you give the user a visual feedback when they guess a wrong number?

Answer: Replace the code in step 7 with the code below. That will make your program more robust (see

IsNumeric(TextBoxGuess.Text)), it keeps track of the number of guesses (see NumberOfGuesses =
NumberOfGuesses + 1) and it gives you more visual feedback when the user does the wrong thing!

 If (IsNumeric(TextBoxGuess.Text)) Then
 UserGuess = CInt(TextBoxGuess.Text) 'Take the user's guess and convert it to an integer

 NumberOfGuesses = NumberOfGuesses + 1 'Increment the NumberOfGuesses that user has made

 If UserGuess < RandomNumber Then
 LabelFeedback.Text = "Higher.."
 ElseIf UserGuess > RandomNumber Then
 LabelFeedback.Text = "Lower.."
 Else
 LabelFeedback.Text = "You got it in " & CStr(NumberOfGuesses) & " tries."
 End If
 Else
 TextBoxGuess.Text = "" 'clear out the Guess textbox
 TextBoxGuess.BackColor = Color.Red

 MessageBox.Show("Enter a number between 1 and 100", _

"Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
 TextBoxGuess.BackColor = Color.White
 End If

Step 9: Making the game a little more dynamic, by providing more visual feedback to the user. For example, when the user guesses a
number that is low than what the program has picked, we would like to display the following image. To indicated that their next
guess should be a little higher. To do this we need to have the ability to load
a picture into our PictureBox during the execution of the program (while the
program is running)

Loading Images

In order to load an image in a PictureBox, during the execution of the
program, you need the following:

1) Place the pictures that we need in the bin/debug folder of your
project.

 2) Add the following Sub Procedure to your code. This sub procedure will load the image into the
PictureBox.

 Private Sub DisplayImage(ByVal TheImageFile As String)
 Dim MyImage As Bitmap
 PictureBox1.SizeMode = PictureBoxSizeMode.StretchImage
 MyImage = New Bitmap(TheImageFile)
 PictureBox1.Image = CType(MyImage, Image)
 End Sub

 3) Now, in order to load different images into the picture box, the programmer must call the above sub

procedure. For example at the beginning of the game, we load the “new game” image.

 Private Sub ButtonNewGame_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Handles ButtonNewGame.Click
 ...
 DisplayImage("HighLow.jpg") ' Load the New Game image

...
 End Sub

Later when the user guesses a number and we would like to provide visual feedback as to higher or lower
we load different images to provide this feedback.

Add the highlighted lines below to your ButtonSubmit_Click module and run the program to see the
result.

 Private Sub ButtonSubmit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles ButtonSubmit.Click
 If (IsNumeric(TextBoxGuess.Text)) Then
 UserGuess = CInt(TextBoxGuess.Text) 'Take the user's guess and convert it to an integer
 NumberOfGuesses = NumberOfGuesses + 1 'Increment the NumberOfGuesses that user has made

 If UserGuess < RandomNumber Then
 DisplayImage("thumbs-up.jpg") ' Load the Thumbs Up image
 LabelFeedback.Text = "Higher.."
 ElseIf UserGuess > RandomNumber Then
 DisplayImage("thumbs-down.jpg") ' Load the Thumbs Down image
 LabelFeedback.Text = "Lower.."
 Else
 DisplayImage("success.jpg") ' Load the success image
 LabelFeedback.Text = "You got it in " & CStr(NumberOfGuesses) & " tries."
 End If
 Else
 TextBoxGuess.Text = "" 'clear out the Guess textbox
 TextBoxGuess.BackColor = Color.Red
 MessageBox.Show("Enter a number between 1 and 100", "Error",

 MessageBoxButtons.OK, MessageBoxIcon.Error)
 TextBoxGuess.BackColor = Color.White
 End If

 End Sub

