Parallel Genetic Algorithms Based on Coevolution

Dana Vrajitoru
IUSB, Math & Computer Science Department
1700 Mishawaka Ave, P.O. Box 7111
South Bend, IN 46634, USA
danav@cs.iusb.edu
Phone: +1-219-237-4525

Abstract

Most of the parallel implementations of ge-
netic algorithms divide the population into
several nests or niches that evolve indepen-
dently and exchange information periodi-
cally. In this paper we propose a different ap-
proach, where instead of the population, we
split the problem to be solved among the pro-
cesses. The new model has shown an interest-
ing performance concerning both the speedup
and the quality of the solution.

1 INTRODUCTION

The genetic algorithms (GAs) [Holland, 1975,
[De Jong, 1975], [Goldberg, 1989] are easy to paral-
lelize, because most of the operations they include are
independent of each other. An exhaustive review of

the most used models for parallel GAs can be found
in [Cantd-Paz, 1998], [Gordon and Whitley, 1993].

For most parallel implementations of the GAs, several
niches of individuals solving the same problem evolve
independently and exchange information from time to
time [E. Cantd-Paz, 1997], [Harvey and Pettey, 1999],
[Sawai and Adachi, 1999]. These algorithms are de-
signed to minimize the amount of communication be-
tween processes. The population is divided into sev-
eral independent nests (deme, niches, etc.) on which
the selection and crossover operations act locally. The
global performance is insured by periodic migration of
some individuals between subpopulations.

Although not equivalent to serial GAs, the nested GAs
show interesting speedups due to their low communi-
cation rate. Recent studies concentrate on the size
of the nests and on the design of the communication
network so that the performance is comparable to the

performance of a sequential GA [E. Canti-Paz, 1997],
[Sarma and De Jong, 1996].

In this paper we introduce a parallel model that com-
bines the advantages of the two categories of the par-
allel GA previously described: the interesting speedup
from the nested models, and the good performance of
the sequential models. In our scheme, each niche con-
tains individuals solving a different part of the problem
by coevolution. These parts can be combined to solve
the entire problem.

To achieve this goal, we divide each individual into
subindividuals that will evolve separately. Each pro-
cess works with the entire population, but only on the
subindividuals corresponding to particular locations.
The difficulty of this model is represented by the eval-
uation of the subindividuals, for which the processes
exchange information periodically in a similar way to
the nested algorithms.

The paper is structured in the following way: Section 3
introduces the experimental context and test problems
we have used. Section 2 describes our parallel model
for GAs, and Section 4 presents the experimental re-
sults considering both the fitness performance and the
speedup.

2 COEVOLUTION BASED
PARALLEL MODEL

In the classical approach of the nested parallel GAs,
each process solves the same problem and constructs
a niche of whole individuals. We propose a dif-
ferent approach, where each process solves its own
part of the problem by building a whole population
of partial individuals. This model is inspired from
coevolutionary models, [Potter and De Jong, 2000],
[Rosin and Belew, 1997] but is different from them by
the fact that it can be applied to any problem, even
those that are not implicitly divisible.

2.1 MODEL DESCRIPTION

Let L be the size of the individual, and np the number
of processes. In our model, the process number 7 is
evolving the genes corresponding to the places from
ixL/npto (i +1)* L/np—1, where both the process
numbers and the gene positions start from 0. Each
process works with the same population size as that of
an equivalent sequential GA, so that the total number
of genes produced in a generation is the same.

If we represent a generation as a matrix where each
line is an individual, the nested parallel approaches di-
vide this matrix in horizontal blocks, while our model
divides it in vertical blocks.

The main challenge of this model is represented by
the fitness evaluation of the partial individuals. We
propose an evaluation scheme based on the schemata
theory.

A schema is a class of individuals having part of the
genes in common. We denote a schema as an individ-
ual for which the genes can take an extra value, gener-
ally marked by %, which represents the genes that can
take any value in all of the individuals in the class. For
example, for binary individuals of length 5, the schema
denoted by 10 * x1 represents the class composed by
{10001,10011,10101,10111}.

According to the schemata theorem [Goldberg, 1989],
we can define the expected fitness of a schema as the
average fitness of all the individuals in the class. The
theorem states that the chances of survival of a schema
in the next generation are directly influenced by its
expected fitness, among other factors.

To evaluate partial individuals, we assimilate them
with schemata. Thus, we estimate their fitness by se-
lecting a number of individuals belonging to their class
and by computing the average of their fitness values.

For example, suppose that the process number 0 com-
putes the first two genes in an individual of size 6.
To evaluate the partial individual that we represent as
the schema, 10 % * % x, we select 2 (or more) individuals
in this class and compute the average of their fitness.
In our case, the two individuals could be 101101 and
100110. These individuals represent the intersection
between the given schema and the schemata * * 1101
and * % 0110 respectively. We denote these by comple-
mentary schemata. If f is the fitness function, and f,
the expected fitness of a schema, we have

Fo(10 % % % %) = 0.5(f(101101) + £(100110)) (1)

In many cases, the computation of the fitness function
is the most time-consuming part of the execution of

a GA. To achieve a good performance, we must care-
fully choose the individuals representing each schema
or partial individual such that we can use a minimal
number of individuals and that they give us a good
estimation of the best expected fitness of the partial
individuals.

The schemata or partial individuals must evolve so
that their intersection is an optimal individual. For
example, if the best individual is 110110, the process
number 0 should produce the schema 11 % % x %, the
process number 1 the schema x %01 %%, and the process
number 2 the schema * * x * 10. So, we must not only
insure that each process finds a schema that contains
an optimal individual, but that the intersection (or
concatenation) of the resulting optimal schemata from
all the processes is an optimal individual.

For this, the exchange of information between pro-
cesses is essential. In our model, we insure the global
evolution of the partial individuals generated by each
process to a common optimal individual, by using com-
plementary schemata from the best partial individuals
found so far by all the other processes. In the be-
ginning, these complementary schemata are built ran-
domly. Periodically, each process exchanges with all
the others the best partial individuals achieved so far
to form their complementary schemata. This way, each
process is in principle capable to find an optimal so-
lution to the problem, which should be formed by the
intersection of the schema representing the best partial
individual with the best complementary schema.

The communication is organized in a ring where each
process receives information from the previous one and
sends information to the next one. During this opera-
tion, each process sends to the next one the best partial
individuals in its possession, as well as the partial in-
dividuals received from the previous process. The last
process sends to the first one an entire individual ex-
cept for the part that the first individual owns. Thus,
for each complementary schema, the average amount
of information sent and received by each process is

equal to
Lnp—1)(np+2) L

2 npr 2
where L is the size of a complete individual, and np is
the number of processes. We can conclude that each
complementary schema requires about half an individ-
ual to be sent and received by each process.

We have performed experiences with 1 and 2 comple-
mentary schemata, and with a communication step of
50 and 100 generations. The results suggest that these
small numbers can already be sufficient to achieve a
performance comparable to the sequential GA.

In some cases, the choice of the number of processes
and of how to divide each problem imposes itself in a
natural way. Although our model allows us to split the
individuals any way we choose, some particular choice
may be an advantage according to the nature of each
problem.

2.2 IMPROVING THE EVALUATION
TIME

The main drawback of our model is the evaluation
time. For each process, the global amount of com-
putation required by the evaluation compared to a se-
quential algorithm is multiplied by the number of com-
plementary schemata. For example, in Equation 1 we
had to evaluate two individuals in order to estimate
the fitness of the schema.

We can notice that the evaluation of a partial indi-
vidual such as we have described it has to repeat an
important amount of computations for each new indi-
vidual to evaluate. The complementary schemata are
constant in the niche between each two phases of pro-
cess communication, and they represent a large part
of the individual. This information could be used to
improve the evaluation speed. Although there is no
general method to do it, most of the problems can
be represented in such a way that an improvement is
possible.

For example, if parts of the individual can be evaluated
independently, as it is the case for functions depend-
ing on several variables, then they can be assigned to
different processes. Thus, the values obtained by eval-
uating the complementary schemata can be recorded
and used between each two communication steps. This
can explain one case in Section 4.2 where the execution
time is lower than the sequential user time divided by
the number of processes, which is the ideal case.

An interesting case is represented by the SAT prob-
lems: given a Boolean expression depending on some
variables, find an assignment to those variables such
that expression is evaluated to true. This problem re-
quires a complex evaluation scheme for our model to
be successfully applied to it.

Let S be a SAT instance, represented as a Boolean
tree, and Ind a potential solution for S. Each node
leaf in S is a variable whose value is given by a gene
belonging to Ind. In our case, Ind is composed by
PInd, the partial individual computed by the current
process, and CInd, the complementary schema that
is periodically communicated between processes. We
propose to replace CInd by a Boolean tree C'S where
each subtree that can be evaluated using only genes

Figure 1: SAT instance

Figure 2: Complementary schema tree

belonging to C'Ind is replaced by the real value to
which it is evaluated.

For example, if S is the tree in Figure 1, PInd contains
the genes for variables C' and D, and the complemen-
tary schema corresponding to the variables A, B, E,
and F' is 10 # %11, then C'S would be the tree in Fig-
ure 2.

This procedure reduces the evaluation time to the part
of the Boolean tree that has genes belonging to PInd
and can be applied to many problems where the solu-
tion has a tree kind of representation.

3 EXPERIMENT DESCRIPTION

This section presents the test functions and the param-
eter settings that we have used for the experiment.

3.1 TEST PROBLEMS

To test and benchmark the new model, we have chosen
three classes of problems: the set of 10 standard test
functions, an NP-complete problem and several decep-
tive functions. Each class presents a special challenge
for the GA, and a combination of them can give us a
better idea of the performance of each operator.

3.1.1 Standard functions set

We have started our experiments with the set of 10
standard functions used in many cases to test GAs
[Whitley et al., 1996]. Generally, we must minimize a
function Fy 10(x1,%2,...) : R = Rin agiven interval.

For each function, we have chosen the genetic repre-
sentation of the variables z; such that the optimal in-
dividual is neither fully composed of 0 values, nor of 1
values. Each problem is based on 2 to 30 independent
variables, for which we allocate an equal number of
genes. For these problems, we have chosen the num-
ber of processes such that each variable is computed
by one process. Thus, the number of processes is equal
to a factor of the number of variables.

3.1.2 Deceptive problems

This class of problems is based on the phenomenon of
deception [Whitley, 1990], [Deb and Goldberg, 1994]
and contains problems that are known to be dif-
ficult for GAs. For this reason, they are a fre-
quent choice as test functions in the study of GAs
[Goldberg et al., 1992], [Kingdon and Dekker, 1995],
[Mohan, 1998]. Their difficulty comes from the fact
that the optimal individual is isolated from other in-
dividuals of high performance, and there are one or
more suboptimal individuals that are easier to reach
by hill-climbing.

We have chosen 8 deception problems that consist
in concatenating a certain number of 3-bit func-
tions. These problems are a slight variation based on
[Deb and Goldberg, 1994]. The optimal individual is
represented by a string of 3 bits whose closest neigh-
bors display the lowest performance. We have con-
ducted our experiences with individuals composed of
100 strings of 3 bits, and the optimal individual shows
a performance of 3000.

For these problems, the individual can be divided
among the processes in any way we want, since each
group of 3 genes can evolve independently of all the
others. In this case, we have performed experiences
with 4 processes.

3.1.3 Hamiltonian circuit (HC)

Given an oriented graph, does there exist a cir-
cuit that passes once and only once through each
node? This problem is known to be NP-complete
[Brassard and Bratley, 1994], and is equivalent to a
traveling salesman problem where all the arcs would
have a weight of 1.

We have performed our experiences with 10 HC prob-

lems with graphs of 9 to 150 nodes and up to
3000 arcs. The direct representation of a HC prob-
lem for the GAs is difficult. De Jong and Spears
[De Jong and Spears, 1989] suggest to transform the
HC instances into SAT instances, that are easier to
represent in a genetic form.

A detailed description of the reduction of a HC
instance into a SAT instance can be found in
[Brassard and Bratley, 1994] or [Vrajitoru, 1999]. For
any given graph, a Boolean variable corresponds to
each arc, and is assigned the true value if the arc be-
longs to the circuit. The SAT expression represents
the fact that, for each node, one and only one of the
entering arcs and of the exiting arcs must belong to
the circuit.

The genetic representation of SAT is straightforward,
each variable being converted into a binary gene where
the 0/1 values can be interpreted as false/true. In the
classical evaluation of a Boolean expression, an indi-
vidual can only be evaluated to false or true. Thus, as
long as an individual does not represent an exact solu-
tion to the problem, it is evaluated to 0. This makes it
difficult for the GA to improve the individual perfor-
mance, because it cannot decide whether an individual
is far from or close to the researched solution. To eval-
uate an expression to more than true or false, we have
used fuzzy logic measures, also proposed by De Jong
and Spears [De Jong and Spears, 1989]. The ’and’ op-
eration is evaluated to the average of the terms, while
the ’or’ operation returns the maximum of the terms.

In the case of the Hamiltonian circuit, or of any SAT
problem in general, the evolution of a schema is very
much dependent on the choice of the complementary
schemata. These problems are the most challenging
for our model as the dependency between the informa-
tion belonging to each process is much more important
than for the other problems. As we have discussed it
in Section 2.2, we can improve the evaluation time by
assigning entire subtrees of the SAT expression to each
process, which is easier if the variables are ordered ac-
cording to their places in the tree. The potential for
improvement increases with the size of the individual,
which can be observed in Section 4.2. We have also
used 4 processes in this case.

3.2 PARAMETER SETTINGS

We have performed for each problem 40 runs of the
GA, half of which without mutation, and the other
half with a mutation rate of 0.01. The crossover rate is
equal to 1 in all the cases. Each generation contains 50
individuals and the number of generations is limited to
500. We have used the fitness proportionate or roulette

wheel selection [Goldberg, 1989], and a variant of the
elitist reproduction called monotone: the worst indi-
vidual in the new generation is replaced by the ancient
best individual, if and only if the new generation con-
tains nothing better than it [Vrajitoru, 1999].

We have based our evaluation on the best fitness value
achieved in the last generation, considered as an aver-
age over 40 runs. We have defined the score of each
scheme as its number of occurrences on the top first
position in the classification provided by this measure.

3.3 THE CROSSOVER OPERATOR

We have used a crossover operator called combined bal-
anced that combines four variations of the crossover
in each generation : the 1-point, 2-point, uniform
and dissociated. For each operation, one of the four
crossover forms is used by a random choice giving each
of them equal chances. We will briefly recall the func-
tionality of these operators.

Let L be the length of the individual.

The I-point crossover [Holland, 1975] cuts each parent
at a random cross site from 1 through L—1, and swaps
the resulting right hand sides of the parents.

The n-point crossover [De Jong, 1975] is equivalent to
n independent 1-point crossovers applied in sequence
to the same parents. For our experiments, we have
chosen n = 2.

The uniform crossover [Syswerda, 1989] swaps each of
the parent genes with a probability psyep < 0.5 inde-
pendently of each other. We have chosen ps;wap = 0.5
for our research, which means that about L/2 of the
parent genes will be randomly exchanged.

The dissociated crossover [Vrajitoru, 1999] splits each
parent in two at a different cross site, and swaps the
resulting right hand sides of the parents by applying
the logical conjunction and disjunction respectively on
the parent genes in between the cross sites.

4 EXPERIMENTAL RESULTS

Generally, the main goal of parallel algorithms is to
provide the same performance as sequential ones, but
in less time. In this section we will show that our
model achieves both these goals.

4.1 ACHIEVED PERFORMANCE

We have performed some experiences with 2 comple-
mentary schemata exchanged each 50 and 100 gener-
ations, and with 1 complementary schema exchanged

Table 1: Results on the standard test functions

Problem Seq P2x50 Pl1x50 P2x100
F1 0.139 0.003 0.003 0.003
F2 0.428 13.723 13.644 21.418
F3 11.825 11.375 114 11.325
F4 3.817 1.042 1.47 0.909
F5 4.033 2.183 2.619 2.183
F6 3.748 1.272 1.249 1.272
F7 656.477 641.226 641.226 641.226
F8 2.586 0.732 0.863 0.756
F9 0.121 0.122 0.139 0.199
F10 1.507 1.249 1.248 1.252

Table 2: Results on deception problems

Problem Seq P2x50 P1x50 P2x100
d1 2678.95 27924 2803.6 27924
d2 2848.45 2917 2914 2917
d3 2499.6 2766.4 2768.8 2766.4
d4 2514.15 2761.8 2762.4 2761.8
db 2766.2 2857.6 2863.2 2857.6
dé6 2764.85 2811.8 2925 2863.8
dr 26479 27914 2798.8 27914
ds 2669.75 2799.2 2800.8 2799.2

every 50 generations, denoted by P2x50, P2x100 and
P1x50 respectively. We compare our model with a se-
quential algorithm (Seq) for which the population size
and the size of the individual are such that the total
number of generated genes during each generation is
the same. The performance measure we have chosen
is the average over 40 runs of the best fitness obtained
in 500 generations.

Tables 1, 2, and 3 present the performance of each
scheme on the set of standard functions, on the decep-
tion problems, and on the HC problems respectively.

From Table 1 we can notice that the average fitness of
the parallel schemes is in general lower than that of the
sequential one, which is a positive fact since these are
minimization problems. The contrary observation can
be made about Tables 2 and 3, that contain results on
optimization problems. To be more precise in these
observations, we have computed the general score of
each scheme as the number of problems for which it
has shown the best performance.

The scores presented in Table 4 show that both
schemes where the information is exchanged every 50
generations are better than the sequential model. As

Table 3: Results on HC problems

Problem Seq P2x50 P1x50 P2x100
hc9 0.967 0.92 0.934 0.922
hcl0 0.964 0.937 0909 0.933
hcll 0.967 0.94 0.942 0.932
hcl2 0.958 0.945 0.939 0.943
hcl3 0.959 0.907 0.948 0.941
hcl4 0.958 0.954 0.952 0.952
hcl5 0.959 0.956 0.954 0.951
hc20 0.957 0.965 0.962 0.952
hc25 0.951 0.962 0.96 0.947
hc30 0.942 0.961 0956 0.949
hc50 0.935 0.951 0949 0.942
hc60 0.937 0.948 0945 0.942
hc70 0.936 0.947 0945 0.941
hc80 0.936 0.947 0944 0.941
hc90 0.94 0.949 0947 0.947
hc100 0.939 0.95 0.951 0.949
hc110 0.939 0.955 0952 0.953
hc120 0.939 0.951 0.952 0.949
hc130 0.936 0.951 0.95 0.95
hc140 0.933 0.95 0.951 0.95
hc150 0.938 0.943 0.942 0.942
Table 4: Summary of results
F1-10 deception HC Total
Seq 1 0 7 8
P2x50 2 1 11 14
Pix50 3 7 3 13
P2x100 4 0 0 4

0.7

0.6 r

0.5 / // —+—1/np
B
- P2x50
/ /J P ——P1x50

0.3 F‘M/ ——P2x100
0.2 -%

0.1 T T T T T T T T T
F3 F7 F8 F6 F1 F4 F? F9 F10 F5

Figure 3: Execution time on the set of standard func-
tions

0.3 -

0_2.9 M N

RS T NI | [

0.28 —=—P2x50

0.27 ——P1x50
== P2x100

0.26

0.25

0.24 T T T T T r r

dl a2 d3 d d5 d6 d7 d8

Figure 4: Execution time on the deception problems

expected, the use of two complementary schemata for
evaluation proves to be more efficient than the use of
only one, but not by much. We can conclude that the
first goal of our parallel GA implementation, which is
to perform at least as well as the sequential one, is
accomplished.

4.2 SPEEDUP

The second performance measure for a parallel imple-
mentation is the speedup. We have performed our
experiences on a SUN workstation with 4 processors
using the MPI library for communication. Figures 3,
4, and 5 show the normalized user time which is the
execution time from the user’s point of view divided
by the sequential execution time. According to this
measure, the normalized execution time should not be
superior to 1.0, and should be equal to one over the
number of processes (1/np) in the ideal case, which is
also plotted on these figures.

From Figures 3, 4, and 5 we can note that the speedup
is influenced by the difficulty of the problem measured
both by the complexity of the evaluation and by the

i, & AN | B
—-—
- P2x50

% ——P1x50
0.34

w —*—P2x100

0.29

0.24 T T T R Em s ra e
D D> D> b DD H DD S
A - G N N
VIS E IS I FF

Figure 5: Execution time on the HC problems

length of the individual.

Thus, the set of standard functions represents an easy
class of problems both concerning the evaluation com-
plexity, which is linear, and the length of the individ-
ual, which varies from 20 to 300 in our case. In this
case, the parallel user time goes even below the ideal
curve, which is better than expected.

The deception problems are easy to evaluate (linear
complexity), but the length of the individual is higher
than before. For these problems we have achieved a
user time no more than 0.06% higher than the ideal
case.

The HC problems are hard from both points of view.
Following the P2x50 line in Figure 5, which represents
the scheme that gave the best results in this case, we
can notice that the speedup increases with the prob-
lem size, which is interesting because the large prob-
lems are more likely to create a need for a parallel
implementation. For these problems we have achieved
a user time varying between 40% and about 50% of
the sequential user time.

From the above observations we can conclude that our
parallel implementation of GAs is also interesting from
the point of view of the speedup.

5 CONCLUSIONS AND FUTURE
WORK

The goal of this paper has been to introduce a new par-
allel implementation of the GAs and to show that it
can compare to a sequential GA concerning the quality
of the results and that it reduces the speedup consid-
erably. This model has been presented in Section 2.

Section 4 has concentrated on the experimental results
and has shown that both requirements stated before
have been achieved. Thus, Tables 1 to 4 show that the

quality of the evolved solutions by a parallel scheme
can be better than the one resulting from an equiv-
alent sequential GA. Moreover, Figures 3 to 5 show
a significant reduction of the execution time from the
user’s point of view.

The present research can be extended to develop new
evaluation improvement schemes for other difficult
problems and to test the parallel model on other types
of parallel machines or networks.

Acknowledgements

This work has been partially accomplished at the
LCV M? laboratory from the EPFL, Switzerland,
http//lcvmwww.epfl.ch/.

References

[Brassard and Bratley, 1994] Brassard, G. and Brat-
ley, P. (1994). Fundamentals of Algorithmics.
Prentice-Hall.

[Cantd-Paz, 1998] Canti-Paz, E. (1998). A survey of
parallel genetic algorithms. Calculateurs Paralleles,
Reseaux et Systems Repartis, 10(2):141-171. Paris:
Hermes.

[De Jong, 1975] De Jong, K. (1975). An Analysis of
the Behaviour of a Class of Genetic Adaptive Sys-
tems. PhD thesis, University of Michigan.

[De Jong and Spears, 1989] De Jong, K. and Spears,
M. (1989). Using genetic algorithms to solve NP-
complete problems. In Proceedings of the Inter-
national Conference on Genetic Algorithms, pages
124-132, Fairfax (VA). George Mason University.

[Deb and Goldberg, 1994] Deb, K. and Goldberg,
D. E. (1994). Sufficient conditions for arbitrary bi-
nary functions. Annals of Mathematics and Artifi-
cial Intelligence, 10:385—408.

[E. Canti-Paz, 1997] E. Cantd-Paz, D. E. G. (1997).
Modeling idealized bounding cases of parallel ge-
netic algorithms. In J. Koza, e. a., editor, Proceed-
ings of the Second Annual Conference on Genetic
Programming, pages 353-361, San Francisco. Mor-
gan Kaufmann Publishers.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic
Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading (MA).

[Goldberg et al., 1992] Goldberg, D. E., Deb, K., and
Horn, J. (1992). Massive multimodality, deception

and genetic algorithms. In Manner, R. and Man-
derick, B., editors, Proceedings of Parallel Problem
Solving from Nature II, pages 37-46.

[Gordon and Whitley, 1993] Gordon, S. and Whitley,
D. (1993). Serial and parallel genetic algorithms
as function optimizers. In Forrest, S., editor, Pro-
ceedings of the International Conference on Genetic
Algorithms, pages 177—. Morgan Kaufmann Publish-
ers.

[Harvey and Pettey, 1999] Harvey, K. and Pettey, C.
(1999). The outlaw method for solving multi-
modal functions with split ring parallel genetic al-
gorithms. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, pages 274-280,
Orlando (FL). Morgan Kaufmann Publishers.

[Holland, 1975] Holland, J. H. (1975). Adaptation in
Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor.

[Kingdon and Dekker, 1995] Kingdon, J. and Dekker,
L. (1995). The shape of space. In Proceedings of the
Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications (GALESIA
’95), pages 543-548, London (UK). IEE.

[Mohan, 1998] Mohan, C. K. (1998). Selective
crossover: Towards fitter offspring. In Proceedings
of the Symposium on Applied Computing (SAC’98),
Atlanta (GA).

[Potter and De Jong, 2000] Potter, M. and De Jong,
K. (2000). Cooperative coevolution: an architecture
for evolving coadapted subcomponents. Evolution-
ary computation, 8(1):1-29.

[Rosin and Belew, 1997] Rosin, C. and Belew, R.
(1997). New methods for competitive coevolution.
Evolutionary computation, 5(1):1-29.

[Sarma and De Jong, 1996] Sarma, J. and De Jong,
K. (1996). An analysis of the effects of neighbor-
hood size and shape on local selection algorithms.
In Proceedings of Parallel Problem Solving from Na-
ture IV, pages 236-244.

[Sawai and Adachi, 1999] Sawai, H. and Adachi, S.
(1999). Parallel distributed processing of a
parameter-free ga by using hierarchical migration
methods. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, pages 274-280,
Orlando (FL). Morgan Kaufmann Publishers.

[Syswerda, 1989] Syswerda, G. (1989). Uniform
crossover in genetic algorithms. In Schaffer, J. D.,
editor, Proceedings of the International Conference

on Genetic Algorithms, San Mateo (CA). Morgan
Kaufmann Publishers.

[Vrajitoru, 1999] Vrajitoru, D. (1999). Genetic pro-
gramming operators applied to genetic algorithms.
In Proceedings of the Genetic and FEvolutionary
Computation Conference, pages 686—693, Orlando
(FL). Morgan Kaufmann Publishers.

[Whitley, 1990] Whitley, D. (1990). Fundamental
principles of deception in genetic algorithms. Foun-
dations of Genetic Algorithms, pages 221-241.

[Whitley et al., 1996] Whitley, D., Mathias, K., Rana,
S., and Dzubera, J. (1996). Evaluating evolutionary
algorithms. Artificial Intelligence, 85:245-276.

