
GENETIC ALGORITHMS FOR GRAPH LAYOUTS WITH GEOMETRIC
CONSTRAINTS

Dana Vrajitoru
Intelligent Systems Laboratory

Computer and Informations Sciences
Indiana University South Bend

danav@cs.iusb.edu

Boutros R. El-Gamil
Department of Computer Science, Faculty of Science,

Minia University, El-Minia, Egypt
boutrosgameil@yahoo.com

ABSTRACT
In this paper we introduce an application of real-coded ge-
netic algorithms to the problem of consistent graph layouts
and explore the potential contribution of the genetic algo-
rithms for this particular problem. Given a weighted graph,
we want to find a geometric position of every vertex (lay-
out) consistent with the weights in the graph. Among the
possible solutions to this problem, we would also like to
find one that follows a particular given shape or has some
geometric properties. Our paper shows that the genetic al-
gorithm can help improve the quality of the solution based
on the geometric criteria and not only on precision.

KEY WORDS
genetic algorithms, graph theory, geometric modeling

1 Introduction

The problem we focus on for this study is building con-
sistent graph layouts for weighted graphs, in particular fol-
lowing a specified geometric shape. In this paper we ex-
plore the potential use of genetic algorithms to this prob-
lem and various implementation aspects related to it. The
graph theory represents an interesting challenge for the ge-
netic algorithms because many of the graph problems are
NP-complete or generally hard to solve. The genetic algo-
rithms can be a viable alternative to more traditional ap-
proaches.

Let us start from the assumption that a weighted graph
represents a discretization of a geometrical object with a
specific shape and topological properties. If we don’t know
the exact coordinates of every vertex in the graph, and its
general shape, is it possible to deduce them from the dis-
tribution of weights in the graph? Thus, given a weighted
graph, we must derive a three dimensional spatial repre-
sentation of the graph (a layout) such that the distances be-
tween the vertices are consistent with the weights of the
corresponding edges.

Extensive work was accomplished on drawing un-
weighted graphs with emphasis on showing the structure
of the graph in the geometrical representation [8]. Layouts
presenting some aesthetic qualities are also appreciated [6].
The problem is even more interesting and challenging when
the graphs to be drawn are large [3].

The best-known heuristic for generating graph lay-
outs is certainly the spring algorithm [5] that considers
the edges in the graph as springs connecting the vertices,
pulling them closer if the distance between them is greater
than the optimum, and pushing them apart in the opposite
case. In addition, non-connected vertices often repel each
other. In the usual implementation, the edges are expected
to have the same length. Part of the research on graph
layouts has also focused on weighted graphs and the best
methods seems to be force-oriented [8], [1].

An interesting model [4] combines this method with
the use of genetic algorithms. The authors have applied
their model to graph layouts for unweighted graphs with
a fitness reflecting some visual, aesthetic properties of the
layout. We extend our approach to weighted graphs and
focus on reducing the discrepancy between the weights in
the graph and the distance between the vertices. We com-
bine this measure with others reflecting geometric proper-
ties that can help the algorithm in the search for particular
interesting shapes.

The paper is structured the following way: Section 2
introduces the graph layout problem and two force-based
heuristics. Section 3 introduces the problem representation
and the genetic operators we used. Section 4 presents some
experimental results with the genetic algorithm focusing on
the precision of the solution. Section 5 introduces a new ap-
proach combining the precision with geometric properties.
We finish with conclusions.

2 Problem Description and Force Based Al-
gorithms

The first aspect we try to address is, given an undirected
and weighted graph, we must assign a geometric point to
each of the vertices in the graph (a layout) such that for
every edge AB, the distance between the vertices A and
B is equal to the weight of the edge. The second aspect
we are interested in is, given that for many graphs, there is
an infinity of possible solutions to the first question, is it
possible to impose some constraints on the solution to find
the shape of the original graph layout? Among the applica-
tions of these algorithms we can cite designing electronic
circuits [8], designing web sites and visualizing the content

of the World Wide Web [2], parallel computing and VLSI.
Definition. Let G = {V , E} be a graph where V is the

set of vertices, |V| = n, and E is the set of edges, |E| = m.
A layout for the graph is a function P : V → R

p that maps
each vertex v ∈ V to a geometric point in R

p, where usu-
ally p = 2 or 3. The edges are represented as line segments
connecting the points associated with the vertices.

We will denote the undirected edges by uv, where
u, v ∈ E .

Problem. Let G = {V , E , W} be an undirected,
weighted graph where the weights of the edges are given
by the function W : E → R

+. We must find a layout
P : V → R

3 such that ∀u, v ∈ V , d (P (u), P (v)) = Wuv ,
the weight of the edge uv. A layout with this property will
be called a consistent layout for this graph.

If V = {v1, v2, . . . , vn}, then we must find a set of
points {P1, P2, . . . , Pn} such that if there is an edge be-
tween two vertices vi and vj , vivj ∈ E , then the points as-
sociated with these vertices are situated at a distance from
each other equal to the weight of the edge.

d (Pi, Pj) = Wvivj
(1)

There exist graphs with no solution, others that have
a family of isomorphic solutions, or others with an infinity
of non-isomorphic solutions. For example, a graph contain-
ing a triangle where the weight contradict the triangulation
property will have no solution. A triangle has a unique so-
lution if we ignore the isometric transformations. A higher
order polygon has an infinity of non-equivalent solutions.
In the latter case, we would like to find a particular solu-
tion resembling a specified shape, as for example, a regular
grid, an ellipsoid, or a torus.

2.1 Breadth-First Order Algorithm

To generate graphs for which a consistent layout can be
found, we can start with any unweighted graph, build a
layout by any method, then assign weights to the edges ac-
cording to the Euclidean distance between the correspond-
ing points.

Let u and v be two adjacent vertices in the graph.
Suppose that we have associated the geometric points Pu

and Pv with the vertices u and v respectively. Let us de-
note by erruv the error on the edge uv computed as the dif-
ference between the weight of the edge and the Euclidean
distance between the two points:

erruv = Wuv − d(Pu, Pv). (2)

This error gives us an estimation of how much the
points are misplaced with respect to each other considering
that the weight of the edge represents the ideal distance
between them. If the error is positive, then the points are
too close to each other. If the error is negative, the points
are too far apart.

We would like to find a layout that minimizes the total
absolute error in the graph:

total error =
∑

∀uv∈E

|erruv | (3)

The algorithm presented in this subsection follows the
ideas from the the spring algorithm and most of the force-
oriented methods. The graph forms a dynamic system in
which each element (vertex) is attracted or repelled by its
neighbors according to the discrepancy between the length
of the line segment connecting them and the weight of the
edge. In our model, if two vertices are not neighbors in the
graph, then they do not interact directly with each other.

The algorithm starts with a random layout that is ad-
justed in a number of iterations to obtain one that is con-
sistent. For every iteration, the algorithm repositions one
vertex at a time such as to reduce the error on an adjacent
edge. The second point on the edge is considered as a refer-
ence. The point is moved on the line segment representing
the edge, further away from the reference point if the dis-
tance is smaller that the weight of the edge, and closer to
the reference point if the distance between them is greater
than the weight of the edge.

Let u and v be the two vertices that have been ran-
domly selected and Pu and Pv the points assigned to them
in the current layout. If the error on the edge uv is not equal
to 0, we will adjust the position of the vertex v by assigning
it a new point P ′

v determined in the following way:

P ′
v = Pv + ε ·

erruv

d(Pu, Pv)
· (Pv − Pu), (4)

where ε is a constant, 0 < ε < 1.
An iteration of the breadth-first order (BF) algorithm

adjusts all but one vertex in the graph according to (Equa-
tion 4). The algorithm starts with a randomly chosen ver-
tex (origin), and it adjusts all the other vertices in the graph
starting from this origin in a breadth-first order. The param-
eter ε allows us to control the amount of adjustment that is
performed at each step and thus, decide on the convergence
rate.

2.2 Tension Vector Heuristic

Let us suppose that we can construct a physical represen-
tation of the graph using interconnecting springs for the
edges, as in the spring method [5]. Each spring correspond-
ing to an edge has an initial length equal to the weight of
the edge and a section much smaller than the length. When
extended, the springs tend to contract to their initial length,
and when compressed, they tend to extend. Moreover, each
spring creates a contracting or extending force along the
main direction proportionate to the amount of deformation
that was applied to it.

The tension vector (TV) algorithm computes the total
deformation forces in each point of the graph in the current
configuration, and then moves all of the points in one step

according to these forces. This will result in an equilibrium
solution.

We define the deformation force on the edge AB de-
pends on the error on this edge, errAB , as defined by Equa-
tion 2. Then we can define the deformation force applied
to the point B as

~FAB = errAB

~AB

‖ ~AB‖
(5)

The resulting force applied to the point A is then de-
fined as:

~RA =
∑

∀AB∈E

~FBA (6)

If PA is the point associated with the vertex A in a
particular iteration and ~RA is the force exerted on it, the
algorithm moves the point to a new location P ′

A defined as
follows:

P ′
A = PA + ε ~RA (7)

where ε is a constant, 0 < ε ≤ 1.
The algorithm starts again with a random layout and

moves the points according to Equation 7 in a given number
of iterations or until the layout convergences to an equilib-
rium. In each iteration, all of the tension forces are com-
puted in the first step, then all of the points are moved in
the next step without recomputing the forces.

In this algorithm, the tension force in every vertex is
computed based on the current layout before any of them
is moved. This is the major difference between this algo-
rithm and the breadth-first order method introduced in the
previous subsection, which moves one point at a time.

The preliminary results of these methods presented in
[12] are encouraging. Both methods have converged to a
solution very close to an exact one. The tension vector al-
gorithm can derive solutions of higher precision in many
cases, but can also diverge in some situations. The BF al-
gorithm is more robust from this point of view.

An iteration of each of the algorithms is linear over
the number of edges in the graph. The execution time in
the experiments presented here thus depends on the total
number of iterations.

3 Genetic Representation

In this section we introduce the genetic representation of
the consistent graph layout problem focusing on the preci-
sion of the solution.

3.1 Chromosome Representation and Ge-
netic Operations

Since a layout is composed of points with real coordinates,
a real-encoded genetic representation is appropriate for this
problem. Several real-encoded models for genetic algo-
rithms have been proposed [7], with more focus on the

crossover operator [9], or the search space [11]. Our study
focuses on a different aspect than these other approaches.

To apply the GAs to to our problem, we represent a
graph layout as a chromosome. A layout is a string of
points in the three dimensional Euclidean space. The length
of the string is equal to the number of vertices m. Each of
the points is composed of three genes taking real values.
The genes are initially generated in a given boundary which
is a 3D box of dimensions depending on the weights in the
graph.

The fitness function is based on the total error in the
graph as computed in Equation 3 and is given by the for-
mula

f =
1

1 + total error

Since our chromosomes are of fixed length, any of the
classical crossover operators can be applied without modi-
fication. We have chosen the uniform crossover [10] with a
swap probability established experimentally.

The fitness function introduced in Equation 3.1 is lin-
ear over the number of edges in the graph. Thus, the ex-
ecution time of the algorithm depends linearly on the size
of the graph, the size of the population, and the number of
generations. So, even if we chose a number of generations
equal to the number of iterations of the heuristics presented
in Section 2, the GAs require more execution time.

3.2 Real-Encoded Gene Mutation

The mutation has always played an important role for the
genetic algorithms, but usually has less impact on the pop-
ulation evolution than the crossover. Practically, the muta-
tion acts by modifying a randomly selected gene, for ex-
ample by flipping the bit in the binary gene encoding. The
real-coded representation for our problem presents more
possibilities for the mutation. We are interested in the im-
pact of the various mutation forms on the achieved fitness.
This part of the paper represents an extension and continu-
ation of [13].

The mutation operator is more easily defined in the
context of binary genes. The genetic representation of a
problem with floating-point genes offers more possibilities
for defining the mutation. Several forms have been pro-
posed in the literature, and some of our operators are in-
spired from them.

The uniform mutation replaces the value of the chosen
gene with a uniform random value within the range speci-
fied by the user [7]. The mirror mutation replaces a gene
with it’s mirror value with respect to the middle point of the
boundary interval for the gene. This is the closest operator
to the binary bit-flipping usual mutation. The percentage
mutation replaces a gene with a random percentage of its
value within the interval [80%, 120%].

These three types of mutation are not specific to our
problem. The following two forms of mutation represent a
combination of the heuristics presented in Section 2.

Table 1. Total error as percentage of the total weight in
1000 generations

Size Uniform Mirror Percentage Edge TVM
50 93.64% 94.45% 68.14% 60.35% 21.02%
60 93.63% 94.33% 69.07% 58.99% 19.63%
70 94.14% 94.69% 74.02% 64.97% 08.82%
80 93.74% 94.32% 71.61% 61.80% 15.48%
90 94.18% 94.67% 74.12% 62.69% 16.59%
100 93.95% 94.46% 75.02% 64.17% 11.23%
125 94.19% 94.67% 76.64% 64.15% 13.60%
150 94.18% 94.65% 79.11% 66.85% 14.15%
175 94.30% 94.72% 79.46% 65.60% 14.64%
200 94.33% 94.74% 81.12% 67.12% 22.87%

The edge mutation is moving the 3 genes of a ran-
domly selected point on a randomly selected edge starting
from that vertex according to Equation 4 to reduce the error
on that edge. The tension vector mutation (TVM) is mov-
ing the 3 genes of a randomly selected point based on the
tension vector resulting from all edges starting from that
vertex as described in Equation 7.

4 Experimental Results

We have conducted our experiences with the set of graphs
introduced in Section 2. These graphs were generated such
that there exists at least one solution to the consistent layout
problem. The number of vertices varies from 50 to 200.

Based on some preliminary tests, a swap probability
of 0.45 for the uniform crossover seems to be the most ap-
propriate for this problem, and we have used this value of
the parameter for the rest of the experiments.

Table 1 shows the results of the five variations of the
mutation operator on the ten graphs with exact solution.
The first column represents the number of vertices in the
graph. All of these results represent the total error as a
percentage of the total weight of the edges in the graph,
as an average over 50 trials. The number of generations
is 1000 and the population size is 50. The ε parameter is
equal to 0.005 for these results.

We can notice that there is a considerable difference
in performance between the forms of mutation we have in-
troduced. The uniform and mirror mutations are the only
ones that seem to give similar results, even though the uni-
form mutation is slightly better. In comparison, the per-
centage mutation is doing visibly better than both of them,
with more than 10% of improvement in all the cases. The
edge mutation is a further clear improvement, showing that
taking advantage of the specificity of the problem can have
a positive impact on the GAs.

Last, the tension vector mutation is substantially bet-
ter than even the edge mutation. The difference between
the two heuristics is larger than in the case were they were

Table 2. Average total error in 1000 iterations and 500 gen-
erations plus 500 iterations

Size BF TV GA+BF GA+TV
50 0.012% 0.024% 1.145% 2.115%
60 0.045% 0.042% 2.187% 2.000%
70 9.45e-04% 1.06e-03% 0.100% 0.046%
80 1.20e-06% 2.39e-07% 0.000% 0.0
90 1.11e-06% 2.02e-07% 0.004% 0.399%
100 5.71e-03% 0.031% 0.168% 0.390%
125 9.81e-07% 0.003% 0.0% 0.0%
150 1.07e-06% 0.019% 0.0% 0.0%
175 9.83e-07% 0.020% 0.0% 0.0%
200 1.05e-06% 0.019% 0.0% 0.0%

applied exclusively in part because by combining the ten-
sion vector method with the genetic algorithms, we avoid
the divergence issues previously encountered.

As an additional experiment, we combined the execu-
tion of the GAs with the force-based methods. We chose
the tension-vector mutation and evolved 500 generation of
the genetic algorithms followed by the BF or TV heuristic.
Table 1 presents the total error as percentage of the total
weight in the graph, first for the two force-based methods
in 1000 iterations, then for the combination of 500 gener-
ations of the genetic algorithm with 500 iterations of the
force-based methods with ε = 0.05.

This table shows that the results of the combination
of the two approaches are comparable to the force-based
methods, and even exceeds it in some cases. The genetic
algorithm also solved the divergence problem that the ten-
sion vector methods display sometimes.

The numbers in the second and third columns rep-
resent the total error as percentage of the total weight in
the graph achieved in 1000 iterations . Higher values have
caused the tension vector algorithm to diverge. We com-
puted the average over 50 trials with the same parameters
but different sequences of random numbers.

Comparing the results in Tables 2 and 1, we can con-
clude that the force-based heuristics perform better than the
GAs on this particular problem. Even if the actual precision
of the solution is not the goal of this paper, we can still won-
der if the GAs are appropriate for solving the graph layout
problem. In the context of simply generating a precise and
consistent solution, the force-based heuristics seem like a
better approach indeed.

5 Geometric Constraints

The experiments presented in the previous section seem to
indicate that the force-based algorithms perform better in
general than the GAs for this kind of problem. Still, the
GAs have the advantage of a providing a great flexibility in
the choice of the fitness function, and we can use this fea-
ture to derive solutions with interesting geometric shapes.

Many of the known geometric shapes present such
properties as maximizing the enclosed surface or volume,
as it is the case for spheres of any dimension. In this sec-
tion we add such properties to the fitness function to see
how they change the general shape of the solution.

We performed our experiences with three types of
constraints: angle, surface, and volume. In the case of
the angles, we added a component to the fitness function
minimizing the standard deviation of the angles, maximiz-
ing their uniformity. For the surface component, we try
to maximize the surface occupied by the graph layout in a
particular projection. And last, for the volume component,
we try to maximize the product of the standard deviation of
the points from the geometric center of the layout in the 3
dimensions.

The actual fitness function represents, in all cases, a
combination of the component minimizing the error pre-
sented in Equation 3 and one of the tree shape components
in equal measures.

In the literature it was suggested that adding repul-
sive vectors to the spring algorithm can help building lay-
outs with nicer geometric shapes, showing the graph struc-
ture more clearly. Specifically, if A and B are two non-
adjacent vertices, then a repulsion force is established be-
tween them, inversely proportionate to the distance be-
tween them. More precisely, the repulsion force RF has
the following expression:

RF =
1

d(A, B)p

where p is an integer number, the most often equal to 2.
In the following experiments, we have combined the

genetic algorithm with the force-based algorithms for two
graphs with a recognizable structure. The first one is a 2x2
grid, and the second one a 4x4 grid, both made of squares.
Figure 1 shows the original layout of the two graphs.

Figure 1. The two graphs for the experiments

First we applied three forms of force-based algo-
rithms, breadth-first based (BF), tension vector TV, and
a combination of the tension vector method with the re-
pulsion forces (RV). Next, we applied a genetic algorithm
for 500 generation using a fitness function representing the
sum of f in Equation 3.1 and the measure for the angle,
for the surface, and for the volume respectively. We then
continued for another 500 iterations using the RV method.
The next four figures will show the shapes derived by these
methods.

Figure 2 shows the shape derived for the grid 2x2 by
the force-based methods respectively. Figure 3 shows the
shapes derived by the GAs using the three fitness measures
combined with the RV method. From these figures we can
see that both the RV method by itself, and the GAs with a
fitness maximizing the volume achieve the closest shape to
the original layout, but the GAs are somewhat better.

Figure 2. The shapes derived by force-based algorithm for
the grid 2x2

Figure 3. The shapes derived by GAs and RV for the grid
2x2

Figure 4 shows the shape derived for the grid 4x4
by the force-based methods respectively. Figure 5 shows
the shapes derived by the GAs using the three fitness mea-
sures combined with the RV method. This shape consti-
tutes more of a challenge for all algorithms, and even the
RV method by itself doesn’t achieve the desired shape. The
closest shape to the original design is the one derived by the
GAs with a fitness maximizing the volume.

Figure 4. The shapes derived by force-based algorithm for
the grid 2x2

We can deduce from these experiments that the ge-
netic algorithms can contribute indeed to deriving better
shapes for the graph layouts while preserving the consis-
tency properties. The measure aiming to maximize volume
seems to work better as the fitness than the corresponding

Figure 5. The shapes derived by GAs and RV for the grid
2x2

one for the angles or for the surface. Experiments with
more complex shapes and larger graphs are not yet conclu-
sive.

6 Conclusions

In this paper we introduced a real-coded genetic algorithm
applied to the consistent graph layout problem. The focus
of this study has been on two aspects, the precision of the
solution derived by force-based methods as compared to
the GAs, and the use of the GAs to build layouts following
a particular geometric shape.

Our experiments have shown that the GAs can be
quite successful in deriving a precise solution to the prob-
lem, even if the force-based algorithms are a viable alterna-
tive. In addition, the choice of the mutation operatorfor the
GAs can have a large impact on a real-encoded genetic al-
gorithm. Last, a combination of the force-based algorithms
and the GAs can avoid some of the divergence problems of
the tension vector method while achieving similar levels of
precision for the solution.

By introducing a new constraint in the derived solu-
tion concerning not only the precision, but the actual geo-
metric shape, we have shown that the GAs present a clear
advantage over the other methods. In this approach, the fit-
ness function reflects both the precision of the solution and
some geometric properties, for example, maximizing the
surface or the volume. The results presented in this section
show that the solutions derived by the GAs are closer to the
desired geometrical shape than the force-based algorithms
alone.

The conclusion is that even though in simple terms
of precision, the force-based heuristics are more efficient
in finding consistent graph layouts, the genetic algorithms
can be used to help achieve a different set of properties in
the solution. Last, the combination between the two types
of algorithms seems to be the most promising approach for
both aspects we have studied.

7 Acknowledgments

This work has been in part conducted under the IUSB Fac-
ulty Fellowship Grant, 2004.

References

[1] H.L. Bodlaender, M.R. Fellows, and D.M. Thilikos.
Derivation of algorithms for cutwidth and related
graph layout problems. Technical Report UU-CS-
2002-032, Institute for Information and Computing
Sciences, Utrecht University, 2002.

[2] U. Brandes, V. Kääb, A. Löh, and D. Wagner. Dy-
namic WWW structures in 3d. Journal of Graph Al-
gorithms and Applications, 4(3):183–191, 2000.

[3] U. Brandes and D. Wagner. Using graph layout to
visualize train interconnection data. Journal of Graph
Algorithms and Applications, 4(3):35–155, 2000.

[4] J. Branke, F. Bucher, and H. Schmeck. Using ge-
netic algorithms for drawing undirected graphs. In
J.T. Allen, editor, The Third Nordic Workshop on Ge-
netic Algorithms and their Applications, pages 193–
205, 1997.

[5] P. Eades. A heuristic for graph drawing. Congressus
Numerantium, 42:149–160, 1984.

[6] P. Gajer and S.G. Kobourov. Grip: Graph drawing
with intelligent placement. Journal of Graph Algo-
rithms and Applications, 6(3):203–224, 2002.

[7] D. E. Goldberg. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
Reading (MA), 1989.

[8] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis.
Graph Drawing: Algorithms for the Visualization of
Graphs. An Alan R. Apt Book. Prentice Hall, Upper
Saddle River, NJ, 1999.

[9] I. Ono and S. Kobayashi. A real-coded genetic algo-
rithm for function optimization. In Proceedings of the
7th International Conference on Genetic Algorithms,
pages 246–253, 1997.

[10] G. Syswerda. Uniform crossover in genetic algo-
rithms. In J. D. Schaffer, editor, Proceedings of the
International Conference on Genetic Algorithms, San
Mateo (CA), 1989. Morgan Kaufmann Publishers.

[11] S. Thutsui and D. Goldberg. Search space boundary
extension method in real-coded genetic algorithms.
Information Sciences, 133(3-4):229–247, 2001.

[12] D. Vrajitoru and J. DeBoni. Consistent graph layout
for weighted graphs. In The 3rd ACS/IEEE Interna-
tional Conference on Computer Systems and Applica-
tions, Cairo, Egypt, 2005.

[13] D. Vrajitoru and J. DeBoni. Hybrid real-coded mu-
tation for genetic algorithms applied to graph lay-
outs. In Proceeding of the Genetic and Evolutionary
Computation Conference (GECCO’05 and SIGEVO
1), pages 1563–1564, Washington, DC, June 25-29
2005.

