
FACET DETECTION AND VISUALIZING LOCAL STRUCTURE IN GRAPHS
Dana Vrajitoru

Intelligent Systems Laboratory
Computer and Information Sciences

Indiana University South Bend
South Bend, IN 46634, USA
email: danav@cs.iusb.edu

ABSTRACT
In this paper we present an algorithm for facet detection
in graphs. We define the facets as simple cycles in the
graph minimizing the length. Our algorithm detects the
local structure of simple cycles intersecting in a particu-
lar vertex of the graph. For this purpose, we reduce the
problem to an instance of the Traveling Salesman in an in-
duced co-cyclic graph and use a method inspired from the
minimum spanning tree to construct a circuit solution. Our
algorithm found a correct solution for most of the cases we
tested it on.

KEY WORDS
graph visualization, facet detection, traveling salesman

1 Introduction

In this paper we present an algorithm for facet detection
in a graph, defined in terms of a set of simple cycles in-
tersecting in a particular vertex of the graph. The goal of
the algorithm is primarily to emphasize the local structure
in the graph concerning a particular vertex, which can pro-
vide a better understanding of the graph by means of visu-
alization. Other applications are also foreseeable for this
algorithm, for example, computing the total surface of the
graph.

Facet detection algorithms have many applications.
Recently, they have been employed for detecting and track-
ing features in 2D images and in animations [10], and for
automatic object recognition [5].

It is often the case that surfaces are initially defined as
clouds of points [1], in particular when they represent im-
plicit surfaces or when they are captured by a 3D scanner.
The most often, a mesh is reconstructed from the cloud of
points which can take an intermediate step in the form of
a graph [3]. In this study, a cloud of points obtained from
a 3D scanning device is first transformed into a graph. A
second step constructs the surface by a facet detection al-
gorithm.

A related problem is the edge detection in images
[11], which is often based on pixel analysis. The facet de-
tection methods consider the facets as collections of edges
with particular properties, for example, convexity in terms
of polygons. Zheng and Tian [15] for example, start with

an edge detection algorithm, followed by facet detection
using a combination of gradient based parametric facet de-
tection and zero crossing for the edges. In a related study
[9], features are extracted by hysteresis thresholding fol-
lowed by a step consisting in reconstructing a minimum
spanning graph to emphasize contours for 2D and 3D data.
In this study, the cycles represent an important criterion to
recognizing features.

The idea of feature extraction is closely related to the
notions of facet and polygon. Iqbal and Aggarwal [7] pro-
pose detecting structures in two dimensional images by ex-
tracting line segments and then building a cotermination
graph. The method employs graph theory to detect poly-
gons in the image as fundamental circuits in the graph. A
maximum spanning tree is used for the detection, making
use of the spatial representation of the graph.

In this paper we propose a method for extracting local
structures in graphs. We start from the premise that the
graph represents a solid object with a well-defined surface.
We assume that the surface itself is not known, and that
we do not possess information about the geometry of the
graph. We are interested in the intrinsic local structure of
the graph outside of the geometric considerations.

The algorithm we propose follows the general idea
that a facet is a simple cycle in a graph with some prop-
erties of minimality. In a related paper [3], Azernikov and
Fischer start from an edge to detect a facet, using proper-
ties of convexity of the resulting polygon and minimizing
the length of the cycle. We follow a different approach,
going from all the simple cycles intersecting in a vertex to
selecting those that might define the actual surface. Our
approach differs from that of related work in the sense that
we do not use the geometric representation of the graph, but
only the internal structure in terms of edge connections.

Our algorithm focuses on one vertex at a time and
detects the local polygons that the vertex belongs to using
a minimal cycle method. The set of all such cycles are
meant to represent the surface of the object represented by
the graph. They constitute a minimal neighborhood of the
object that is topologically open. In the current form we
do not consider information about the weights in the graph,
but the algorithm can be extended to find the minimal cycle
set in terms of weights.

The main application of this algorithm is to empha-



size the local structure in the graph for purposes of visu-
alization. As a potential additional application, it can be
used to compute the total surface of the graph. Efficient so-
lutions have been proposed for meshes [14], starting from
the assumption that the polygons composing the surface
have already been defined. Our algorithm can be used as
a preliminary step for this problem.

2 Cycle Detection and Co-Cyclic Graph

Definition. Two vertices in a graph are co-cyclic if they
belong to a common simple cycle.

We use the notion of co-cyclic vertices in the sense
most often used in chemistry and not in relation to the no-
tion of cocyle in a graph [13].

We will start by analyzing the subset of the cycle
space containing all the simple cycles that intersect in a
given vertex of the graph, or origin. From this subset we
can construct a weighted co-cyclic graph where an edge is
drawn between two vertices if they are both adjacent to the
origin and co-cyclic. The weight of the edge will be the
length of the smallest cycle containing both vertices.

The co-cyclic graph can be used to extract the cycle
structure or the facets that intersect in the origin.

2.1 Cycle Detection

The issue of detecting a cycle in a graph seems rather triv-
ial, but it is still worth mentioning for the sake of present-
ing a complete algorithm. We will consider the case of an
undirected graph. For directed graphs the cycle detection is
more complex and requires a topological sorting algorithm.

Let G = {V, E} be an undirected graph with n
vertices and m edges.

Existence
The test for the existence of a cycle in a graph is linear

over the number of vertices n. In an acyclic undirected
graph, m ≤ n − 1. This is a necessary but not sufficient
condition for the graph to be acyclic. In the case where
this condition is true, we still need to verify the existence
of cycles with a breadth-first search, which is linear over
the number of edges m. The necessary condition insures
thus that the test is linear over n.

Detection Algorithm
The cycle detection algorithm requires a small modifi-

cation to a classic breadth-first search (BFS) [12]. The BFS
explores the vertices in the graph by moving from a vertex
to its neighbors in the order of the distance to the origin of
the search in terms of number of edges. A queue is used
to store the visited vertices that may still have unprocessed
neighbors. If we need to store the path from the origin to
a destination vertex in the graph, then for each vertex we
record its predecessor in the search. Traditionally, the BFS

marks the visited vertices to avoid cycles. The same mark
can be used to detect the cycles in our case.

Let us denote by o the origin of the BFS. Let us con-
sider a particular step of the BFS where the current vertex
is x and y is one of its neighbors. The following three cases
can occur:

1. y has not been marked yet. In this case y is a vertex
not yet visited and the BFS can continue the search by
adding it to the queue and marking it.

2. y = predecessor(x) or x = predecessor(y). In this
case the algorithm has found a cycle by retracing one
of its steps. Since this would not be a simple cycle, we
can discard the entry y.

3. Otherwise y is a vertex that has been encountered be-
fore on a different path. Thus, by concatenating these
two paths by which we reached y, we close a cycle.

If our goal is to detect the existence of non-trivial cy-
cles in the graph, then encountering the third case described
above is a necessary and sufficient condition.

To construct the actual cycle, we first construct the
path from x to o by following the predecessors backward
to the origin o and by reversing the order. Then we continue
this path with y and the entire path from y to o. The cycle
can then be described as o → x − y → o. If the cycle
obtained this way is not simple, a simple cycle containing
o can easily be extracted from it.

2.2 Induced Co-Cyclic Graph

Definition. Let o ∈ V be a particular vertex in the graph
for which we want to extract the facet structure. Let Cs(o)
be the set of all the simple cycles containing o. Let Ho =
{Ao, Eo, Wo} be the weighted co-cyclic graph induced by
the vertex o defined the following way:

Ao = {v ∈ G | ov ∈ E} (1)
Eo = {vw | ∃c ∈ Cs(o), v ∈ c, w ∈ c} (2)

Wo(vw) = min{length(c) | c ∈ Cs(o)} (3)

To determine the structure of this graph, first we can
notice that the relation defining the edges of Ho in Equation
2 is transitive. For this, let v, w, y ∈ V such that v and
w are co-cyclic, as well as w and y. Let us denote the
two cycles starting from o and containing these vertices by
o v C1 w o and o w C2 y o. Let us suppose that v 6∈ C2 and
y 6∈ C1, otherwise we would already have found a simple
cycle containing v, y, and o.

Then the cycle obtained by merging these two cycles,
o v C1 w C2 y o contains both v and y. If the cycle is not
simple, any subcycle inside the region C1 w C2 can be re-
moved to make the cycle simple, since neither o, nor v or y
are present on that path. Figure 1 illustrates the configura-
tion we described.



Figure 1. Two cycles that can be merged

Thus, we have shown that

vw ∈ Eo ∧ wy ∈ Eo ⇒ vy ∈ Eo

The consequence of the transitivity for the co-cyclic
graph H is that its connected components are complete
subgraphs.

Co-Cyclic Graph Closure
The cycle detection algorithm presented in Sec-

tion 2.1 does not always detect the complete subspace
of simple cycles Cs(o). An intersection of edges in
a vertex y as described in the algorithm generates a
single simple cycle in the algorithm. Thus, the algorithm
detects at most m − (n − 1) cycles. The number of
simple cycles o belongs to can be larger. o can have as
many as n − 1 neighbors, and thus (n − 1)(n − 2)/2
incident cycles. If the graph is complete, then the BFS
can detect all of these cycles, otherwise the number of
detected cycles will be lower than the total number of them.

Example
Let us take the case of a graph with the structure of a

hypercube and the origin O as shown in Figure 2 left. This
graph is interesting from the point of view of our algorithm
because it represents a four-dimensional geometric object
in which there is no obvious simple cycle fan that surrounds
each vertex.

Figure 2. A hypercube, the vertices adjacent to O (left) and
the induced co-cyclic graph (right)

There are four vertices in the graph adjacent to O and
they are labeled A, B, C, D. Each of them is connected to
all of the others by a simple cycle of length four represent-

ing a facet of the hypercube. The co-cyclic graph Ho for
this particular vertex is shown in Figure 2 right.

2.3 Cycle Structure

Starting from the assumption that we have constructed the
co-cyclic graph Ho successfully, let us examine what the
cycle structure in the vertex o entails in terms of the co-
cyclic graph. For this step, each connected component of
the graph will be treated separately. Let us consider for
now that the graph Ho is complete. There are two possible
constraints to the solution. The first one involves not using
an edge more than twice. The second one involves using
each outgoing edge from o and minimizing the total length
of the considered cycles.

Definition. A circuit solution for the facet problem is one
where each outgoing edge from o is present in exactly two
cycles in the structure and for which the total length of the
cycles is minimal.

The constraint that each outgoing edge should appear
twice means that the subset of cycles constitutes a Hamil-
tonian circuit in the graph Ho, a simple cycle containing
all the vertices. The constraint about minimizing the total
length of the cycles translates in terms of the graph Ho as a
Hamiltonian circuit minimizing the total cost. This means
that the problem can be reduced to a symmetric instance
of the Traveling Salesman Problem (TSP) in the co-cyclic
graph.

TSP is NP-complete, but we have not shown a com-
plete equivalence to this problem. In fact we can observe
that the co-cyclic graph satisfies the triangle inequality.
More precisely, if v, w, y ∈ Vo, then based on the demon-
stration of the transitivity of the co-cyclic property, the
weight of the edges vw, wy and vy in the co-cyclic graph
satisfy the inequality

Wo(vy) ≤ Wo(vw) + Wo(wy) − 2

There are many studies of TSP in the case where the
graph has particular properties [8], especially Euclidean
[2]. The major algorithm for the case where the triangle in-
equality is satisfied was introduced by Christofides in [4].
He proved that there exists a polynomial algorithm that pro-
duces a solution not worse than twice the optimal cost. His
algorithm uses the idea of the minimum spanning tree.

For example, for the hypercube with co-cyclic graph
presented in Figure 2, a circuit solution could be the one
shown in red in Figure 3 left. The corresponding sequence
of cycles in the original graph is shown in the same figure
to the right. We show the 3D object in this figure using a
different perspective that makes it easier to see the solution.

Definition. A spanning tree solution for the facet problem
requires each outgoing edge to be present at least once and
for the total length of the cycles to be minimal.



Figure 3. A circuit solution in the hypercube

The relaxation of the constraints means that the object
satisfying these properties in the graph Ho is a minimum
spanning tree [12].

For example, for the hypercube and the co-cyclic
graph presented in Figure 2, a spanning tree solution could
be the one shown in red in Figure 4 left; the correspond-
ing sequence of cycles in the original graph is shown in the
same figure to the right.

Figure 4. A spanning tree solution in the hypercube

3 Facet Definition and Detection

In this section we present the facet detection algorithm,
starting with the existence and detection of simple cycles
in the graph, followed by a selection and classification of
the simple cycles intersecting in a particular vertex in the
graph.

The definition of a facet is closely related to that of a
feature. Basically a feature is usually composed of several
facets, so facet detection can be seen as an intermediary
step in feature detection.

A feature is part of an object that is localized, mean-
ingful, and detectable. Its definition is often subjective,
making reference to what a human eye can recognize [9].

Examples include edges, corners, chains, line segments,
parameterized curves, regions, surface patches (3D), closed
polygons [6].

A facet is usually defined as part of an object or of an
image that is flat, planar, linear, quadratic, or cubic. Con-
sidering that a graph represents objects with straight edges
and planar surfaces, a facet is a closed and planar polygon,
preferably convex.

3.1 Facet Detection

Instead of focusing locally on each of the facets, our algo-
rithm detects them by using the entire structure of cycles
surrounding each vertex in the graph. Starting from the as-
sumption that the graph represents a solid surface without
holes, we aim to construct a fan of minimal polygons cen-
tered in each vertex such that they can have a local planar
representation without overlapping. For this purpose, ev-
ery vertex in the graph that is adjacent to the origin, must
belong to two and only two cycles of the fan.

The algorithm shown bellow starts by detecting all
the simple cycles intersecting in o, then sorting them
by length. After that it follows the idea of a minimum
spanning tree, adapted to construct a Hamiltonian circuit.

Algorithm

for every vertex o in the graph {
build a list of all simple cycles

containing o;
sort the list of cycles by cost;
Fo = empty;
for every cycle c in this list and

while size(Fo) < degree(o)-1 {
v, w = the two vertices in c

adjacent to o;
if ((each of v and w appear each in

at most one other cycle in Fo)
and ((c does not close

a cycle of cyles in Fo)
or c is the last cycle

we need))
add c to Fo;

}
}

Complexity
If n is the number of vertices and m the number of

edges, then in the worst case the cycle-detection algorithm
will have a complexity of m = O(n2). The operation
of merging two cycles and eliminating sub-cycles is lin-
ear over n. Computing the closure of the co-cyclic graph
can be done with a greedy algorithm of complexity in the
worst case O(n(n(n−1)/2−m)2) = O(n5). By comput-
ing only the cycles necessary to close the circuit at the end
of the algorithm, we can reduce this step to n3. This can
be done by a simple search of a path in the co-cyclic graph.
Sorting the cycles by length is O(m log m) = O(n2 log n).



The most costly operation in the algorithm above is
checking that the cycle c does not close a cycle of cycles.
This can be done efficiently by storing the neighbors of the
vertex o in a union/find data structure, in which case its
complexity will be O(log n) at each step, making the total
complexity O(m log n) = O(n2 log n).

In conclusion, our algorithm has a complexity of
O(n2 log n) without closure of the co-cyclic graph, and of
O(n3) with it.

3.2 Examples

We present here some examples of results of our algorithm
for a variety of graph configurations. In each of the follow-
ing figures the origin vertex is shown in light green, while
the cycles in the structure identified by the algorithm are
shown in shades of red. This allows us to visually distin-
guish between the cycles composing the structure.

First, Figure 5 shows the hypercube configuration that
we discussed earlier in this paper. We can see in the left
image that the algorithm found the predicted cycle struc-
ture for the vertex we analyzed before. It also found an
equivalent correct solution for a vertex on the exterior cube,
shown in the image to the right.

Figure 5. Solutions found by the algorithm in a hypercube

Figure 6 shows the cycle structure for a regular dense
fan. Figure 7 shows the solution found by our algorithm in
a grid both for a vertex on the outer border of the grid (left)
and for a vertex inside the grid (right). Figure 8 shows
the structure for a vertex on a torus graph. For all these
graphs the algorithm was able to identify the cycle structure
precisely.

The closure of the co-cyclic graph based on the tran-
sitivity of the co-cyclic relation can have both positive and
negative impact on the solution. For example, in the case
of the vertex on the border of the grid in Figure 7 left, the
BFS cycle detection algorithm failed to capture all the sim-
ple cycles around the origin vertex (in green in the figure).
As a result, the circuit of cycles was not completed. It is a
Hamiltonian path but not circuit. For this particular case,
this emphasizes the structure better than a circuit because
the grid represents an open surface.

For more complex local structures in the graph, not

Figure 6. A vertex in the center of a fan on an ellipsoid
graph

Figure 7. A vertex on the border of a grid and inside a grid

Figure 8. A vertex on a torus graph

closing the co-cyclic graph can lead to incomplete solu-
tions. Such an example is shown in Figure 9.

Last, we have shown in Section 2 that the problem
can be expressed as an instance of the Traveling Salesman
in the co-cyclic graph. TSP is NP-complete, and even in
the case where the graph satisfies the triangle inequality, as
in our case, the best polynomial algorithm cannot guaran-
tee an optimal solution, but only one that is no more than



Figure 9. An incomplete solution without closure of the
co-cycle graph

a given percentage more costly than the optimal one. Fig-
ure 10 shows an example where the solution found by the
algorithm is not optimal.

Figure 10. A non-optimal solution on a torus graph

4 Conclusion

In this paper we presented an algorithm to detect facets in a
graph and emphasize the local structure of the graph around
a particular vertex for the purpose of visualization.

Section 2 presented a cycle detection algorithm and
introduced the notion of induced co-cyclic graph. We
showed that our problem can be reduced to an instance of
the Traveling Salesman in the co-cyclic graph. Section 3
introduced the facet detection algorithm inspired from the
method constructing the minimum spanning tree and dis-
cussed its complexity.

Our method detected the correct solution for most of
the graphs that we examined and is of polynomial com-
plexity. It is the most efficient when the graph is a repre-
sentation of a regular mesh extracted from the surface of an
object.

References

[1] N. Amenta and Y.J. Kil. Defining point-set surfaces.
In Proceedings of ACM SIGGRAPH, pages 264–230,

2004.

[2] S. Arora. Polynomial time approximation schemes
for euclidean tsp and other geometric problems. In
Proceedings of the 37th IEEE FOCS, pages 2–11,
1996.

[3] S. Azernikov and A. Fischer. Efficient surface recon-
struction method for distributed cad. Computer-Aided
Design, 36(9):799–808, 2004.

[4] N. Christofides. Worst case analysis of an algorithm
for the traveling salesman problem. Technical Report
388, Carnegie Mellon University, Graduate School of
Industrial Administration, 1976.

[5] C. D’Souza, K. Sivayoganathan, D. Al-Dabass, and
V. Balendran. Simulation of object recognition by a
robot. In Proceedings of the UKSIM Workshop, SIM-
ULATION ’99, pages 23–26, UCL, London, 1999.

[6] R. Haralick and L. Shapiro. Computer and Robot Vi-
sion. Addison-Wesley, 1993.

[7] Q. Iqbal and J. K. Aggarwal. Image retrieval via
isotropic and anisotropic mappings. In IAPR Work-
shop on Pattern Recognition in Information Systems
(PRIS 2001), pages 34–49, Setubal, Portugal, July 6-
8 2001.

[8] M. Karpinski P. Berman. 8/7-approximation algo-
rithm for (1,2)-tsp. In Proceedings of the 17th ACM-
SIAM SODA, pages 641–648, 2006.

[9] M. Pauly, R. Keiser, and M. Gross. Multi-scale fea-
ture extraction on point-sampled surfaces. Computer
Graphics Forum, 22(3):281–290, 2003.

[10] A. Shahrokni, L. Vacchetti, V. Lepetit, and P. Fua.
Polyhedral object detection and pose estimation for
augmentedreality applications. In Proceedings of
Computer Animation, pages 65–69, Geneva, Switzer-
land, 2002.

[11] M.C. Shin, D.B. Goldgof, and K.W. Nikiforou and.
Comparison of edge detection algorithms using a
structure frommotion task. IEEE Transactions on Sys-
tems, Man and Cybernetics, 31(4):589–601, 2001.

[12] M.A. Weiss. Data Structures & Algorithm Analysis
in C++. Addison Wesley Longman, 1999.

[13] R.J. Wilson. Introduction to Graph Theory. Prentice
Hall, 1996.

[14] C. Zhang and T. Chen. Efficient feature extraction for
2d/3d objects in mesh representation. In Proceedings
of IEEE International Conference on Image Process-
ing, pages 935–938, 2001.

[15] S. Zheng, J. Tian, and J. Liu. Efficient facet-
based edge detection approach. Optical Engineering,
44(4):47202–47211, 2005.


