
DataViewer: A Scene Graph Based Visualization Tool

Randy Paffenroth
Applied and Computational Mathematics

California Institute of Technology,
California, USA.
redrod@acm.org

Dana Vrajitoru
Computer and Information Sciences,

Indiana University at South Bend,
Indiana, USA.

danav@cs.iusb.edu

Thomas Stone
Veridian MRJ Technology Solutions,

Fairfax, Virginia, USA.
tstone@mrj.com

John Maddocks
LCVM

�

, EPFL, Switzerland.
John.Maddocks@epfl.ch

Abstract

This article outlines the capabilities of a scientific visual-
ization toolkit called DataViewer, and compares it to analo-
gous software. DataViewer was originally designed for the
construction of the visualization part of certain computa-
tional steering packages, and consequently it is particularly
straightforward to closely couple DataViewer with numer-
ical calculations. Rendering is performed through a high-
level scene graph which facilitates the easy construction of
complex visualizations. DataViewer differs from other such
libraries by allowing complex geometrical objects, which
efficiently encapsulate large amounts of data, to be used
as nodes in the scene graph. Graphics hardware access is
through the OpenGL API.

1 Introduction

DataViewer (http://lcvmwww.epfl.ch/DV/) is a scientific
visualization library created to allow the easy development
of efficient visualization programs for those who are not,
and do not wish to become, graphics programming experts.
DataViewer comprises a high-level set of routines for ren-
dering geometric objects. It utilizes the OpenGL graphics
API [2] for low level rendering. DataViewer has previously
been used in several different visualization projects, e.g.
most of the visualization modules of the parameter continu-
ation software package VBM (Visualization of Bifurcation
Manifolds, [4, 1]) have been developed using it.

The goals of DataViewer are to be computationally effi-
cient, but with a high-level easy-to-use interface, portable
(at least over UNIX platforms), and open source, freely

available to the mathematical and scientific research com-
munities. A less standard design goal for DataViewer was
to facilitate a close coupling between visualization and nu-
merical computations, so as to be able to visualize dynamic
data sets easily. By dynamic data sets we here mean data
sets that are continually being modified as, for example, in
interactively steered codes. Such dynamic data sets require
a tighter coupling to the actual computation of the numer-
ical data than is necessary in the more standard mode of
visualizing a static, pre-computed data set a posteriori.

From all of the available packages for scientific visual-
ization, VTK (http://www.kitware.com) represents the soft-
ware package most closely realizing the DataViewer ob-
jectives. In spite of its many advantages, it was not de-
signed for close coupling to numerics, and is in many
ways much more sophisticated than our needs. Other soft-
ware packages like AVS (http://www.avs.com/), OpenInven-
tor (http://oss.sgi.com/projects/inventor/), and GeomView
(http://www.geomview.org), have been considered before
starting the development of DataViewer, but none of them
met our needs closely enough.

Hence in late 1996, we were left with the prospect of
starting to create our own visualization software library.
DataViewer 2.x was developed by R. Paffenroth, T. Stone,
D. Vrajitoru, and A. Ahearn; it is our attempt to create a
library which encompasses all of the needs detailed in the
Introduction. The package is still being developed along
with new applications in research and education.

2 DataViewer 2.x Implementation

DataViewer 2.x is written in C++, and uses many of the
language’s object oriented features, such as templates and
virtual functions. Each graphical object class in DataViewer



2.x inherits from a single base class called DVobject and
defines a virtual draw routine that creates a set of OpenGL
commands for the graphical representation of the object.

Rendering in DataViewer is performed through a high-
level scene graph based structure. The nodes in the graph
can be either leaf nodes that contain data for visualization,
and container nodes that group together other nodes. Ge-
ometry nodes in DataViewer 2.x include sets of lines, cylin-
ders, triangle strips, and others. In DataViewer, properties
such as color, translation, and rotation can be either defined
by any node or inherited by entire subtrees.

DataViewer differs from other such libraries in that it
allows both simple and complex geometrical objects to be
used as single nodes in the scene graph. The complex nodes
can be used to visualize large amounts of data more effi-
ciently than is possible by using conglomerations of simple
nodes, while the simple nodes can be used when flexibility
is required. For example, Figure 1 is represented as two leaf
nodes, a simple one containing the planar grid, and a more
complex one containing a set of line segments rendered as
cylinders with an associated ribbon .

Figure 1. A complex object which is repre-
sented in DataViewer by two leaf nodes.

Python gives access to the the Tcl/Tk [3] widget li-
braries, which DataViewer utilizes for the design of GUIs.
For users with only a little familiarity with Tk and Python,
it is quite straightforward to create customized DataViewer
GUIs for their particular problems. DataViewer 2.x also
provides several useful features like stereo viewing and ac-
cess to six degree-of-freedom controls, such as the Magel-
lan 6D Mouse from Logitech Inc.

DataViewer was designed to be easily linked to numer-
ical programs. This link can be achieved in several ways.
First of all, numerical programs written in C++ or FOR-
TRAN can be directly compiled in a DataViewer appli-
cation can be updated without having to compile the li-
brary itself again. Second, more complex stand-alone pro-
grams like AUTO [5] can communicate with DataViewer by
means of data files. Third, users that are not familiar with

programming can use a native geometrical scene file format
to visualize their data.

Finally, DataViewer is design to facilitate both flip-
book and key-frame animation which can be both achieved
through the compiled C++ code or from the interpreted
Python GUI.

3 Applications

Several applications of DataViewer have already been
implemented. We briefly mention three.

VBM (Visualization of Bifurcation Manifolds)
(http://lcvmwww.epfl.ch/VBM/) [4, 1] developed by R.
Paffenroth, J. Maddocks, R. Manning, D. Vrajitoru, and
K. Hoffman, is a software package whose goal is to
provide tools for computing, manipulating, and visualizing
bifurcation manifolds obtained by parameter continuation.
It allows easy access to large data sets using special
projections of the bifurcation diagram and provides direct
selection of any particular solution, followed by its vi-
sualization in a separate window using a data probe (see
Figure 1).

The geometrical Scene File Parser application
(http://lcvmwww.epfl.ch/DV/Scene file/) written by D.
Vrajitoru is an application of DataViewer allowing rapid
development, modification and visualization of 3D scenes
by means of a file parser that can be used both as an input
and output mechanism.

Slinky (http://lcvmwww.epfl.ch/Slinky/) is a package that
was build to interactively explore solutions of an initial
value problem for a system of ordinary differential equa-
tions describing an elastic ribbon. The ODE system governs
the shape of an elastic rod that is used as a model of DNA.
The GUI allows the effect of changes in various coefficients
and model parameters to be viewed interactively, with no
external coding required.

References

[1] J. H. Maddocks, R. Manning, R. Paffenroth, K. Rogers, and
J. Warner. Interactive computation, parameter continuation,
and visualization. International Journal of Bifurcation and
Chaos, 7(8):1699–1715, 1997.

[2] J. Neider, T. Davis, and M. Woo. OpenGL Programming
Guide. Addison-Wesley, 1993.

[3] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[4] R. Paffenroth. Mathematical Visualization, Pa-
rameter Continuation, and Steered Computa-
tions. PhD thesis, University of Maryland, 1998.
http://www.acm.caltech.edu/˜redrod.

[5] R. Paffenroth. The auto2000 command line user interface.
In Proceedings of the 9th International Python Conference,
pages 233–241, 2001.


