
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)

H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

Pseudorandom Noise for Real-Time Volumetric Rendering of

Fire in a Production System

Y. Vanzine1 and D. Vrajitoru1

1Indiana University South Bend, South Bend, USA

Abstract

This paper presents an effort at developing a robust, interactive framework for rendering 3D fire in real-time in a

production environment. Many techniques of rendering fire in non real-time exist and are constantly employed by

the movie industry and have directly influenced and inspired real-time fire rendering, including this paper. Macro-

level behavior of fire is characterized by wind fields, temperature and moving sources and is currently processed

on the CPU while micro-level behavior like turbulence, flickering, separation and shape is created on the graphics

hardware. This framework provides a set of tools for level designers to wield artistic and behavioral control over

fire as part of the scene. The resulting system is able to scale well, to use as few processor cycles as possible, and

to efficiently integrate into an existing production environment. We present performance statistics and assess the

feasibility of achieving interactive frame rates within a 3D engine framework. The framerates we obtained vary

from 42 to 168 depending on the rendering conditions, and indicate that the real-time procedural fire might not be

far away.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

There are a multitude of fires that exist in the physical real-

ity and have a wide range of visual representations. The al-

gorithms generally used to create 3D fires in contemporary

video games use primitive particle emitter systems [HA02].

Particle emitter systems are still the most efficient and well

understood way to render fuzzy phenomena in real time. Vol-

umetric rendering, on the other hand, though more appropri-

ate, is considered prohibitively expensive. For our model of

fire, we explore volumetric rendering and attempt to take ad-

vantage of modern shader hardware.

Few real-time production systems go the extra length to

model fire outside of particle emitters because it is difficult

to simulate and computationally expensive. Usually, a game

features a single way of rendering fire, where several pecu-

liar appearances are required. This results in an environment

which denies the participant not only the realism but also

the suspension of disbelief. Some games feature expensive

fire models which allow them to use fire in pre-rendered

sequences or inside their environment but very sparingly.

The problem remains unsolved, even though most produc-

tion systems have provided realistic but incomplete models.

For example, the PC game Half Life 2: Episode 1, by

Valve, represents one of the contemporary real-time fire

models. The technique uses a flat surface and alpha-blending

of the resulting colors into a pseudorandom fire in order to

achieve the effect of emissive lighting. The geometry of the

fire primitives consists of a flat view-aligned plane and fire

size scales poorly. The texture of fire often has a 5-second

cycle after which the moving image is repeated in a flip-

book animation fashion. This production fire is not designed

to allow dynamic change of LOD (level of detail) very easily

for different levels of performance.

Other methods of fire implementation in production tradi-

tionally include particle-based blob fire [SF95]. It is found

in many games: World of Warcraft by Blizzard Entertain-

ment, Company of Heroes by Relic Entertainment or Guild

Wars by ArenaNet. Particle-based fire suffers from appear-

c© The Eurographics Association 2008.



Y. Vanzine & D. Vrajitoru / Volumetric Rendering of Fire

ing atomic, as opposed to the natural holistic look of fire.

One way to deal with it is to enlarge the size and reduce

number of the particles.

More sophisticated models of fire can also be encountered

consisting of at least two subsystems. For instance, F.E.A.R.

by Monolith Productions features fire with the shader-based

flame system and the particle smoke system. Adding exter-

nal detail to the fire model does help conceal the fact that the

core fire system in F.E.A.R. consists of a rigid surface shader

fire which does not evolve in shape over time.

Previous work in hardware-accelerated volumetric fire re-

ported frame rates outside of any engine environment based

solely on the productivity of the fire system itself. We chose

to test the fire frame rates within a game engine, because one

can only properly evaluate feasibility of these methods when

the experiment is conducted in a real, production setting.

An alternative rendering method would be raycasting, but

to obtain results of similar quality it would require a density

of voxels that would be prohibitively expensive in terms of

rendering cost for a real-time production system. Ray casting

is still not used in such rendering engines.

2. Previous Work

Movie industry has for a long time utilized quite realistic fire

rendering, starting as early as 1985 with the movie Star Trek

II: The Wrath of Khan made by Pixar Studios [Ree85]. Var-

ious such techniques exist in the literature and they require

off-line rendering that takes an average of two or three min-

utes of rendering per frame. Off-line rendering algorithms of

fire are divided into three distinct categories: physics-based,

particle or texture-based, and mixed [Eym04].

Physics-based algorithms of rendering fire are based on

the laws of fluid dynamics and represent fire as hot and

turbulent gas [FM97, FM96]. Several authors utilize incom-

pressible Navier-Stokes to model vaporized fuel and hot gas

with voxels [SRF05,HSF02].

In the original particle system algorithm [Ree85], Reeves

was the first to describe and use particle systems to model

fire, as used in the film Star Trek II: The Wrath of Khan.

To avoid the computational complexity of large particle sys-

tems, King et al. [KCR00] have used textured splats for fire

animation. Texture splats were so promising that Wei et al.

[XWK02] successfully used them to render fire in real time

with 15ms per frame. Texture splats were used in a number

of games, but, in our opinion, their appearance does not have

the holistic look fire must have and they are better suited to

smoke or steam simulation.

Lamorlette and Foster [LF02] provide a very solid mixed

framework for macro-movement of fire that was used for the

motion picture Shrek by DreamWorks. This model is the

closest to the system we chose to implement. It uses para-

metric space curves to define the spine of the flame that

evolve over time and particles are point-sampled close to

the visible part of the flame using a volumetric falloff func-

tion. Procedural noise is applied to the particles which are

then rendered using either a volumetric, or a fast painterly

method.

Wind fields are an important aspect of making the fire look

realistic. A good description can be found in [FM97,FM96].

They are influenced by the velocity and temperature of the

gas in its interaction with the surrounding air. Turbulent mo-

tion is exaggerated if the gas flows around solid objects. At

first the gas flows smoothly along the surface, but it eventu-

ally becomes chaotic as it mixes with the still air behind the

object.

A reduced form of Navier-Stokes equations [FM97] is ap-

propriate for modeling of the wind field and is described be-

low. Let u be a four-dimensional vector consisting of three

spatial dimensions and time as a fourth dimension. Thus,

u = (xp, t), where xp is the displacement vector of the parti-

cle. w(u) represents the change of velocity of gas in an arbi-
trary wind field and is expressed as:

w(u) = ν∇· (∇u)− (u ·∇)u−∇p (1)

Equation 1 describes how the velocity of the gas changes

over time depending on convection (u ·∇)u, its pressure gra-
dient ∇p, and drag ν∇· (∇u). The ν coefficient is the kine-

matic viscosity. Smaller viscosity leads to more rotation in

the gas.

We draw inspiration for realistic volumetric rendering

from research done in [FKM∗07], and present a more com-

prehensive study of the integration of this model within a

game engine and taking advantage of shader software.

Perlin Noise [Per02] or Improved Perlin Noise can be

used as a procedural shader algorithm which is used to in-

crease the level of realism in surface texture. It is imple-

mented as a function of (x,y, z) or (x,y, z, time) which uses

interpolation between a set of pre-calculated gradient vectors

to construct a value that varies pseudorandomly over space

and time.

M-Noise [Ola05] or Modified Noise is a more recent al-

ternative to Improved Perlin Noise, specifically tailored for

execution on GPUs. It is especially useful for for 3D or 4D

noise not easily stored in reasonably sized textures. Perlin

Noise uses several chained table look-ups, the operations

that can lead to a bottleneck on GPUs. It is largely a faster

and better, and although more complex adaptation of Perlin

Noise to GPU hardware.

3. Modeling Fire

A more detailed description of the system and its implemen-

tation can be found in [Van07]. Our system uses a robust

parametrized system of rendering fire consisting of macro-

behavior and micro-detail. For macro-movement, each fire

c© The Eurographics Association 2008.



Y. Vanzine & D. Vrajitoru / Volumetric Rendering of Fire

source is represented by a fire skeleton which is influenced

by forces such as direct diffusion, movement of the fire

source, thermal expansion and arbitrary wind fields. Micro

fire effects, e.g., fire flame shape, location, flickering and tur-

bulence are rendered by a high-level shader. While the CPU

is freed up by rendering local fire phenomena on the GPU,

such pipeline separation provides the necessary animator or

simulation control at the high level and allows for real-time

rendering of detail-rich, realistic fire at the local level.

This model has been implemented in the Irrlicht 3D en-

gine and rendered in both OpenGL and DirectX. For shader

support we use Open GL Shader Language (GLSL) and

High Level Shader Language (HLSL).

3.1. Model Outline

The model as a general fire animation tool has 5 stages:

1. Individual flame elements are modeled as parametric

space curves. Each curve interpolates a set of points that de-

fine the spine of the flame.

2. The curves evolve over time according to a combination

of physics-based, procedural, and hand-defined wind fields.

The curves are frequently re-sampled to ensure continuity,

and to provide mechanisms to model flames generated from

a moving source.

3. A texture based, cylindrical profile is used to build

a color volume representing the oxidation region for the

shader rendering step, i.e., the visible part of the flame

as shown in Figure 1. The particles are transformed into

the parametric space of the flame texture using inverse

parametrization. M-noise or Improved Perlin noise provides

local turbulent detail by means of pseudorandom gradients

applied to each pixel.

4. The particles are rendered as shader fragments using

shader hardware acceleration. The color of each pixel is

trilinearly interpolated according to color properties of its

neighbors, allowing flame elements to visually merge in a

realistic way.

5. To complete the system, we define a number of proce-

dural controls to govern placement, intensity, lifespan, and

evolution in shape, color, size, and behavior of the flames.

3.2. Curve-based Spline Modeling

The structure of the fire volume is created by interpolating

a smooth curve through the points that a) evolve when af-

fected by various forces of the physics simulation or b) stay

constant as a result of being positioned manually. After con-

sidering Hermite interpolation, we decided that uniform B-

splines would be the best approach because they guarantee

second order continuity, present affine invariance, and have

the convex hull property. We employed the de Boor algo-

rithm [Far02] for the interpolation.

To define a rendering volume around the curves, a local

reference frame is necessary. For this purpose, after building

the curve the next step consists in defining a bounding vol-

ume around the curve. This volume is composed of hexahe-

drons defined continuously at regular intervals of the curve,

as shown in Figure 1. These hexahedrons are determined by

the Frenet Frame [Far02].

Figure 1: Flame spine curve and bounding volume com-

posed of hexahedrons

3.3. Macro Animation of the Flame

Physics-based controls in Step 2 govern macro-movement

of flame spines according to the system of equations in

[Kan99]. The primary equation of motion is

dxp

dt
= w(xp, t)+d(Tp)+Vp + c(Tp, t) (2)

wherew(xp, t) is an arbitrary controlling wind field, d(Tp),
the motion due to diffusion of particles modeled as

temperature-scaled Brownian motion, Vp , motion due to

movement of the source and c(Tp, t), the motion due to ther-

mal buoyancy. Tp is the temperature of the particle. Thermal

buoyancy is constant over the lifetime of the particle:

c(Tp, t) = −βg(To−Tp)t
2
p (3)

where β is the thermal coefficient, g is gravity, To is the am-

bient temperature and tp is the age of the particle given when

the particle is created.

In order to create an arbitrary wind field, simplified

Navier-Stokes equations may be used to simulate convec-

tion and macro drag [FM97]. In the above formulation, it is

assumed that motion due to molecular diffusion is negligible

relative to other effects and that the gas is incompressible.

When these assumptions are applied to the Navier-Stokes

equations, which fully describe the forces acting within a

gas, the reduced form is derived.

c© The Eurographics Association 2008.



Y. Vanzine & D. Vrajitoru / Volumetric Rendering of Fire

3.4. Volumetric Rendering

To render volumetric fire we use a lattice and volume-

slicing technique first described in [CCF94] and perfected

for shader hardware in [FKM∗07]. An example of such a

lattice can be seen in Figure 2, where red triangles that slice

through the volumes on the right are view-aligned to the

camera location on the left. The complete volume of fire is

approximated by a set of hexahedrons, each with constant

height and with the bottom perpendicular to the tangent of

the curve at the current control point.

Figure 2: Fire volume and view-aligned slicing

Every time the volume of fire is rendered, it is broken up

into an configurable arbitrary number of sub-volumes cor-

responding to knots in the de Boor interpolation, defined as

the density of the complete volume of fire. Each sub-volume

is then sampled into evenly spaced view-aligned slices us-

ing an optimized cube-slicing algorithm. Each slice is mod-

eled efficiently as a triangle fan for processing in the shader

hardware. We selected a triangle fan as it is common to both

OpenGL and DirectX. Each triangle is rendered through a

pixel shader after obtaining the color from the fire texture.

View-aligned slicing is created with a number of planes

perpendicular to the near edge of the view frustum. These

planes are then clipped by their intersection with the vol-

ume bounding box of the current sub-volume hexahedron.

The texture coordinates in the parametric object space are

mapped to each vertex of the clipped polygons taking advan-

tage of the fact that the edges of the volume bounding box

have fixed texture coordinates. During rasterization, frag-

ments in the slice are trilinearly interpolated from the 3D

texture and projected on the image planes using adequate

blending operations. We used the depth queuing with the

over operator [PD84] to account for translucency of the fire

texture. Figure 3 shows the 2D texture applied to the result-

ing triangles.

With such a method of volume slicing, we can minimize

the number of planes intersecting the volume and maximize

the speed of rendering without creating noticeably discrete

gaps between the planes when examining the object from

different viewpoints.

Figure 3: Fire texture

When the slicing plane cuts through the volume, we ob-

tain their intersection points and we must organize them into

a triangle fan for the graphics pipeline. This process is called

appropriately polygon triangulation and it is a complex, fun-

damental algorithm of computational geometry.

When a plane intersects the volume of fire, the possible in-

tersections are a triangle (3 vertices), a quad (4), a pentagon

(5) or a hexagon (6). The intersection calculation algorithm

provides a cloud of points or vertices as output. The problem

that must be solved is determining the order of the vertices in

the convex polygon, which is equivalent to finding out which

vertices are connected by the edges of the polygon. This is

essentially the problem of triangulation.

The polygon vertices are always found on the edges of

the common convex hexahedron. There are always a lim-

ited number of intersection combinations when the plane

cuts through the hexahedron. Because there are 8 vertices

in a hexahedron, there exist 28 cases, where any particular

group of vertices is found behind, in front of, or on the slic-

ing plane. For every point we calculate the dot product be-

tween the normal to the plane and a vector from the origin

of the plane to the point in question. If the resulting number

is positive, the point is in front of the plane; if it is negative,

the point is behind the plane. The point is on the plane if the

result is equal to zero.

It is beneficial to establish the plane intersection combina-

tions in order to be able to perform less than the 12 intersec-

tions between the cutting plane and the edges of the hexahe-

dron each time. Also, if such combinations are established,

with the help of the above heuristic we can also pre-define

the correct ordering of vertices in preparation for submission

of the vertices to the rendering pipeline. The clockwise or-

dering of vertices will be sufficient for creation of triangle

fans in linear time.

This very original and simple idea of pre-calculating in-

tersections between a plane and a volume is described in

[BPP01] and in [BBJL05] based on the classic Marching

Cube (MC) algorithm [LC87]. The original MC algorithm

is employed for approximation of the boundaries of the vol-

umetric object. TheMC Slicing algorithm variant applies the

pre-calculated table look-up idea to the volume slicing.

c© The Eurographics Association 2008.



Y. Vanzine & D. Vrajitoru / Volumetric Rendering of Fire

The MC algorithm allows one to efficiently polygonize

an approximation of the intersection between a surface and

a cube. The approximation is achieved by evaluating a

predicate (condition) at the eight corners of the cube. The

256 possible combinations are known and stored in a pre-

calculated table. Each entry of the table is a sequence which

indicates which edges were hit by the surface and allows us

to interpolate the intersection triangles.

WithMC Slicing, only at most 6 intersections between the

slicing plane and the hexahedron are tested for. To determine

the relation of the point to the slicing plane, one dot product

operation is performed per point classification, with a total

of 8 points. This qualifies MC Slicing as a very efficient al-

gorithm for our specific triangulation task.

3.5. Micro-Movement and Noise

Noise functions are used to simulate an appearance of ran-

domness and in computer graphics in particular, to make ob-

jects appear more like their counterparts in nature. These

noise functions often have a fractal component resulting

from adding noisy values of different scales, also called

noise octaves. The noise can be configured using the prop-

erty of persistence, representing the amplitude of each noise

frequency, that can be further decomposed into lacunarity

and gain.

Perlin noise is a so-called gradient noise, which means

that a pseudorandom gradient is set at regularly spaced

points in space, and a smooth function between those points

is interpolated. Simplex noise uses simplex grids dividing

the space. Both Perlin’s classic and improved noise were

designed to run efficiently on a CPU. Modified Noise in-

cludes two modifications to Perlin’s improved noise that

make it much more suitable for GPU implementation, al-

lowing faster direct computation.

Modified noise or M-Noise calculates its gradient based

on 2N lattice points in a hypercube around the point to which

the noise function outputs are applied. In M-Noise gradient

values are chosen from the corners of the hypercube instead

of its edge centers like in improved noise and instead of the

unit n-sphere like in classic noise.

Several octaves of noise can be combined to produce

a random function with a more complex spectrum. The

combination commonly used and the function with which

things like smoke, fog, fire are made, is called turbulence

[FKM∗07], and is defined by

turb =
n

∑
i=0

gain
i
abs(noise(position · lacunarityi)) (4)

where n is the number of octaves and, generally, gain is equal

to 1/lacunarity.

While turbulence in Perlin’s classic and improved noise

make independent calls to the noise function, the common

computation of M-Noise allows for a more efficient turbu-

lence function. For 3D turbulence, the hash function can be

computed up to two octaves together and the flerp function

up to four octaves together. For 4D turbulence, the hash func-

tion can be computed up to three octaves together and the

flerp function up to four octaves together.

Each type of noise has a distinct visual appearance. Sim-

plex noise stands out in its appearance with round shapes

dominate the surface. Simplex noise has a higher peak range

than the other noise types but it is possible to generate a Sim-

plex noise-based turbulence resembling a Perlin noise-based

turbulence, via careful manipulation of lacunarity and gain

and noise scale.

M-Noise and Perlin improved noise in 2D and 3D look

almost identical, and it is because the method of construc-

tion of these types of noise is very similar. Modification

of M-Noise only addresses the bottlenecks of noise cre-

ation on GPU rather than CPU via the dimension reducibil-

ity property for improvements in memory requirements

and minimizing number of texture-dependent lookups. It

also takes advantage of GPU parallelism and provides a

faster method of computing random hashes which allows

for purely computable noise (i.e., noise without texture-

dependent lookups). The only difference between these two

types of noise is in the manner the gradients are picked.

Perlin noise selects gradient vectors from the centers of the

edges of a unit-n cube. M-Noise picks its gradient from the

corners of a unit-n cube, because it requires dimension re-

ducibility. The visual difference becomes evident when 4D

M-Noise is compared to others.

Figures 4 and 5 (left) show the three types of noise as ap-

plied to rendering fire. Figures 6 to 8 show a variety of artis-

tic effects that can be easily achieved by varying the simula-

tion parameters.

Figure 4: Fire rendered with Perlin noise (left) and Simplex

noise (right)

Modified noise in Figure 5 right has an almost ’fluid’ char-

acter. It is the only noise whose large, solid parts separate

and float away from the main body of fire very similarly to

how natural fire separation occurs.

c© The Eurographics Association 2008.



Y. Vanzine & D. Vrajitoru / Volumetric Rendering of Fire

Figure 5: Fire rendered with M-Noise (left) and 4DM-Noise

showing fire separation (right)

Figure 6: Simulation of a simple candle (left) and of fire seen

through a stained glass (right)

4. Feasibility Study

As we focus on testing the possibility of rendering fire volu-

metrically within the constraints of a real 3D engine produc-

tion system, we must assess the feasibility of achieving inter-

active frame rates within such framework. As a goal of our

feasibility study we set out to collect statistics and measure

performance of the volumetrically rendered fire, depending

on the degrees of freedom of our framework.

For the 3D engine framework, we have studied the effect

of the underlying APIs used to render 3D primitives, i.e.,

OpenGL/GLSL or DirectX/HLSL and of the number of geo-

metric primitives already present in the scene beside the fire.

For the chosen fire model, the physical parameters include

time, flame temperature, flame velocity, gas thermal coef-

ficient β, and fire particle’s age. The procedural degrees of

freedom include the number of flame volumes in the scene,

lattice resolution (density and slice spacing) of the volume,

screen size of fire, the number of noise octaves and most im-

portantly, the graphics hardware.

Testing was done on a Pentium 4 3.0 GHz PC, equipped

with ATI Radeon X1650 video card with 256 Mb of memory.

The total rendering space (Viewport) is 800 by 600 pixels.

The physics engine is turned off for these tests. The number

Figure 7: Simulation of an electrical charge

Figure 8: Simulation of a blue gas

of flame volumes is 1, the slicing is MC, and the engine is

OpenGL/GLSL unless otherwise specified.

The measure of performance is the number of frames per

second (FPS), for which the standard number in video games

is either 60 FPS without blur or 30 FPS with blur for smooth

believable animation. Higher values of the FPS indicates a

better graphics performance.

We start by figuring out the impact of a standard configu-

ration of static fire on the production system. Such a con-

figuration consists of a single volume of fire with 2 sub-

volumes of 64 flame knots, 20 slices (view-aligned surfaces

that cut through the volume), 1 flamespine attached to the

firescenenode. The total count of scene triangles in the view-

port is 3174. The number of triangles that belong to the

fire model alone is 70. Table 1 compares the performance

between matching gradient noise models. The octree repre-

sents the scene set up for the fire.

Table 2 compares three different triangulation techniques,

the MC Slicing, the classic Convex Hull (CH) algorithm

[CLRS01] and an optimization (CH Opt) taking advantage

of the fact that the slices are placed at regular intervals. We

increased the density of the lattice to 8 subvolumes as the dif-

ference in performance on a sparse lattice is negligent. CH

c© The Eurographics Association 2008.



Y. Vanzine & D. Vrajitoru / Volumetric Rendering of Fire

Table 1: Noise Test, Density:2, Slices:20, Screen Space: 4%,

Noise Octaves: 4, 174 triangles, 70 fire triangles

Octree Perlin Simplex M-Noise

FPS without 30 53 119

FPS with 22 45 101

Table 2: Triangulation Test, Density:8, Slices:20, Screen

Space: 7%, Noise Octaves: 4, M-Noise

Slicing method Scene triangles Fire triangles FPS

MC 3885 300 68

CH Opt 3836 303 53

CH 3740 301 56

and CH Opt perform about the same, while MC performs

significantly better.

Table 3 is meant to show the dependency of complexity of

rendering the fire on the lattice density. The lattice density

defines the number of knots of the flame spine and thus, the

number of hexahedrons composing the fire. The complexity

increases logarithmically with the increase of subvolumes.

Potentially, there exist more significant optimizations that

would lead to lessening the performance hit caused by ad-

ditional lattice sections [FKM∗07].

Table 4 is meant to help calculate the rate of the com-

plexity increase with the higher number of view-aligned sur-

faces (slices) intersecting the hexahedrons. The complexity

increases with logarithmic time.

Table 5 compares performance of the fire system with

varying number of fire volumes. Additional fire volumes add

to the complexity of the rendering algorithm logarithmically

as the GPU parallelizes the shader program calls.

Last, Table 6 compares the performance of the three types

of noise using OpenGL and DirectX. As the difference of 20

FPS seems to be persistent regardless of other graphic set-

Table 3: Density Test, Slices:20, Screen Space: 7.5%, Noise

Octaves: 4, M-Noise, 3816 scene triangles

Lattice density Fire Triangles FPS

3 100 87

8 258 69

13 407 59

19 521 54

25 644 50

Table 4: Slice Test, Density:2, Screen Space: 4%, Noise Oc-

taves: 4, M-Noise, Scene triangles: 3174

Slices Fire Triangles FPS

10 34 168

20 70 101

30 106 73

40 145 56

50 145 46

Table 5: Varying Fire Volumes, Density:2, Slices: 20, M-

Noise, Noise Octaves: 4, Scene triangles: 10

Flame Volumes Screen Space Fire Triangles FPS

1 4.0% 70 119

2 8.0% 140 62

3 12.0% 210 42

tings, we concluded that it was inherent to the version 1.3.1

of the Irrlicht engine.

The statistics collected show that pseudorandom noise

(Perlin noise and its derivatives), even when thoroughly op-

timized for the GPU, is still a very expensive tool for a pro-

duction system. The fact that 4D noise is expensive is con-

firmed when we compare the expense of rendering a 4% -

screen space volumetric fire (150 FPS drop) to the expense

of rendering the octree environment (a medieval castle) (only

8 FPS drop). But even as is, the developed component can

be and should be used within a production system, albeit

with lower lattice density and minimum slicing of the vol-

ume. The objective of this study to run realistic volumetric

fire at above 30 or 60 frames per second was successfully

completed.

With volumetric rendering already being used as a vi-

able production tool, we must look onward and anticipate

Table 6: Slice Test, Density:2, Screen Space: 4%, Noise Oc-

taves: 4, M-Noise, Scene triangles: 3174.

Gradient Fire FPS

Noise Triangles DirectX/HLSL OpenGL/GLSL

- 0 232 252

Perlin 70 29 53

Simplex 70 51 72

M-Noise 70 79 101

c© The Eurographics Association 2008.



Y. Vanzine & D. Vrajitoru / Volumetric Rendering of Fire

increase in use of procedural noise (among fluid solvers and

other physics-based techniques) for volumetric effects.

5. Conclusion

In the study presented in this paper, a fire-rendering frame-

work has been written using the Irrlicht 3D engine, utilizing

established and novel algorithms. Improved algorithms have

been described. Physical and procedural controls are lever-

aged to explore performance of the fire model. We show-

cased the influence of the noise type on the aspect of the

rendered fire and presented various artistic effects that can

be obtained within the framework.

Statistics have been collected to determine system bottle-

necks and to test the feasibility of the model. We determined

that the volumetric fire model can be integrated with the 3D

engine framework and still not let the overall system perfor-

mance deteriorate below the acceptable frame rate of 30-60

frames per second. However, because of the expensive na-

ture of pseudorandom gradient noise, even scaled production

use of volumetric rendering of fire is still a year or two away.

References

[BBJL05] BENASSAROU A., BITTAR E., JOHN N., LU-

CAS L.: Mc slicing for volume rendering applications. In

5th International Conference on Computational Science

(2005), Springer, pp. 314–321.

[BPP01] BEAUDOIN P., PAQUET S., POULIN P.: Realitic

and controllable fire simulation. In Proceedings of Graph-

ics Interface (2001), pp. 159–166.

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated

volume rendering and tomographic reconstruction using

texture mapping hardware. In Proceedings of the 1994

Symposium on Volume Visualization (1994), ACM Press,

pp. 91–98.

[CLRS01] CORMEN T., LEISERSON C., RIVEST R.,

STEIN C.: Introduction to Algorithms, second ed. MIT

Press and McGraw-Hill, 2001.

[Eym04] EYMAN Y.: Rediscovering Fire: A Survey of

Current Fire Models and Applications to 3-D Studio Max.

Tech. rep., University of Maryland, 2004.

[Far02] FARIN G.: Curves and Surfaces for Computer-

Aided Geometric Design, fifth ed. Academic Press, 2002.

[FKM∗07] FULLER A. R., KRISHNAN H., MAHROUS

K., HAMANN B., JOY K. I.: Real-time procedural vol-

umetric fire. In Proceedings of the 2007 symposium on

Interactive 3D graphics and games (2007), pp. 175 – 180.

[FM96] FOSTER N., METAXAS D.: Realistic animation

of liquids. Graphical Models and Image Processing 58, 5

(1996), 471–483.

[FM97] FOSTER N., METAXAS D.: Modeling the motion

of a hot, turbulent gas. In Proceedings of the ACM SIG-

GRAPH Conference (1997), pp. 181–188.

[HA02] HAWKINS K., ASTLE D.: OpenGL Game Pro-

gramming. Course Technology PTR, 2002.

[HSF02] HONG J.-M., SHINAR T., FEDKIW R.: Wrin-

kled flames and cellular patterns. ACM Transactions on

Graphics 26, 3 (2002), 47.

[Kan99] KANDHAI B. D.: Large Scale Lattice-Boltzmann

Simulations. PhD thesis, University of Amsterdam, 1999.

[KCR00] KING S. A., CRAWFIS R. A., REID W.: Volume

Graphics. Springer, 2000, ch. Fast Volume Rendering and

Animation of Amorphous Phenomena, pp. 229–242.

[LC87] LORENSEN W., CLINE H.: Marching cubes: A

high resolution 3d surface construction algorithm. Com-

puter Graphics 21, 4 (1987), 163–170.

[LF02] LAMORLETTE A., FOSTER N.: Structural model-

ing of flames for a production environment. In Proceed-

ings of the 29th annual conference on Computer Graphics

and Interactive Techniques (2002), pp. 729–735.

[Ola05] OLANO M.: Modified noise for evaluation

on graphics hardware. In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

Hardware (2005), pp. 105–110.

[PD84] PORTER T., DUFF T.: Compositing digital im-

ages. Computer Graphics 18, 3 (1984), 253–259.

[Per02] PERLIN K.: Improving noise. In International

Conference on Computer Graphics and Interactive Tech-

niques (2002), pp. 681–682.

[Ree85] REEVES W. T.: Approximate and probabilistic

algorithms for shading and rendering structured particle

systems. Computer Graphics 19, 3 (1985), 313–322.

[SF95] STAM J., FIUME E.: Depicting fire and gaseous

phenomena using diffusion processes. Proceedings of the

ACM SIGGRAPH Conference (1995), 129–136.

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A

vortex particle method for smoke, water and explosions.

ACM Transactions on Graphics 24, 3 (2005), 910–914.

[Van07] VANZINE Y.: Real-Time Volumetric Render-

ing of Fire in a Production System: Feasability Study.

Master’s thesis, Indiana University South Bend, 2007.

http://www.cs.iusb.edu/thesis/YVanzine_thesis.pdf.

[XWK02] X. WEI W. LI K. M., KAUFMAN A.: Simulat-

ing fire with texture splats. In IEEE Visualization (2002),

pp. 227–237.

c© The Eurographics Association 2008.


