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ABSTRACT

This paper presents a few heuristic path search algorithms to solve a physical puzzle consisting of 3D maze and a marble,
simulated in a physically accurate environment. An intelligent agent must move the marble to a target cell by rotating the
maze itself. The physical nature of the puzzle provides an interesting challenge for the agent attempting to solve it, since
it does not have complete control over the effects of its actions, and is not able to predict with certainty what those effects
will be. The algorithms presented are based on building a physical state graph from past observations and using a
predictive utility function to estimate the closeness to the target. The implemented algorithms incorporate varying levels
of knowledge of the maze's geometry and of the physics involved.
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INTRODUCTION

The system presented in this paper is an intelligent agent that uses heuristic utility-based search algorithms to
determine and execute the necessary moves required to solve a physical puzzle. The program is implemented
using the Newton Game Dynamics engine and is rendered in real-time with the OpenGL API. The specific
puzzle is a random 3D maze containing a marble that can be rolled using gravitation by rotating the maze.
The goal is to roll the marble to a specified target location at the opposite corner. The main challenges of this
problem consist in the fact that the result of an action cannot be known precisely before performing the
simulation of that action, and that backtracking is in general not possible, since reversing a move might take
the marble to a completely different location than the previous cell. As our application relies on a physics
engine, higher dimension cannot be easily considered for the moment. Implementation details and a more in-
depth description of all the methods can be found in (Cremer 2007).

This puzzle might seem simple, but considering all the physical phenomena that can affect the outcome of
a move in reality however, the problem is more complex than it may appear first. The system responds to
gravity, static and kinetic friction, angular momentum, and collisions. In fact, some of the moves encountered
in this system are not repeatable in the simulation itself, which means that the agent can never be completely
certain what the results of its actions will be.

One of the key elements of this study is the creation of an intelligent agent that can deal with events that
are not directly initiated by the agent. These events, which are an unpredictable consequence of the agent's
actions, can place the object in an unforeseen, potentially unrecoverable state. This added dependency on the
physics simulation requires the agent to be able to learn the effects of other forces acting upon the object and
be able to find a solution without complete control.

The paper differs considerably from other related path-finding algorithms present in the literature. In
typical cases, like those presented in (Jones & Thuente 1990), it is assumed that the intelligent agent
searching for a path to a desired location or state has complete control over the location to which the object is



moved. The only exception seems to be the blind searches where it is possible to run into an obstruction that
prevents a move (Koenig 2004). Even in such cases though, backtracking is usually possible, unlike in the
present study.

(Duncan & Kumar 2006) presents a related problem, where a robot must explore a graph with a limited
amount of fuel or tied by a rope of limited length. Their study is similar to ours in the sense that they also
distinguish between the original graph and the graph known by the agent at any point in the algorithm, which
is also constructed by exploration as in our case. However, their algorithm depends upon backtracking while
that is not an option in our case. (Beckert 1999) presents a depth-first search without backtracking for
automated reasoning.

Much research has been done in the area of graph theory to develop algorithms for determining optimal
paths to follow on a graph or game tree to lead to a desired state. Well known heuristic searches (Russell &
Norvig 1995) provide a basis for the algorithms presented in this paper. (Millington 2006) describes how
graph search algorithms can be applied to path finding in games. (Cazenave 2006) presents optimizations to
the A* and IDA* algorithms as applied to path-finding on maps. (Karpov et al. 2006) presents an artificial
intelligence algorithm in the Unreal Tournament video game environment used for path-finding in a game
map.

(Koenig 2004) describes how path-planning problems in computer games are different from traditional
off-line search problems in other fields because autonomous agents in games will initially have incomplete
knowledge of the terrain which results in a large number of contingencies that makes planning difficult.

In order to utilize incremental heuristic search algorithms, it is necessary to divide the search space into a
finite number of discrete states, representing the marble's current location and the orientation of the maze.
(M. Atkin 2000) suggests a method for using “critical points” for defining state boundaries to facilitate the
use of state-based search algorithms in continuous dynamic search spaces. Their algorithm for implementing
critical states is demonstrated in the 2D graphical game simulation “Capture the Flag”.

PROBLEM DESCRIPTION AND REPRESENTATION

In this section we introduce the problem and the main concepts used by the search algorithms.

2.1 The Maze

The mazes that the agent must solve are a three dimensional extension of the common two dimensional
labyrinth. The maze is a cube composed of cells which are cubes instead of squares, and each cell has 6 walls
corresponding to the six directions that one can move to from that cell. Figure 1 shows an example of such a
maze. The marble is in the bottom corner at the start and the target is the top corner. The physical restrictions
in the solvability of the maze are not considered by the construction algorithm. Thus, a theoretical path to the
target exists in every maze, but we do not know if all the mazes are physically solvable as the only way to
find out is to run our search algorithms.



Figure 1. An example of a maze.

The methodology for generating the geometry of the mazes begins with generating all possible walls, then
randomly selecting and removing walls until there is a single unique path connecting any two cells. This
methodology of generating mazes is analogous to Kruskal's algorithm for generating minimum spanning
trees (Weiss 2006). The paths between the cells of the maze can be viewed as edges between the nodes of a
graph, and the goal is to make sure that there is a single path connecting any two nodes with no cycles.
Unlike Kruskal's algorithm, we select the edge (the walls to remove) at random.

2.2 Theoretical Graph and Physical State Graph

The maze itself can be seen as a graph where each cell represents a node, and the direct connections between
them are the edges. We will refer to this data structure as the theoretical graph (TG). A path from the starting
cell to the target in this graph can easily be found with a classic search algorithm, but there is no guarantee
that this path can be physically achieved through the rotations of the maze.

For the physical solution, we start by defining the states of the maze. A state is a combination of a maze
cell and an orientation. Each rotation of the maze will be referred to as a move, and is implemented as a
continuous rotation from one well-defined orientation of the maze to another. The states and the moves
between them can then be represented as a graph or network called the physical state graph (PSG) and
elements of graph theory can be applied when determining the physical solution.

Describing this system in terms of states and moves that cause the transition between them has some
interesting analogies to traditional game theory. The agent attempting to select the optimal moves can be
considered as one 'player’, and the physical simulation as an opposing player making a move in response to
the agent's. Some of the algorithms we implemented do in fact involve the agent attempting to anticipate the
responding 'move' that will be made by the physics engine when choosing its next move to make, similar in
concept to the popular Minimax algorithm (Russell & Norvig 1995).

Figure 2 shows an example of a 2D maze, the theoretical graph corresponding to it, and a partial physical
state graph constructed by the agent. Since this is only an example, we have not included the orientation of
the maze in the states. This figure illustrates the difference between the two graphs. For example, in the
physical graph from the state 3, a clockwise rotation would bring the marble to state 9, rolling past state 6.
The major difference is that unlike the theoretical graph, the physical state graph is directed, which makes
backtracking not always possible.
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Figure 2. A 2D maze, the theoretical graph and a partial physical state graph.

3. PATH-FINDING ALGORITHMS

This section presents the heuristic path-finding algorithms that we propose to solve the physical maze
problem.

3.1 Basic Solution

The algorithm starts with a PSG containing no edges. Each move performed by the agent takes the marble
from one state to another, thus creating a new edge in the PSG. Figure 3 represents an example of a PSG after
several moves have been made. The nodes represent states and the directed edges correspond to the moves
(rotations) of the maze that were already made to transition from one state to the other. The nodes identified
by a question mark indicate unknown states that can be reached by a single move from an already known
state. Since these are moves that have not yet been made, it is unknown whether the nodes represent states
that have been previously visited, states that have not yet been discovered, or even the target cell.
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Figure 3. A partial physical state graph.

Implementing this graph to find the physical solution differs in several significant ways from most search
algorithms typically utilized in artificial intelligence.

*  Whenever the next move must be chosen, the agent does not have knowledge of the entire graph; only of
the part that has been developed based on previous actions. It therefore cannot use a complete search
algorithm to find a physical path leading to the target cell.

»  Search algorithms typically involve selecting a node to expand, and then evaluating all the children of
that node using various criteria for determining the order in which to evaluate the child nodes. For this
system, evaluating a child node involves making a physical move to the new state. Since backtracking is
not feasible, once a child is chosen, the option to evaluate its siblings no longer exists.

e There is nothing known about each unknown state, so we therefore have no immediate way of
determining which may be the best branch to take.

Although physical backtracking is not considered possible, the system can search for the goal by choosing
from the available branches off the current state. In general, a move to an unknown state will have one of two
possible outcomes: it can lead to a previously undiscovered state, which will be added to the physical state
graph, or it can lead to a state that has already been encountered, and is therefore already in the PSG. In the



later case, the edge corresponding to the move that was made is connected to the node already representing
that state. In this system, branches cannot lead back to the same state because the orientation of the maze
changes after the move. Proceeding in this manner, the agent can 'explore' the maze, building a graph of the
results as it proceeds.

When searching the PSG for an unknown state reachable from the current state, backtracking can be used.
The reason is that this graph represents actions and resulting states that have already been discovered. We
can safely assume that the same actions taken from the same states will again lead to the results indicated in
the graph. Experimentally this is not always the case, but the repeatability is reliable enough that we can base
decisions on it with reasonable confidence. To help clarify this, assume that the right branch from state 47 in
Figure 3 is taken and found to lead back to state 0. If we now want to find a path back to state 46, we can use
any traditional search algorithm with backtracking (e.g., depth-first, breadth-first), to find the path 0 -> 9 ->
46.

3.2 Blind Search

The first two algorithms developed to find a physical solution use no additional knowledge of the maze other
than the PSG that has been developed based on moves already made. As the algorithms employ no
knowledge of the domain when choosing the path to expand, they can be classified as 'blind' searches.

As previously stated, the PSG represents the known states and the moves that have been shown to lead
between them. At the time a move needs to be chosen, the graph only reflects what has already been
discovered, so the agent cannot find the complete path to the target cell. The best it can do with no further
knowledge is to find a path from its current state to one of the unknown states in the PSG. By such
experimentation, the PSG is expanded until a state corresponding to the target cell is found.

This exploratory methodology differs considerably from the way that search algorithms are generally
employed. Whereas depth-first and breadth-first algorithms are generally used to find a desired state in
known data, here they are being employed to intentionally find unknown states.

Such use of blind search algorithms to find the physical solution to the maze is not likely to be efficient,
but could be considered 'complete’ under three conditions. First, the algorithm must avoid loops as they can
lead to infinitely long sequences of physical moves. Second, a solution must be possible given the control
scheme (the physical moves that can be simulated), which may not always be the case. Third, the agent must
not run into states that it is not capable of moving out of. As this situation happens sometimes, we report it as
such in the results section. If these conditions are met, the physical solution to the maze will be found. The
system decides that it cannot find a solution when it is no longer able to find any unknown state reachable
from its current state, implying that it has already been everywhere it is capable of going.

We have tested both the breadth-first search (BFS) and the depth-first search (DFS) under these
conditions. While they can both be used to find the solution, the depth-first is particularly inefficient,
requiring about twice as many moves as the breadth-first. More detailed results will be
presented in the next section.

3.3 Heuristic Search

In order to find a more efficient physical solution to the maze, knowledge of the maze itself can be
utilized to evaluate the possible unknown states that can be investigated. The next algorithms we present are
heuristic searches based on the Best-First Search (Russell & Norvig 1995), with the major difference that due
to the physical constraints only one branch of the tree can be expanded, i.e. physically simulated in each step.
All of them use an estimation of how likely it is that a given state will lead to the solution faster.

The algorithms search the PSG to find all the unknown states that are reachable from the current state,
and are within one move from a known state. A heuristic value is evaluated either for the parent state or for
the unknown state, depending on the definition of the function. The unknown state of the best heuristic value
is chosen and a move is made from the parent of this state. After simulating the move in the physical maze,
the unknown state becomes known and it is added to the PSG. Note that the simulation involves moving the



marble from the current state to the parent of the unknown state, and only then executing the new move. The
algorithms can be summarized as shown bellow, where H is the heuristic function.

Heuristic based search algorithm
current state = origin
PSG = {origin, unknown children}
while current state != target:
best ukn state = nil, best h value = infinity
for each unknown state U in PSG:
P = parent of U
find path from current state to P in PSG by BFS
h = H(P or U)
if h < best h value:
best ukn state = U, best h value = h
parent = P
new node = move from parent
current_state = new_node
add new node to PSG
add children of new node as unknown in PSG

Simple heuristics such as the Manhattan distance have been shown to be very misleading in mazes, and
therefore not of much value (Koenig 2004). Our first heuristic algorithm uses the length of the theoretical
path from the marble's location to the target cell to decide which unknown state to explore next. Equation 1
expresses this function.

H(state) = length(path(state; target) U TG) (1)

This heuristic is reasonable since it takes into account the actual physical nature of the maze. The method
by which the maze is generated (as a spanning tree) guarantees that there is a unique theoretical path from
each cell to the target cell. Since that theoretical path can be quickly determined for each unknown state with
a DFS, evaluating this function for unknown states is very fast compared to the computational expense of the
physical simulation.

We cannot evaluate H, for an unknown state since nothing is known about them. We can however use the
hypothesis that there is a reasonable correlation between the desirability of this unknown state and the H,
value of its parent state. In other words, the agent will act on the assumption that if a state is close to the goal,
a single move from that state is likely to get the marble close to the goal. This heuristic does not distinguish
between unknown children of the same known parent, so an arbitrary decision is made between them. The
next algorithm proposes a more intelligent way to chose between the unknown child states.

3.4 Single Move Prediction

The next heuristic is designed to improve the efficiency of the search by anticipating the physical result of a
move. Instead of evaluating the parent of the unknown state, the algorithm predicts the path on which the
marble will travel, and uses the theoretical distance from the predicted end cell to the target to judge the
value of the move. This prediction will be made for every reachable unknown state in the physical state
graph, and the move believed to be the best will be pursued. As with the previous method, BFS is employed
to find the shortest path (the fewest physical moves) to reach each unknown state.

To make the prediction of the path followed by the marble from a given state in response to a specific
move (rotation to another orientation), a recursive algorithm was developed. The first adjacent cell that the
marble will move to in response to a given move can be determined by following the direction of movement.
From this cell one of two events can occur. The marble can continue moving in the direction of its current
velocity, or the velocity-dominate direction, or it can fall in one of two gravity-dominate directions. The
prediction of which direction is taken is based on the geometry of the maze (presence or absence of walls)
and the marble's estimated speed.

After determining which cell the marble is likely to move to next, we adjust the speed and direction of the
marble and apply the procedure recursively until we reach a cell where no further progress is possible. This



represents the predicted final location for the marble in response to the move. Equation 2 expresses this
second heuristic, where Predict denotes the procedure we described.
H,(state) = 1 + H,(state,) where state, = Predict(state) 2)

The prediction function is designed to give a very fast response as compared to the simulation, and thus it
embeds a simplified model of the physics involved. This extreme simplification of reality is in fact shown to
be over 97% accurate in the test cases we used in our experiments.

While using this prediction algorithm, the PSG is updated with the actual results of each move made, as
determined by the simulation. Before predicting the results of a move, the algorithm first consults the PSG to
see if the move has already been made, and uses the previous results if available. This gives the agent the
ability to both learn from experience and correct prediction errors.

3.5 Complete Solution Prediction

The algorithm described in this section attempts to improve the performance of the agent solving this puzzle
by predicting a complete physical solution path to the target cell. The 'Complete Solution Prediction’
algorithm is based on repeated use of the 'Single Move Prediction' algorithm covered in the previous
subsection. The method is applied to predict the resultant state of each potential move. Each prediction is
assumed to be correct, and a new prediction can be made for each potential move from the new state. Since
all possible moves can be analyzed, and backtracking can be employed (since no actual physical moves are
being performed), a traditional search algorithm can be employed to find a sequence of moves that should
lead all the way to the target cell. Thus we can express the new heuristic recursively as shown in Equation 3.

H;(state) =0 if state = target

H;(state) = 1 + Hj(statey) otherwise, 3)

where state, = Predict(state).

This method works by building and searching a different graph, the Predicted State Graph, for a state
corresponding to the target cell. The theory behind this method is nearly identical to the Blind Search
Algorithms employed on the PSG. The predicted state graph has the same form and properties as the PSG
except that the graph is expanded with the predicted results for potential moves, rather than the results of
simulating the physical moves. This algorithm can therefore build and search the entire graph, employing
backtracking as required, until an entire path to the goal is found. The Complete Solution Prediction
algorithm is fast enough that it can be applied numerous times to develop a complete solution before a single
move is decided upon.

We used BFS to search the predicted state graph for a solution, as it will find a path with the fewest
possible number of physical moves. This is important, not only because it will improve the performance of
our agent, but because it will improve reliability as well. Since each move is based on predicted results
subject to inaccuracies, minimizing the number of moves required will reduce the chances of the marble
deviating from the predicted path.

This algorithm actually attempts to find an optimal physical solution. If the results of every possible move
are predicted accurately, and the path with the fewest number of moves is chosen, this should result in the
optimal path being followed. It turns out that complete optimality is not possible because of prediction
inaccuracies. However, for mazes in which the selected predicted path was followed without errors, a
dramatic improvement in performance was made.

Unlike the previous algorithms developed, which are based on finding and exploring states that were
previously unknown in the PSG, this algorithm is based on predicting and following a complete path from
the marble's current location to the target cell. This fundamental difference has two significant implications
that must be dealt with in the implementation. First, the algorithm may not be able to find a complete
solution to a target state. If this situation occurs, the Single Move Prediction algorithm is employed instead.
Second, due to the inaccuracies of the prediction, the result of the move may not be the predicted state. The
solution to this is for the agent to search for a new complete path to the solution whenever it deviates from
the predicted path.



3.6 Improved Control Scheme

The algorithms presented so far have been using a control scheme with 8 possible alignments of the cubic
maze, each with one vertex of the maze pointing straight up. While there are some advantages to it, it can
also occur that the marble rolls balanced on the edge between the two walls and comes to rest in an undefined
state (a frozen state) (Cremer 2007). Due to round-off errors and other effects, this selection of alignments
also results in a significant chance for unrepeatable moves which decreases the reliability of the agent.

To deal with these issues, a more complex set of possible alignments of the maze was developed. The
alignments were carefully chosen such that the marble would be more likely to travel in one direction than in
the others.

The strategy for choosing the possible orientations was to deviate the top corners slightly away along
each axis. This results in 24 possible orientations of the maze. This scheme gives the agent a more control
and thus can improve the performance in terms of number of solved mazes and reliability. A drawback is an
increased number of states that can lead to more moves that are necessary to solve the problem or to
determine that a maze is unsolvable.

4. EXPERIMENTAL RESULTS

Table 1 shows the results of testing the methods on 100 mazes measuring 5 cells along each edge. As one
would expect, the blind search methods performed poorly. DES took over 24 hours to run on all 100 mazes,
and could solve only 20% of them (100 total mazes minus 4 unsolvable and 76 frozen). The Single-Move
prediction algorithm (H,) was able to solve mazes with the fewest moves, but the Complete Solution
Prediction algorithm using 24 orientations (H;”) was the most reliable, solving 89% of the mazes tested.
Complete Path Prediction (H;) did not show improvement over the Single Move Prediction (H,) in terms of
number of moves. This is primarily due to the fact that by increasing the number of predicted moves, the
prediction errors also increased.

Comparing the Complete Solution Prediction with 24 Orientations (H;") to the first (DFS), we see that the
additional intelligence incorporated into the agent was able to improve its performance dramatically. The
average number of moves required to solve a maze was reduced by over 62%. The reliability, as measured by
the percentage of mazes that could be physically solved, was increased from 20% to 89%.

Table 1: Results for 100 5x5x5 mazes; Average length of the theoretical path from starting cell to target = 18.4

Moves Solved Unsolvable Frozen
DFS 181.1 20 4 76
BFS 114.6 34 15 51
H1 74.3 61 9 30
H2 18.6 62 11 27
H3 21 68 7 25
H3' 57 89 4 7

CONCLUSION

This paper has presented several algorithms that were developed for finding the physical solution to a
random three dimensional maze. These algorithms all use elements of graph theory to expand the agent's
knowledge of the maze being solved and the results of specific actions. The algorithms differ in the level of
additional knowledge utilized pertaining to the maze's geometry and the physics involved. In general, it was
shown that increasing the level of knowledge and reasoning capacity of the agent significantly improves its
performance. A modified control scheme was also developed which improves the physical actions that can be
made by the agent. This was shown to reduce problems which occurred as part of the physical simulation.



In terms of efficiency, all of the solution algorithms are complete in the sense that they are able to solve
any random maze, but only under the conditions that a physical solution is possible, the control mechanism is
capable of performing the necessary actions, and the marble does not enter a section of the maze from which
it cannot escape. None of the algorithms developed can be guaranteed to find the optimal physical solution,
since this would require perfect knowledge of the results of a given move before it is made. However, despite
the limitations imposed by the physical simulation, the best algorithm developed was able to improve the
performance (as measured by the number of mazes that could be solved) over a simple blind search by over
400%, while requiring 69% fewer moves.

In this project, artificial intelligence, physics simulation, and computer graphics are successfully
integrated to develop and display the solution to an interesting problem that could not be solved without each
of the three technologies.
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