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ABSTRACT
In this paper we present a game-playing algorithm for the
game of Nine Men’s Morris based on a small pattern database.
The player is using a combination of game-specific heuris-
tics and a pattern-based Bayesian network to make decisions
about the next move. The Bayesian network is dynamically
constructed and can be learned during the game play. The
player we present uses a fuzzy logic approach and the pat-
tern network to make decisions. The goal of the approach
is to provide a fast search algorithm, that is adaptable and
capable of learning.

1. INTRODUCTION
Building intelligent agents that can play a game and present

a reasonable challenge for a human player represents an im-
portant part of game development. It is particularly sig-
nificant for two player games where a second player is not
always available. In this context, perfect players that can
always win are not desirable unless the human player has
high level proficiency. In our paper we aim to create a low
resource adaptable player suitable for a mobile system.

Multiple algorithms can traditionally be found for this
purpose. The classical algorithms of minmax [6] and alpha-
beta [16] are still in use. Game-specific heuristics are good
alternatives when available. Evolutionary strategies have
also been employed to develop such players [2, 16].

Bayesian networks are graphs representing joint or condi-
tional probabilities. They have multiple applications to var-
ious problems such as classifier systems [4], knowledge rep-
resentation [5], data analysis and prediction [20, 19]. They
have been used in games as a way to model a network of
players in game theory [15, 1]. They also offer a framework
for games that can adapt to the proficiency level of the player
and provide an appropriate level of challenge [18]. This is
also the intended application of the system we present here.
Patterns have been used for move prediction in a good num-
ber of complex games [10, 17]. They are especially popular
for the games of Go [11] and Chess [12, 14].

.

In this paper we present a player for the two-player board
game called Nine-Men’s Morris. The game was solved in [8]
using a very large database of states and a traditional alpha-
beta search but is still considered a challenge for human
players. The game was also used by the Hoyle general game
learning system in [7] with positive results. More recently,
in [3] the authors develop a tree-search player for this game
using genetic programming. A retrograde analysis is used
in [9] to develop ultra-strong solutions starting from a given
game position and to avoid game loops.

The agent we present in this paper is based on a Bayesian
network of game patterns obtained by dividing the board
into quarters diagonally. The division uses the 4-way sym-
metry of the board. The patterns are organized in a graph
where the edges represent possible moves with weights com-
puted using the observed frequency of the moves. To make
a new move, the agent examines the current patterns on the
board and makes a choice from the set of adjacent patterns
using a fuzzy scoring system.

The move selection method employed is a variation of
the best-first algorithm where nodes that promise higher re-
wards have a higher probability to be chosen. Each node
maintains information that facilitates an estimation of the
reward associated with the pattern. This information is not
simply equal to the implicit minmax evaluation of that node,
such as in [13]. Rather, it is based both on information from
the neighbors and on other game-specific measures. Our ap-
proach is somewhat similar to [8] in the fact that we are also
using a database of states. However, our database is signif-
icantly smaller, which makes it more feasible for an online
or mobile app.

2. NINE-MEN’S MORRIS
The game of Nine-Men’s Morris is an old game that can

be traced back to the Roman Empire and has been popular
in various parts of Europe over time. Similar games and
variations can also be found in Africa and Asia. It is a
two-player board game with perfect information involving a
finite number of positions and 9 tokens or stones for each
player.

It consists of a board or table containing three concentric
squares connected as shown in Figure 1, where two alternat-
ing players can place tokens. Each of them initially has 9
tokens of colors red and black respectively. The first stage of
the game, or placement stage, consists in the player placing
the tokens on the board, one at a time in alternation. After
that the game enters a moving stage where players move the
tokens on the table by one spot on connecting lines on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



board. The goal is to make horizontal or vertical lines of 3
adjacent tokens of the same color, or mills. After closing a
mill, the player can remove one token from the opponent,
except for those that are part of a closed mill. The player
removing all the tokens of the opponent wins the game.

Figure 1: Table configuration for the game

Knowledgeable human players develop strategies that help
with winning the game. For example, Figure 2 shows two
such strategic token placements. On the left we have a strat-
egy where two tokens not directly in line allow the placement
of a third one, in line with them both, making it possible
for the player to complete two mills, vertical and horizontal.
The opponent can block one of the mills in the next move,
but not both. On the right we have a state with a closed
mill and two pieces below it that are one move away from
a mill. Here the player can move the middle token between
the two mills and capture one of the opponent’s tokens at
every move, while the configuration persists.

Figure 2: Two strategic configurations

3. GAME-SPECIFIC HEURISTICS
We developed 3 heuristics for playing the game based

on simple rules considering the current configuration of the
board: Newbie, Basic, and Focused. They mimic simple
strategies commonly developed by human players.

Each of these players must have an algorithm for the place-
ment phase and one for the moving phase. In the first one,
players take turns placing their 9 tokens on the board. In
the second phase, the players must move tokens during their
respective turns, or pass their turn if a move is not possible.
However, they are not allowed to pass the turn if they are
able to move at least one token. Capturing opponent tokens
by closing mills is possible in both phases.

The Newbie strategy consists of attempting to close a mill
in both phases whether by the placement of a new token, or
by moving a token. We call this a closing move. Otherwise
if no such move is available, this player will simply choose a
random valid move. This mimics a human player who has
just been explained the mechanics of the game.

The Basic strategy is identical to the Newbie one in the
placement phase. In the moving phase, if a closing move is

Starting Black Won Red Won Draw

Basic Newbie
Alternating 53 47 0
Black 62 38 0
Red 42 56 2

Focused Basic
Alternating 86 14 0
Black 90 10 0
Red 84 15 1

Table 1: Heuristics comparisons over 100 matches

played

not available, it will attempt to perform an opening move
instead. Such a move breaks an existing mill so that it can
be closed in the next turn to capture a token. If neither
of these moves is available, this player will also fall back to
a random choice. This mimics a human player with some
experience but without more sophisticated strategies.

The Focused player places a new token by trying a closing
move first. If no such move is available, it will look for
a position that prevents the opponent from closing a mill,
or a blocking move. If neither of these moves is available,
then a random free position on the board is chosen. In the
moving phase this player is identical to the Basic one. Even
though the heuristic is fairly simple, it can prove enough of
a challenge to a human player who isn’t very careful with
every move.

Table 1 compares these 3 strategies in 100 matches, both
in conditions where each player has the first move in the
game, and where the first player alternates. From this ta-
ble we can see that the Basic player is a little more efficient
than the Newbie one, while the Focused player is a lot more
efficient than the Basic one. This allows us to use the three
heuristics as a level-based benchmark for measuring the per-
formance of the Bayesian player. We show in bold the re-
sults that are significantly better using a binomial test of
significance with p=0.5.

4. THE BAYESIAN NETWORK
Generally, a Bayesian network is a weighted graph where

the weights of the edges represent joint or conditional prob-
abilities of the vertices. In our case, the vertices represent
partial board states. The directed edges represent possible
moves in the game and the weight of each edge reflects the
probability of the move occurring. Given the symmetrical
nature of our board, we decided to store patterns on the
board instead of the entire states of the table. For this, we
divide the board in four regions diagonally. These quadrants
can be rotated to obtain the same basic configuration. Thus,
each state of the board can be described by a set of eight
patterns, four for each player.

Thus, a pattern is such a quadrant with a number of to-
kens of a given color on it between 0 and the maximum of
9. A quadrant has 9 positions that can be either occupied
or not by a token. To store a pattern, we convert it into
a binary representation with one bit per location: 0 for a
free location, 1 for a present token. In decimal, this gives
us a number between 0 and 29

− 1 = 511. For example, the
pattern in Figure 2 right is converted to binary (top-down,
left to right) as 000 111 101 = 61.

A set of properties is stored for each pattern, such as the



number of times it has been encountered during the recorded
matches (or frequency) and a score indicating how good of a
state it represents for the current player. This is computed
as a combination of several values, as follows:

• millScore: This score value counts the lines of 3 tokens
or mills that are present in that pattern. A pattern can
contain at most 4 mills.

• tokenScore: This score value is the simple count of
tokens in the pattern.

• freqScore: A third score is the number of times that
the pattern has been encountered in the games used
for training divided by the maximum frequency of any
node in the network. This way the value is between 0
and 1 and does not grow unreasonably over time.

• mutualScore: The last score value is computed as a
weighted average of the scores of the neighbors using
the weights of the edges multiplied by a scaling fac-
tor called mutualWeight (such as 0.2). This way, a
pattern that has a particularly good score can also im-
prove the scores of the neighbors. The mutual score is
updated in a single passage at the end of every match
that is used for learning. The mutualWeight param-
eter, which is kept less than 1, has the effect of dimin-
ishing the mutual effect of patterns with the distance.

The pattern’s score is computed as

score = (wL · millScore + wT · tokenScore +

wF · freqScore + wM · mutualScore)k

where the values wL, wT , wF , and wM are configurable
weights used to calibrate the specialized scores. We have
started with the values wL = 10, wT = 1/3, wF = 3, and
wM = 1 in this research, chosen to bring the difference scores
to similar ranges. We raise the total score to the power k to
increase the difference between good moves and poor ones
in a controllable way. We experimented with values between
1 and 4 for the parameter k.

There are situations where a move can take a token from
a quadrant to another. In this case, only the old and new
pattern in each quadrant separately are connected by an
edge. The recorded old and new positions of the token are,
in each situation, relative to the quadrant that the move is
recorded for.

5. FUZZY PLAYER
In this section we present a player algorithm that uses the

Bayesian network described in the previous section, called
the Fuzzy player. It is using ideas taken from fuzzy logic to
make move decisions.

As a general rule, the player starts by identifying all the
available moves and assigns them an initial score of 1. Then
the player identifies the 4 patterns on the table and retrieves
their move information from the Bayesian network. Then for
each possible move recorded in the network, if the computed
score is higher than the currently assigned one, then the
move’s score is updated with this new value.

After this, a probabilistic choice is made, giving each pos-
sible move a chance to be chosen proportionate to the score.
This way, the player is more likely to make a move that has

a higher score, but the choice is not deterministic and pre-
dictable. The system also has a chance to discover a good
move by accident.

Thus, in the placement phase, the Fuzzy player starts by
assigning a score of 1 to each free position on the table, which
it then updates based on the Bayesian score, if available.
After this, it makes a probabilistic score-based choice. The
movement phase is similar, except that it based on positions
where the existing tokens can be moved.

To improve the player’s performance, we also consider that
some moves change the pattern in more than one quadrant.
Figure 3 shows an example of a corner move where two
quadrants are affected. The move is registered in the left
quadrant, but the change affects the top quadrant more sig-
nificantly, closing a mill. Thus, the move would get a better
score were we to assign it the score of the top pattern.

Figure 3: A move affecting the patterns in two quad-

rants

To implement this feature, for each quadrant, we look at
all the moves that add a corner token to the quadrant. Then
we check if any related move is available in the neighboring
quadrant. If that is the case and if the score of the new
pattern is better than the current score for that move, we
update the score with the larger one.

Alpha-beta or minmax algorithms take opponent’s moves
into account naturally. To implement a similar feature in
our Fuzzy player, we introduced a defense mechanism. Af-
ter scoring its own moves, the player also scans for all the
opponent’s moves. If any of them could be blocked by one of
its moves, and the opponent’s move has a higher score, we
update the player’s blocking move with this score. To avoid
over-focus on opponent’s moves, we introduced a threshold
rateThr for the rate between the scores of the new and the
old patterns. Only moves where the rate is higher than
rateThr are considered.

6. EXPERIMENTS
We trained the network initially in 430 games. The first

400 were composed of 100 games of each heuristic against
itself, and 100 of Focused versus Basic. We intentionally
trained the player with the better heuristics more times than
with the simplest one. The next 30 games were played by
an experienced human against each of the 3 heuristics. The
human player won in all the games but one played against
the Focused player.

Initial results suggest that values of 3 and 4 for the param-
eter k give better results, combined with rateThr = 2. Table
2 shows results of 100 games of the Fuzzy player against all 3
heuristics where the players alternate for the starting move.
The Fuzzy player can win against the Newbie more than
half of the time, and more than 40% of the time against the
others. Significant differences are in bold.

To examine the influence of the mutualWeight factor used
in updating the mutual scores of the nodes, we performed
an experiment with different values for this parameter. To
level the starting point, we have reset the network scores



k Black Won Red Won Draw

Fuzzy Newbie
3 55 45 0
4 54 46 0

Fuzzy Basic
3 39 60 1
4 44 55 1

Fuzzy Focused
3 35 65 0
4 42 58 0

Table 2: Fuzzy Player with rateThr = 2, 100 games

where the starting player alternates

k mutualWeight Black Won Red Won Draw

Fuzzy Newbie
3 0.1 48 52 0
3 0.2 42 58 0
3 0.3 53 47 0
4 0.1 57 42 1
4 0.2 56 44 0
4 0.3 45 55 0

Fuzzy Basic
3 0.1 48 52 0
3 0.2 49 50 1
3 0.3 45 54 1
4 0.1 49 50 1
4 0.2 63 37 0
4 0.3 44 56 0

Fuzzy Focused
3 0.1 32 68 0
3 0.2 31 69 0
3 0.3 28 72 0
4 0.1 33 67 0
4 0.2 46 54 0
4 0.3 35 64 1

Table 3: Influence of the mutualWeight parameter in

100 games where the starting player alternates

and updated them in two passes at the beginning of each ex-
periment, to consider both immediate neighbors and nodes
further away. Table 3 shows the result of these experiments
with k = 3 or 4, rateThr = 2, and moveThr = 5.

Table 3 seems to indicate that for k = 4 the value of 0.2
that we have chosen is consistently better than the values
0.1 or 0.3, while for k = 3 the value 0.1 is a little bit better.
The best performance in this table against the Fuzzy player
was achieved with k = 4 and mutualWeight = 0.2 where
the Fuzzy player won 46% of the games.

The next experiment, shown in Table 4, examines the best
value for the parameter wT , or the weight of the number
of tokens in the pattern over the total score. Here we used
mutualWeight = 2, rateThr = 2, k = 4, and moveThr = 5.
This table suggests that values of 0.33 or 0.4 can be expected
to perform better.

The last experiment, shown in Table 5, examines the best
value for the parameter wL, or the weight of the number
of mills in the score. Here we used mutualWeight = 2,
rateThr = 2, k = 4, wT = 0.33, and moveThr = 5. This
table suggests that values between 10 and 15 can be expected
to perform better, the latter providing the largest number
of wins against the Focused player (48%).

wT Black Won Red Won Draw

Fuzzy Newbie
0.25 52 48 0
0.33 56 40 0
0.4 62 21 0
0.5 56 43 1

Fuzzy Basic
0.25 47 52 1
0.33 63 37 0
0.4 39 60 1
0.5 46 53 1

Fuzzy Focused
0.25 42 58 0
0.33 46 54 0
0.4 44 55 1
0.5 32 68 0

Table 4: Influence of the wT parameter in 100 games

where the starting player alternates

wL Black Won Red Won Draw

Fuzzy Newbie
5 46 54
10 56 40 0
15 54 46 0
20 64 36 0

Fuzzy Basic
5 47 53 0
10 63 37 0
15 58 42 0
20 54 46 0

Fuzzy Focused
5 39 61 0
10 46 54 0
15 48 52 0
20 42 58 0

Table 5: Influence of the wT parameter in 100 games

where the starting player alternates

7. CONCLUSION
In this paper we presented an adaptable intelligent agent

for the two-player board game Nine Men’s Morris.
We compared this agent with three game-specific heuris-

tics of various difficulty level. Experiments showed that by
varying the values of the parameters involved in the Fuzzy
player, its performance against the heuristics can be dra-
matically improved. With the optimal values of these pa-
rameters in our tests, the player defeats the lower level and
intermediate level heuristics the majority of the time, and
can defeat the high level heuristic about half of the time.
This last heuristic is challenging even for an experienced
human player.

Our experiments show that game-specific heuristics are
difficult to beat, but they are not easy to generalize to other
board games. The Fuzzy player is more general purpose,
but one has to find the right combination of parameters for
it to be efficient.

This feature of the player is interesting for practical appli-
cations. Thus, when a human player is only starting to learn
the game, the Fuzzy player can start with settings that are
easy to beat. As the level of the user progresses, the settings
can be adapted to present more of a challenge.
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