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ABSTRACT
In this paper we introduce an application of real-coded ge-
netic algorithms to the problem of consistent graph layout
and exploring the role of mutation for this particular prob-
lem. We introduce several forms of mutation, some of which
being specific to this problem, and show that the choice of
this operator can have a great impact on the performance
of the algorithm.
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1. INTRODUCTION
The mutation has always played an important role for the

genetic algorithms and its role is of clear interest. The mu-
tation rate is usually kept low, a generally accepted heuristic
being one over the chromosome length [5].

In the natural living systems, we can speculate that the
rapid evolution of some organisms may be in part attributed
to mutations which are not totally random, but favor changes
that increase the fitness of the organism. In this paper we
present a system in which the mutation can take various
forms, some of which are based on heuristics using domain-
specific knowledge that are likely to improve the individual’s
fitness. We are interested in the impact of the various mu-
tation forms on the achieved fitness.

The problem we focus on is building consistent graph lay-
outs for weighted graphs and requires a real gene encoding.
Given a weighted graph, we must derive a spatial representa-
tion of the graph (a layout) such that the distances between
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the vertices are consistent with the weight of the edges. Ex-
tensive work has been accomplished on drawing unweighted
graphs [4]. The best-known heuristic for generating graph
layouts is certainly the spring algorithm [2].

We found that a real-encoded genetic representation is ap-
propriate for the graph layout problem and this also gives
us more flexibility regarding the mutation operator. Sev-
eral real-encoded models for genetic algorithms have been
proposed [3]. Our focus is on the mutation operator under
these conditions.

2. FORCE BASED ALGORITHMS
Given an undirected and weighted graph, we must assign

a geometric point to each of the vertices in the graph (a
layout) such that for every edge, the distance between the
vertices is equal to the weight of the edge [6].

Let us consider the error on an edge to be the difference
between the weight of the edge and the Euclidean distance
between the two points. If the error is positive, then the
points are too close to each other. If the error is negative,
the points are too far apart. We would like to find a layout
that minimizes the total absolute error in the graph.

In the breadth-first order algorithm, each vertex is at-
tracted or repelled by its neighbors according to the error
on the edge. Non-adjacent vertices do not interact. The
algorithm starts with a random layout that is adjusted in
a number of iteration to obtain one that is consistent. At
each iteration, the algorithm moves one vertex at a time on
one of the outgoing edges, further away from the other ver-
tex on the edge if the distance is smaller that the weight of
the edge, and closer to the reference point if the distance
between them is greater than the weight of the edge. A
parameter ε controls the amount of the change.

An iteration of the breadth-first order (BF) algorithm starts
with a randomly chosen vertex (origin), and it adjust all the
other vertices in the graph starting from this origin with a
breadth-first scanning method. By starting from a different
origin at every iteration, we insure that the layout will not
prematurely converge to a suboptimal configuration.

Let us suppose that we can construct a physical repre-
sentation of the graph using interconnecting springs for the
edges. Each spring corresponding to an edge has an initial
length equal to the weight of the edge. When extended, the
springs tend to contract to their initial length, and when
compressed, they tend to extend. We can build a random
graph layout using springs, and then let it evolve to an equi-
librium state.

The tension vector (TV) algorithm starts with a random



layout and readjusts it in several iterations to achieve an
equilibrium. At each iteration, it computes the resulting
tension forces in each vertex based on the current layout,
then moves all of the points in the direction of the forces,
again based on a configurable parameter ε.

3. REAL-CODED MUTATION
To apply the GAs to to our problem, we need to represent

a graph layout as a chromosome. We consider that each
of the layout points is composed of three genes taking real
values. The genes are initially generated in a given boundary
which is a 3D box of dimensions depending on the weights
in the graph. The fitness function is based on the total error
in the graph. We have chosen the uniform crossover with a
swap probability of 0.45.

The genetic representation of a problem with real-coded
genes offers more possibilities for defining the mutation.
Several forms have been proposed in the literature, and some
of our operators are inspired from them.

The uniform mutation replaces the value of the chosen
gene with a uniform random value within the range specified
by the user [3], eventually following a Gaussian distribution
[1].

The mirror mutation replaces a gene with it’s mirror value
with respect to the middle point of the boundary interval
for the gene. This is the closest operator to the binary bit-
flipping usual mutation.

The percentage mutation replaces a gene with a random
percentage of its value within the interval [80%, 120%].

These three types of mutation are not specific to our prob-
lem. The following two forms of mutation represent a com-
bination of the heuristics presented in Section 2.

The edge mutation is moving the 3 genes of a randomly
selected point on a randomly selected edge starting from
that vertex to reduce the error on that edge, as in the BF
force-based method.

The tension vector mutation (TVM) is moving the 3 genes
of a randomly selected point based on the tension vector
resulting from all edges starting from that vertex as in the
tension vector method.

4. EXPERIMENTAL RESULTS
We have conducted our experiences with 7 graphs with

a number of vertices between 50 and 200 with existing so-
lution. Table 1 shows the results of the five variations of
the mutation operator on the ten graphs. The first column
represents the number of vertices in the graph. All of these
results represent an average over 50 trials with 1000 genera-
tions and a population of size 50. The ε parameter is equal
to 0.005 for these results. The last two columns in this table
represent the force-based algorithms.

We can notice that there is a considerable difference in
the performance between the forms of mutation we have
introduced. The percentage mutation is doing visibly better
than both the mirror and uniform mutations, and the edge
mutation is a further clear improvement. Last, the tension
vector mutation is substantially better than even the edge
mutation.

Both force-based methods converged to solutions very close
to an exact one and they are still better than the use of
genetic algorithms. Even so, the genetic algorithm cannot
compete with the force-based method yet, the fitness func-

Table 1: Total error as percentage of the total weight
in 1000 generations / iterations

Size Uni Mir Per Edge TVM BF TV
50 93.6 94.5 68.1 60.4 21.0 0.01 0.02
70 94.1 94.7 74.0 65.0 08.8 9e-4 1e-3
100 94.0 94.5 75.0 64.2 11.2 5e-3 0.03
125 94.2 94.7 76.6 64.2 13.6 9e-7 0.01
150 94.2 94.7 79.1 66.9 14.2 1e-6 0.01
175 94.3 94.7 79.5 65.6 14.6 9e-7 0.02
200 94.3 94.7 81.1 67.1 22.9 1e-6 0.01

tion would allow us to embed more constraints into the de-
rived layouts, like aesthetic qualities, which are harder to
achieve by the traditional methods.

5. CONCLUSIONS
In this paper we have introduced a real-coded genetic algo-

rithm applied to the consistent graph layout problem. The
focus of this study has been the mutation operator, for which
the real encoding of the chromosomes provides more choice
than in the binary case.

The experiments have shown that the choice of the mu-
tation operator can have a large impact on a real-encoded
genetic algorithm. Thus, the uniform and mirror mutation
show a similar performance, the percentage mutation con-
stitutes an improvement over them, and the two problem-
specific mutations have shown a substantially better perfor-
mance than the general purpose operators.
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