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ABSTRACT

In this paper we present a concurrent implementation of co-
evolutionary genetic algorithms designed for shared mem-
ory architectures intended to take advantage of multi-core
processor platforms. This algorithm divides the problems
into sub-problems as opposed to the usual parallel approach
dividing the population into niches. We analyze several as-
pects related to this approach: the synchronous or asyn-
chronous nature of the information exchange, the influence
of the communication period on the performance, and we
compare different operating systems and a variety of plat-
forms.
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1 Introduction

The hardware developments from recent years have made
multi-core architectures a common place in the industry.
The issue we are now facing is taking advantage of such
platforms.

Parallel and distributed versions of the genetic algo-
rithms (GAs) are popular and diverse. The simplest parallel
models are function-based where the evaluation of the fit-
ness function is distributed among the processes [14]. The
most popular parallel models are population-based where
the population itself is distributed in niches [15], alstied
islands sometimes [9]. Such models require a periodic mi-
gration of individuals between the sub-populations. The
shared-memory GAs are closely related to the parallel and
distributed models. The parallelization techniques can be
ported and adapted from one type of architecture to the
other, but with specific features that can be optimized in
this case. A survey of these algorithms can be found in [1].

There are positive arguments in favor of such mod-
els, as for example, a high degree of independence for each
process. Among the drawbacks we can cite the fragmenta-
tion of the population into small pieces. This can generate
issues such as the premature converge of the population to
a local optimum or general loss of diversity. Larger pop-
ulations have been reported to perform better by several
studies or even to be necessary to the success of parallel

implementations ([3]).

In a different direction, coevolutionary algorithms
have interested and fascinated researchers for a good num-
ber of years. Even though competitive coevolution is the
more popular form, the cooperative form has been proven
to give good results [2]. These approaches decompose the
problem into parts evolving separately [12]. For the pur-
pose of the fithess evaluation, these parts are assemhded int
a complete chromosome. [7] argues that it is not the separa-
bility of the problem that makes these approaches success-
ful, but their increased exploratory power. Some theoaétic
studies of the conditions under which these algorithms can
achieve the global optimum have been proposed [10].

The model that we propose in this papers bridges the
gap between these two approaches. It is a variant of the
cooperative coevolutionary approach designed for shared
memory parallel architectures. Our model is based on a di-
vision at the genotype level of the population into several
agents or processes. It is not an algorithmically equitalen
version of the genetic algorithm (GA), nor of a standard
cooperative coevolutionary algorithm, but a hybrid model
designed for parallel architectures and that can poténtial
perform faster and achieve better results than the standard
GA. In our approach, each process receives a partial chro-
mosome to evolve. All the genetic operations are restricted
to this subset of genes. For evaluation purposes, a template
is kept by every process containing information about the
best genes found by all of the other processes up to that
point. A periodic exchange procedure keeps this informa-
tion up to date.

Finally, when aiming to optimize the genetic algo-
rithms for massively parallel architectures, it becomes un
desirable both to split up the population into too small
nests, and to divide the chromosome too much. A hybrid
approach can be a good compromise and for this purpose
both population and chromosome division models need to
be studied thoroughly. This paper contributes to the study
of the less observed of the two approaches.

The paper is structured the following way. Section 2
presents the details of our parallel model for the genetic al
gorithms. Section 3 introduces the three test problems that
we used for out experiments. Section 4 shows the experi-
mental results and the paper ends with conclusions.



2 Chromosome Division Model

Our model for parallel genetic algorithms follows a simi-
lar idea to the one described in [16]. The difference is that
the current model is implemented for a shared memory ar-
chitecture as opposed to a Beowulf cluster, and the exper-
iments use a different set of problems. Preliminary results
were also presented in [17] and [18], although the set of
problems used here is almost entirely new.

2.1 Problem Division

According to the most popular approach to parallel genetic
algorithms, which is the island one, the population is de-
composed in several islands or niches, each of them evolv-
ing in parallel. In such a model, the evolution in each pop-
ulation is self-contained, and the only thing that makes it
a unified process is an occasional migration of individuals
between the islands.

Our motivation comes from the fact that smaller pop-
ulations can more easily lead to suboptimal solutions and
premature convergence. The chromosome division allows
us to maintain a larger population for each process using
the same amount of memory.

The idea behind this parallel model is that the problem
to be solved is divided into several tasks. Each task is then
assigned to a different process that will focus on it while
exchanging information with the other processes. This is
similar to a multi-agent approach that has been proved effi-
cient for many applications before, in a variety of contexts

Thus, in the approach proposed in this paper, the di-
vision happens along the genotype. The genes compos-
ing each chromosome are divided among the processes,
such that the task of each process consists of evolving
a pre-determined part of the chromosome. Each process
performs the standard genetic operations on its subset of
genes. When the fitness evaluation is needed, the subset
of genes is inserted into a global template that allows it to
be seen as a complete chromosome, as shown in Figure 1.
Our intention was to develop a model that can be applied
regardless of theeparabilityof the problem, but the test
problems we chose are also designed to show how this as-
pect influences the fitness performance and the speedup.

2.2 Fitness Evaluation

There are a good number of benchmark fithess functions
for genetic algorithms that are separable, meaning thgt the

can be divided into sub-problems such that the evaluation
of each of them can be accomplished independently. Our
model is not restricted to these types of problems specifi-
cally, but is rather designed in a general way so that it can
be applied to any fitness function. However, the evaluation

procedure can be optimized for separable functions and a
greater performance can be achieved in terms of execution
time and use of each CPU core. One of out test problems
will showcase this situation.
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Figure 1. A template for the population evolved by one of
the agents

We start with the assumption that to evaluate the fit-
ness function for any combination of genes, we need a full
set spanning from 0 ta — 1. Thus, to evaluate a partial
chromosome, we need to complete it with a sample of the
genes that it does not manipulate itself. We call this sam-
ple atemplate and each process will store one in mem-
ory. The evaluation consists of plugging the partial chro-
mosome into the common template, and then passing this
complete individual to the fitness function.

An exchange procedure insures that the template is
kept reasonably up to date with respect to the latest best
performing genes obtained by each process. During the
exchange phase, each process copies the genes of the best
chromosome found so far in terms of fithess to a global
“best chromosome” shared by all the processes. After all
of the processes have finished this update, each of them up-
dates its own template from the global best chromosome.
This procedure takes place periodically and can involve a
synchronization of the processes in terms of number of gen-
erations produced in between the exchanges. Since only
one chromosome is exchanged in the process, our model
is coarse-grained. The next section talks about this aspect
more in detail.

2.3 Synchronous vs Asynchronous Exchange

The only communication between the processes happens
during the exchange procedure. From a synchronization
point of view, we propose to compare two approaches. In
the first one, each exchange phase happens after the exact
same number of generations for each process, and this is
accomplished through a barrier call. In this model, called
synchronousall the processes evolve approximately at the
same time and during the exchange they need to wait for
all of them to reach the entry point in order to proceed. The
genes in each chromosome represent a fairly homogeneous
evolutionary step during the fitness evaluation.
In the second approach, calledynchronouseach



process can update the global best chromosome periodi-
cally without having to wait for any of the others. Thus,
genes evolved in substantially different generations are
combined for the evaluation of the fitness.

The synchronous exchange procedure is shown in
Figure 2 in C++ based pseudo code. In this algorithm we
assume that the indexes in the partial chromosome are kept
consistent with the position of the genes in the complete
chromosome. To make the procedure easier to understand,
theid of the process is used as an index for the best par-
tial chromosome and for the template. Practically, our im-
plementation is object oriented, the exchange function is a
class method, and these variables marked with the id are
class attributes. In this figure, the global variables sthare
by all the processes are shown with capitalized names.

voi d Exchange_synch(int id) {
np = Chronosonme_Si ze/ Number O _Proc;
Barrier (Number _OF _Proc);
for (i=id+np; i<(id+l)=+np;
Best Chronpsone[i] =
best _partial _chr[id][i];
Barrier (Number _Of _Proc);
for (i=0; i<id+xnp; i++)
tenplate[id][i] = Best_Chronosone[i];
for (i=(id+1l)*np; i<n; i++)
tenplate[id][i] = Best_Chronosone[i];

i ++)

Figure 2. The synchronous exchange procedure of the best
chromosome

Figure 3 shows the asynchronous version of the ex-
change procedure when each process updates the best chro-
mosome and its own template periodically without having
to wait for the others. The same convention for the names
as in Figure 2 is used here.

voi d Exchange_asynch(int id) {
np = Chronmosonme_Si ze/ Number O _Proc;
Lock(&wutex); [/ Wite phase
for (i=id*np; i<(id+l)*np; i++)
Best Chronpsone[i] =
best _partial _chr[id][i];
Unl ock( &Wut ex) ;

Lock( &vut ex) ; /1 Read phase

for (i=0; i<idxnp; i++)
tenplate[id][i] = Best_Chronosone[i];
for (i=(id+l)*np; i<n; i++)

tenplate[id][i] =
Unl ock( &Wut ex) ;

Best _Chronpsone[i];

Figure 3. Asynchronous exchange procedure for the best
chromosome

The population is initialized for each process ran-
domly, as it is usually the case. The template is initialized
by calling the function exchange before the evolution pro-
cess starts.

The exchange takes place every few generations, 10
for most of our experiments. Another question we will at-
tempt to answer here is how much this exchange period
interferes both with the execution time and with the perfor-
mance in terms of best fitness achieved.

3 Test Problems

We have chosen three problems to test our parallel model
with, two of them being of the benchmark type, and one a
real-world problem. The specifics of each of them should

allow us to showcase different features of our program. The
benchmark problems consist of fithess functions of linear
complexity over the number of genes and also uniformly

fast to compute. The real-world problem is computation-

ally more expensive and non uniform over the set of chro-

mosomes. For this last function, a global optimum is not

known.

The two benchmark problems are chosen with a lin-
ear fithess to show the speedup potential of our model for
the most common category of problems where the fitness
takes a uniform time to compute. These functions are very
similar to other problems used for benchmarking in various
studies. The real-world problem is a difficult one chosen to
showcase the potential of our model in terms of quality of
solutions.

A second aspect that differentiates these problems is
the reciprocal influence of genes at different locations in
the chromosome in the computation of the fithess or sep-
arability. For the real-world problem, such influences are
present, and a good performance cannot be achieved in the
absence of proper process coordination. For the first bench-
mark problem, there is even a higher degree of reciprocal
influence of the genes from one process to another than for
the real-world problem. For the second benchmark prob-
lem the fitness influence is localized to the genes assigned
to each process, meaning that this function is highly sepa-
rable, and the algorithm is optimized to take advantage of
it. Thus, we hope to show how our model can behave in
each of these three situations.

For reasonable comparison grounds for the three
problems we have used the same experimental settings as
much as possible: population size (50), number of gener-
ations (1000), and chromosome size (360). The number
of genes is determined by the number of variables in the
real-world problem, and we were able to configure the two
benchmark problems with the same value.

3.1 Benchmark Problems

The first problem is known in the literature as the Rosen-
brock function [13], [8] or the DeJong function [6] and as



Table 1. Mapping from sequences of 3 bits to fitness values
for the deceptive problem

Sequence 000 001 010 011 100 101 110 111

Value 28 26 22 0 14 0 O 30

a difficult optimization problem. It consists of minimizing
the following function:

Ros(z,y) = (1 —z)? +100(y — z)?,

where—1.5 < x,y < 1.5 for our experiments.

The minimum of 0 is achieved for = y = 1. The
difficulty of this function is that local minima with = y
are relatively easy to achieve, but both variables need to
move towards the value 1 at the same time to find the global
minimum. For this problem, the first half of the genes rep-
resent the value of and the second half the value ¢f
Thus, in the parallel mode, the processes will be highly
dependent on each other to achieve a good performance,
which is the reason for choosing this function. For our ex-
periments we have used 360 binary genes to be consistent
with the two other problems.

The second function is of a category that has been
used to test deceptive aspects of the fitness landscape [5].
This function maps each group of 3 binary genes in the se-
guence to a value based on Table 1 and then adds them up
over the entire chromosome. This problem presents a dif-
ficulty to hill-climbing methods because the sequence of
highest fitness, 111, is isolated from the suboptimal solu-
tion which is 000. With a population size of 360, the opti-
mal solution has a fitness of 3600 while the suboptimal one
of 3360. Since the value of each set of genes is computed
separately from any other set of 3 genes, this fithess is en-
tirely separable. We use this problem to show the speedup
potential for highly separable functions.

3.2 Real-Life Problem

The third problem we are using consists of optimizing the
parameters defining a pilot for a simulated motorcycle.
For this problem, the evaluation requires significantly enor
computations, and thus it will allow us to observe the im-
provement in performance in that respect. Contrary to the
linear functions, the complexity of evaluating a chromo-
some is not uniform, but can vary significantly from one
individual to the next. This constitutes an additional ehal
lenge for the parallel model. This function is partially sep
arable.

The physical model of the motorcycle has been more
extensively described in [19] and is close to [4]. The mo-
torcycle or STV, is modeled as a system composed of sev-
eral elements with various degrees of freedom, consisting
of position and orientation on the road, speed, rotation of
the handlebars, and leaning. orientation that can be driven
through several control units.

The driver’s input into the system is defined by the tu-
pleu = (7, B¢, Br, ¢, o) Wherer is the acceleration in the
direction of movement provided by the throttle/gear con-
trol, ¢ is the leaning angle, and;, 3, are forces applied
on the front and rear brakes respectively. This driver can be
either a human player or an autonomous agent controlling
the vehicle.

The movement is defined by Newtonian mechanics,
where the acceleration is also influenced by gravity, fric-
tion, drag, and the throttle. The brakes are factored irgo th
friction force.

Theautonomous pilotises perceptual information to
make decisions about the vehicle driving. This information
consists in the visible front distance, the lateral diséanc
to the border of the road from the current position of the
vehicle and from a short distance ahead of the vehicle, and
the slope of the road.

The motorcycle is driven by several control units
(CUs), each of them controlled by an independent agent.
The current CUs are the gas (throttle), the brakes, and the
handlebar/leaning. Each of these CUs is independently ad-
justed by an agent whose behavior is intended to drive the
motorcycle safely in the middle of the road at a speed close
to a given limit. The agents behave based on a set of equa-
tions relating the road conditions to action. The full set
of equations is described in [19]. The equations comprise
a fair number of coefficients and thresholds, and these are
the values that are evolved by genetic algorithms.

To apply the GAs to this problem, we chose a rep-
resentation where each configurable coefficient is assigned
10 binary genes, and the chromosome results by concate-
nating all of the coefficients. Thus, we worked with 36 co-
efficients because the pilot combines the leaning and steer-
ing modes. This means that the chromosome is of a length
of 360.

We used the one-point crossover for our experiments
with a probability of 0.8 and a probability of mutation of
0.01. We employed an elitist reproduction preserving the
best individual from each generation to the next.

A chromosome is evaluated by running the motor-
cycle in a non-graphical environment once with the pilot
configured based on values obtained by decoding the chro-
mosome over a test circuit presenting various turning and
slope challenges. each run can end either by completing
the circuit, or by a failure condition. A failed circuit can
be caused by one of the following three situations: a crash
due to a high leaning angle, an exit from the road with no
immediate recovery, or crossing the starting line without
having reached all the marks, as when the vehicle takes a
turn of 180 degrees and continues backward.

To compute the fithess we marked 50 reference points
on the road and counted how many of them were almost
touched by the motorcycle during the run. The fitness is
computed as follows:

)



Table 2. Technical specifications of the platforms used for
testing

Label CPU Make CPU Speed Core OS

Ul Intel Pentium 4 2.8 GHz 1 Ub
M2  Intel Core 2 Duo 2.4 GHz 2 OsX
MX2 Intel Core 2 Duo 2.4 GHz 2 XP
X2  Intel Dual Core T7200 2.0 GHz 2 XP
U2 Intel Dual Core T7200 2.0 GHz 2 Ub
X4  Intel Quad Core Q6600 2.4 GHz 4 XP
X47 Intel Quad Core Q6600 2.4 GHz 4 W7

whered,,, is the number of points crossed by the motor-
cycle, d; is the total number of points, artg, is the total
time taken until either the circuit was completed, or until a
failure condition was detected.

Thus the fitness reflects both how much of the circuit
the motorcycle completed, and how fast it was capable of
finishing the track. In general, a fithess value that is higher
than 1 is an indication of completion of the circuit.

On the subject of separability and of the reciprocal
influences of genes located in different parts of the chro-
mosome, this problem is between the first two. In this case,
for the motorcycle pilot to be able to function, it needs rea-
sonable values for the parameters defining all of its agents.
Thus, the pilot could be using the gas pedal perfectly well,
but if the steering is ineffective, it will still fail. Once &
have reasonable values for most of the agents of the pilot,
each of them can be improved separately. Thus, this is an
intermediate problem for the study of this aspect.

4 Experimental Results

In this section we present some of the experimental results
with our model testing both the executions time/speedup
and the fitness performance. Table 2 introduces the plat-
forms that we have used for our computations. In the
operating system column, XP stands for Microsoft Win-
dows XP, W7 stands for Microsoft Windows 7, OsX stands
for the Mac OsX 10.5.6, and Ub stands for Ubuntu 8.04.
The program was implemented in standard C++ using the
pthread library and its local version for each platform. The
code that is being run is the same on all of the platforms for
each reported experiment.

For the experiments concerning the speedup, there
is no point in comparing approaches that don't perform a
comparable number of computations. Since the speedup is
our foremost interest here, we have chosen to run all the
experiments with the same number of generations.

A second factor needs explanation before we proceed:
the populations size. In our approach we can level the par-
allel model with the sequential one on only one of two as-

Table 3. Timing in seconds of the Rosenbrock function in
1000 generations, average over 100 runs

Platform Comm #Processes

1 2 4 8
U1 S 2.61 3.79 551 13.12
U1 A 2.61 2.80 3.57 5.15
M2 S 0.88 0.69 0.82 1.04
M2 A 0.88 0.63 1.17 2.22
MX2 S 1.19 0.74 1.47 2.75
MX2 A 1.19 0.73 1.01 156
X47 S 3.24 2.60 2.30 8.24
X47 A 3.24 2,66 2.26 4.20

pects: the number of evaluations performed on the whole,
or the number of genes generated on the whole. We have
chosen to generate the same number of genes as in the se-
guential model for all of our experiments, which means
running the experiments with the same population size.
This is consistent with the fact that one of the goals of the
chromosome division is to be able to run the evolution with

a larger population for each island.

4.1 Synchronous versus Asynchronous Ex-
change

The first set of experiments compares the synchronous ver-
sus asynchronous exchange models on different platforms
for a variety of number of processes.

Table 3 shows the average execution time as number
of seconds for the Rosenbrock function. Table 4 shows
the average execution time for the deceptive problem. The
chromosome length is 360, the population is of size 50,
and we have run 1000 generations in all the cases. The
results are averaged over 100 runs. The column labeled
“Comm” identifies the exchange function as synchronous
(S) or asynchronous (A).

To complement these timing results, Tables 5 and 6
shows the speedup in all of these cases computed as the ex-
ecution time on a single process divided by the execution
time of each multi-threaded run. A speedup of more than
100% represents a faster execution time in parallel than se-
guentially. Note that the speedup for 8 processes is not
expected to be improved on any of the platforms, since the
maximum number of cores that were available on any of
the machines is 4. This table shows that on most multi-
core architectures, the execution time for a number of pro-
cesses less than or equal to the number of cores presents a
speedup.

Table 7 shows the timing in seconds for the motorcy-
cle driving problem. The settings in terms of chromosome



Table 4. Timing in seconds of the deceptive function in
1000 generations, average over 100 runs

#Processes
1 2 4 8

Platform Comm

Ul S 2.19 2.65 561 13
Ul A 2.19 2.39 2.78 3.59
M2 S 0.59 0.57 0.66 0.89
M2 A 0.6 053 1.12 2.16
MX2 S 1 054 09 1.27
MX2 A 0.99 0.54 0.62 0.77
Xa7 S 1.96 1.23 0.88 4.68
X4a7 A 191 1.23 09 1.39

Table 5. Speedup for the Rosenbrock function computed as
the sequential time divided by the parallel time

Platform Comm #Processes
2 4 8

Ul S 68.87% 47.37% 19.89%
Ul A 93.21% 73.11% 50.68%
M2 S 127.54% 107.32% 84.62%
M2 A 139.68% 75.21% 39.64%
MX2 S 160.81% 80.95% 43.27%
MX2 A 163.01% 117.82% 76.28%
X47 S 124.62% 140.87% 39.32%
X47 A 121.80% 143.36% 77.14%

Table 6. Speedup for the deceptive function computed as
the sequential time divided by the parallel time

Platform Comm #Processes
2 4 8

U1 S 82.64% 39.04% 16.85%
Ul A 91.63% 78.78% 61.00%
M2 S 103.51% 89.39% 66.29%
M2 A 113.21% 53.57% 27.78%
MX2 S 185.19% 111.11% 78.74%
MX2 A 183.33% 159.68% 128.57%
X47 S 159.35% 222.73% 41.88%
X47 A 155.28% 212.22% 137.41%

Table 7. Timing in seconds of the motorcycle driving, 1000
generations, average over 10 runs

Platform Comm #Processes
1 2 4 8

ul S 1969.3 6488.0 13308.1 32031.9
ul A 1969.3 11985.9 7140.5 42254.5
M2 S 1789.7 7459.4 8396.22 12882.0
M2 A 1789.7 4381.5 8058.3 5809.2
X2 S 12925 2922.7 9542.0 10301.3
X2 A 12925 1885.9 4215.0 12439.2
X4 S 2081.0 3054.7 5452.5 16955.7
X4 A 2081.0 5638.4 5156.4 13561.6

length, population size, and number of generations are ex-
actly the same as for the linear functions, except that we
only ran the GAs 10 times for this problem in each case,
due to the length of time required. Even thought 10 runs
may not seem like a large enough number, each of these
10 runs we report represents between 2 and 7 days of unin-
terrupted and exclusive computation time on each platform
and thus for the measuring of the speedup we consider them
sufficient.

Since the evaluation itself can take a variable amount
of time depending on how long the pilot lasts on the road
before a failure condition occurs, we thought that a normal-
ized measure for the time was necessary. For this purpose,
we also recorded the total number of times that the function
movewas called for the motorcycle simulation during the
evaluation. We can consider these calls to be basic opera-
tions because they require a uniform amount of time. Since
the function move is called repeatedly until either a crash
condition occurs, or until the vehicle finishes the tracls it
the number of such calls that introduces such variety in the
evaluation time. Thus, this measure tells us the number of
operations executed in every case.

Table 8 shows the number of such calls divided by
10* as an average over 10 runs. For measuring the fitness
obtained by each model, the platform is not important since
the same code is run each time and we can thus average the
results over 50 runs each for each parameter setting.

Based on Table 8, we can now compute a normalized
speedup by first dividing the execution time by the number
of moves. The results of this operation is shown in Table
9. Then Table 10 shows the speedup for this problem by
dividing this new timing measure for the sequential case
by its value for the parallel case. From Table 10 we can
see that the speedup achievement is lower for this prob-
lem than for the benchmark problems. This is due to the
non-uniformity of the fitness calculation. Thus, the fastes
process may need to wait for a long time for the lowest



Table 8. Total number of moves for the motorcycle driving,
divided by10*, average over 10 runs

Platform Comm #Processes
1 2 4 8

ul S 18678.0 4180.98 5849.64 11063.75
Ul A 18678.0 7080.79 5009.33 14515.89
M2 S 1881.98 6578.59 7344.52 13074.47
M2 A 1881.98 3732.11 7026.47 10269.06
X2 S 2063.64 5856.67 18086.01 19882.85
X2 A 2063.64 3993.16 8612.35 22640.54
X4 S 4051.34 7763.57 5942.87 14961.18
X4 A 4051.34 12176.10 5037.21 10394.82

Table 9. Normalized time: computational time is seconds

for 10* moves

#Processes
1 2 4 8

Platform Comm

Ul S 1.05 1.55 2.28 2.90
Ul A 1.05 1.69 1.43 291
M2 S 0.95 1.13 1.14 0.99
M2 A 0.95 1.17 1.15 0.57
X2 S 0.63 0.50 0.53 0.52
X2 A 0.63 0.47 0.49 0.55
X4 S 0.51 0.39 0.92 1.13
X4 A 0.51 0.46 1.02 1.30

one to finish its task. Using an asynchronous model only
improves the speedup for 8 processes on most platforms,
which is contrary to the behavior observed on the bench-
mark problems. This can be explained by the improvement
of the fitness achieved, since the better the pilot is, themor
time it will be driving on the track without crashing. Even
for this difficult problem, the parallel model makes good
use of the multiple cores.

Finally, we need to observe the average fitness
achieved after 1000 generation for all the problems to see
if the parallel model can perform as well as the sequential
one in terms of quality of solutions or even better. Table
11 shows these results for all three functions, as an aver-
age of all the experiments performed on the various plat-
forms presented in the timing tables. For the Rosenbrock
function smaller values are better, while for the two others
larger values are the goal.

We can see that the parallel model outperforms the se-
guential one in terms of fitness for two of the problems and

Table 10. Speedup for the motorcycle project computed as
the sequential normalized time divided by parallel time in
Table 9

Platform Comm #Processes
2 4 8

Ul S 67.94% 46.34% 36.41%
Ul A 62.28% 73.96% 36.22%
M2 S 83.87% 83.19% 96.52%
M2 A 81.00% 82.92% 168.10%
X2 S 125.51% 118.71% 120.89%
X2 A 132.61% 127.97% 114.00%
X4 S 130.55% 55.99% 45.32%
X4 A 110.92% 50.18% 39.37%

Table 11. Average fitness after 1000 generations

Platform #Processes

1 2 4 8
Rosenbrock S 0 0.01 0.025 0.0325
Rosenbrock A 0 0 0.025 0.0275

S 3082.36 3354.452 3369.104 3360.82
A 3082.36 3360.38 3418.352 3448.22
S 09392 0.9720 0.8578 0.8886
A 09392 0.9452 0.9684 0.9173

Deception
Deception
moto
moto

achieves the same performance for the Rosenbrock func-
tion in asynchronous mode with 2 processes.

For the most separable problem, the deceptive one, a
higher problem division leads consistently to higher perfo
mance. For the partially separable problem, the motorcycle
pilot configuration, a division into 2 processes is bettanth
the sequential model in both cases. A higher division of
the genotype doesn'’t always improve the performance fur-
ther for this problem, the best performance being achieved
with 2 processes and the synchronous model. For the asyn-
chronous model, the best performance is achieved with 4
processes. This is consistent with the fact that the pilot
is composed of 4 agents such that with 4 processes, each
of them is in charge of one agent. For the non separable
problem a division into 2 processes allows us to find the
optimal solution as well as the sequential algorithm does,
but a higher division is not recommended.

Overall these results suggest that the asynchronous
model is preferable to the synchronous one. The speedup
is better in most cases, which is due to the minimization
of the waiting time. There is an intuitive trade-off between



the fast processes being at a disadvantage because of the
template that represents an earlier version than their own
evolution, and the late processes benefitting from therfaste
processes in later generations. Our study indicates that in
the asynchronous model this trade-off is overall favorable
to the quality of the solution.

Significance TestingWe have performed a set of T-
Tests on the fithess obtained by the various approaches to
see if the parallel models performed significantly better
than the sequential ones.

The first sequence of tests consisted in comparing the
experiments based on the number of processes, each value
of this parameter against all the others, in the synchronous
mode and in the asynchronous mode separately. For the
two benchmark problems, the difference was almost uni-
formly significant with a confidence of over 95%, with the
following exceptions for the deceptive problem in synchro-
nized mode: 2 versus 4 processes, and 4 versus 8 processes,
and for 4 processes versus 8 in both synchronized and asyn-
chronized modes for the Rosenbrock function. For the mo-
torcycle problem most of the differences were not signifi-
cant, with the exception of the synchronized model, 1 pro-
cess versus 8, 2 versus 4, and 2 versus 8.

Another set of T-Tests were designed to determine if
the synchronized results were significantly different from
the asynchronized ones for each parameter settings. For the
deception problems, the difference was significant for 4 and
8 processes. For the Rosenbrock problem the difference
was significant for 2 processes only. For the motorcycle
problem the difference was not significant.

4.2 Influence of the Synchronization Period

The second set of experiments focuses on the aspect of the
number of generations between the synchronization and ex-
change phases and on how it influences the overall perfor-
mance. For this purpose we chose the Rosenbrock function
because it presents the highest degree of dependence of the
genes on each other for the fitness.

We have run these experiments with a synchroniza-
tion period taking several values from 1 to 1000. For this
set of experiments we have used the Mac OsX platform
with the Core 2 Duo processor.

Figure 4 shows the speedup obtained under various
settings of the parameter, where the legend indicates the
number of processes and the synchronization type (S for
synchronous, A for asynchronous). The speedup improves
a substantial amount when going from a period of 1 to one
of 5, and from 5 to 10, but after that the improvement slows
down. It is also interesting to note that for a high amount
of synchronization, the synchronous model is faster than
the asynchronous model for every value of the number of
processes, but with less synchronization, the asynchsonou
model eventually becomes faster.

Since the optimal solution has been found by the GA
in many cases for this problem, as a measure of fitness we
have used the percentage of runs in each case where the
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Figure 4. Speedup for the Rosenbrock function as a func-
tion of the exchange period

optimal solution was found. Figure 5 shows this parameter
plotted as a function of the synchronization period, where
we separated the plot by number of processes for a better
visual understanding.

This figure indicates that with 2 processes and a com-
munication period of 10 or 20, the asynchronous model
finds the optimal solution almost all of the 100 runs and can
match the performance of the sequential model. For most
of these runs, the asynchronous model performs better than
the synchronous model. We can also note that for a higher
number of processes, splitting each of the variablesnd
y themselves among the processes is not beneficial. This
suggests that in general, the number of processes should
not exceed the number of variables in the fithess function.

Overall, a synchronization period of 10 or 20 seems
to be the best choice. This is consistent with results that
were presented in [3] and in [11].

The fitness itself is only half of the story. A remark-
able thing about these experiments is that the number of
generations that are necessary to achieve a given perfor-
mance changes substantially from one setting to another.
Thus, Figure 6 shows this measure as a function of the
synchronization period. From this figure we can see that
even though the algorithm doesn't find the optimal solution
as frequently under the parallel models, the convergence is
much faster in general. This suggests that for harder prob-
lems for which an optimal solution is not known, as for ex-
ample, the motorcycle configuration problem, the parallel
model is likely to achieve a reasonable fithess value faster.

We have also performed some T-Tests comparing the
fithess achieved under each parameter setting and a given
value of the exchange period with the one achieved with the
same parameter setting and the next value of the exchange
period. Table 12 summarizes these results.
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Figure 6. The number of generations to achieve the fitness
as a function of the exchange period

5 Conclusions

In this paper we presented a shared memory parallel model
of genetic algorithms designed to take advantage of multi-
ple CPU cores in common current architectures. We have
tested our model with three sets of problems of various dif-
ficulty on four different platforms with several types of pro
cessors and operating systems. Each problem presents dif-
ferent separability properties.

The experimental results presented in Section 4 ex-
plore the performance of the parallel model on several lev-
els. First, in what concerns tlspeedupfor the benchmark
functions there is a clear improvement on the platforms
with multiple CPUs. A more modest but still noticeable

Table 12. T-Test for the significance of the fithess differ-
ence

Exchange Period Significant Not Significant
Sequential 1 2S,4SA, 8SA 2A

1 5 All

5 10 Al

10 20 2S 2A, 4SA, 8SA

20 50 2A,4S,8A  2S,4A,8S

50 100 2SA,4A,8S 4S,8A

100 1000 All

speedup can be observed as well for the more difficult prob-
lem of configuring the autonomous pilot. The best speedup
is around 185% on 2 CPU cores and around 223% on 4
CPU cores.

In terms of averagéitnessachieved in 1000 genera-
tions, for all test problems we can observe that the parallel
model outperforms the sequential model for a number of
processes less or equal to 4, which is also the maximum
number of available cores on our test platforms. A compar-
ison of the synchronized and asynchronized schemes shows
an improvement in speedup for the asynchronous model
without loss in performance.

Second, a set of experiments have shown that the syn-
chronization and communication period of 10 generations
that we have chosen is a nearly optimal choice of balancing
between the speedup and fithess performance.

The third observation from our paper relates to prob-
lem separability, and several conclusions can be drawn
about it. The speedup can be better improved for separable
problems. The fitness improvement is also more impressive
the more separable the problem is. A higher division of the
chromosome is also more beneficial the more separable the
problem is. With a division into 2 processes, though, an im-
provement can be observed for all the problems, even the
non-separable ones.

In conclusion, our model presents a valid approach to
taking advantage of the multi-core computing technologies
that are now widely available, even for non-separable prob-
lems. and a strict synchronization between the processes is
not a benefit in terms of performance.
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