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Abstract

Several studies on the variations of the crossover operator
have shown that each of them presents speci£c properties that
are interesting under particular circumstances. The advan-
tages of each operator over others are often contradictory and
the best operator depends on the problem being solved. This
paper is based on the assumption that a combination of sev-
eral crossover operators can take advantage of their respec-
tive qualities and power. Thus, we propose several combina-
tion models based on four crossover operators: the 1-point,
2-point, uniform and dissociated. We test the performance
of these models through an experimental approach using the
problem of the Hamiltonian circuit.

Introduction
The crossover operator is one of the most important and
powerful features of the genetic algorithms (GAs), and it has
been the object of interest for many researchers in the £eld
(Mao et al. 2002; Rana 1999; Suzuki & Iwasa 1999).

Holland (1975) and Goldberg (1989) have started the
study of the probabilistic properties of the crossover through
the schemata theorem. An interesting question that has
been risen is between crossover and mutation, which one
is more important for GAs (Mühlenbein & Schlierkamp-
Voosen 1995; Wu, Lindsay, & Riolo 1997). The general
conclusion is that mutation alone is not suf£cient for many
problems, and that the role of crossover is essential.

In a different direction, Booker (1987) and Spears (1990)
have used a second measure to evaluate the genetic opera-
tors : the exploratory power. They have shown that a highly
disruptive operator is also highly productive. As the exploit-
ing and the exploratory qualities are contradictory, each of
these features could become an advantage for some particu-
lar search £elds, and a disadvantage for others.

Some research has been made to combine several
crossover operators in the same application of the GA
(Hong, Kahng, & Moon 1995; Spears 1995), and our paper
follows similar ideas.

Generally, the number of options available for this oper-
ator is quite large. We can cite the nonuniform crossover
(Maini et al. 1994), the spontaneous crossover (Mayer
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1998), the selective crossover (Vekaria & Clack 1998).
Some of these crossover operators can show a better per-
formance on speci£c £tness landscapes, and be less able to
solve other problems.

Considering these issues, it is dif£cult to choose one op-
erator without prior experimenting for a given problem. The
classical approach is to test several forms on a limited num-
ber of cases, and to base the future use of the crossover on
them. The results obtained on a class of problems are in
general hard to extend to another class, as the shape of the
search space can be completely different. Thus, the choice
of the form of crossover is often a subjective one.

We are interested in the situation where a single crossover
operator must give good results for most of the problems to
study, which is often the case. We would like to obtain a
recombination model that shows a better performance than
any single crossover on all of the problems we consider, and
not only on some of them.

To achieve this goal, we present several models using not
one, but four crossover operators (1-point, 2-point, uniform
and dissociated) and combining them during the execution
of the GA. We expect at least some of these models to show
a better performance than each of the considered operators
on the test problems. We are testing these models on the
problem of the Hamiltonian circuit.

The next section introduces the general parameter set-
tings, the test functions, and the four basic types of crossover
that we have used for our experiment. The following section
de£nes and tests several combination models based on these
operators. The last section summarizes the entire experi-
ment.

Experiment Description
This section presents the test functions and the parameter
settings that we have used for the experiment.

Standard Functions Set This set contains ten functions
that are used by many researchers to test GAs and their pre-
cise equations can be found in (Whitley et al. 1996). Each
if them is a real function depending on 2 to 30 variables on
a given interval. The goal is to minimize each of these func-
tions, so lower £tness values are actually better ones. The
genetic representation is a concatenation of the variables oc-
curring in the functions. In our case we have use a discretiza-
tion of the variables using 10 binary genes for each of them.



The Hamiltonian Circuit Problem The second test func-
tion that we have chosen is the problem of the Hamiltonian
circuit.

Hamiltonian circuit (HC): Given an oriented graph, £nd
a circuit that passes once and only once through each ver-
tex. This problem is known to be NP-complete (Brassard &
Bratley 1994).

We have performed our experiments with 11 HC prob-
lems with graphs having from 50 to 150 vertices and from
246 to 3136 edges. The direct representation of a HC prob-
lem for the GAs is dif£cult. De Jong and Spears (1989) have
implemented a genetic representation using the transforma-
tion of an instance of HC into an instance of SAT, which is
easier to represent in a genetic form.

A detailed description of the reduction of a HC instance
into a SAT instance can be found in (Brassard & Bratley
1994) or (Vrajitoru 1999). For any given graph, a Boolean
variable corresponds to each arch, and is given the true value
if the arch belongs to the circuit. The SAT expression sum-
marizes the fact that, for each vertex, one and only one of
the entering edges and of the exiting edges must belong to
the circuit.

For example, let us consider the graph in Figure 1. The
conversion of the HC instance for this graph into a SAT in-
stance would result in Equation 1, in which a Boolean vari-
able with the same name as edge is true if the edge belongs
to the Hamiltonian circuit. The symbols ’⊗’ and ’∧’ repre-
sent the Boolean ’xor’ and ’and’ operators.

Figure 1: The graph for which Equation 1 represents the
instance of SAT corresponding to its HC instance

out (AC ⊗AD) ∧BE ∧ (CB ⊗ CD)∧
∧DB ∧ (EA⊗ EC)∧

in EA ∧ (CB ⊗DB) ∧ (AC ⊗ EC)∧
∧(AD ⊗AD) ∧BE

(1)

The £tness function for the HC problems is based on a
fuzzy logic interpretation of the logical expression derived
from the graph. Thus, each individual represents an assign-
ment of truth values to each of the variables composing the
logical expression. The logical and operator is interpreted
as the average value of the operands, while the logical or
operator is interpreted as the maximum of the values of the
operands. If an individual represents a perfect Hamiltonian
circuit, then its £tness will be 1.

The questions that we ask based on this problem are the
following. First, can the combination of several crossover

operators perform better than each of them individually?
And second, how does the algorithm react to the problem
scaling, especially when going from small problems to big
problems?

Parameter Settings
Since we are studying the crossover operator, we have per-
formed 50 runs of the GA for each problem with a crossover
rate of 1 and a mutation rate of 0.0005. Previous tests have
determined that this is a good setting for both our test prob-
lems. For each of the 50 trials, we generate one initial pop-
ulation and run the GA starting from it separately for each
operator or combination model. This way, each of the oper-
ators has the same chance to £nd the optimal individual.

Each generation contains 100 individuals and the number
of generations is limited to 1000. We have used the £tness
proportionate selection (Goldberg 1989), and the monotone
reproduction (Vrajitoru 1999). Our performance measure
is the average of the best £tness value achieved in the last
generation.

Crossover Operators
Among the existing variations and forms, we have chosen
four crossover operators of comparable behavior: the 1-
point, 2-point, uniform with a swap probability of 0.5, and
dissociated crossover.

The 1-point crossover has little exploratory power, but can
better exploit the knowledge contained in the initial popula-
tion. On the contrary, the n-point crossover (n >> 1) is
highly exploratory and is recommended when the popula-
tion size is small. The uniform crossover has a great ex-
ploratory power, which can be controlled by the value of
the swap probability. This operator has shown good perfor-
mance even with a high exchange rate (Syswerda 1989).

The dissociated crossover has been introduced in (Vraji-
toru 1999). We have used a variation on its original form
that splits each parent in two at a different cross site, and
swaps the resulting right hand sides of the parents by ap-
plying the logical ’or’ operator on the overlapping portions
for one child, and logical ’and’ operator for the other child.
More precisely, if par1,2 are the parents in the crossover op-
eration, csite1,2 are two cross sites, then the children indi-
viduals are de£ned by the following equation in which the
symbols ∨ and ∧ represent the logical operators “or” and
“and” respectively:

child1(i) =

{

par1(i), i ≤ csite1

par1(i) ∨ par2(i), csite1 < i ≤ csite2

par2(i), csite2 < i

child2(i) =

{

par2(i), i ≤ csite1

par1(i) ∧ par2(i), csite1 < i ≤ csite2

par1(i), csite2 < i
(2)

Figure 2 illustrates the way the dissociated crossover
builds the children, as speci£ed in Equation 2. This formu-
lation is different from the original one presented in (Vra-
jitoru 1999) concerning the operator applied to the overlap-



Figure 2: The dissociated crossover

ping part of the parents for the second child. We have ex-
perimented with various formulations and the ’and’ operator
seems to be the best one.

Before starting to combine the crossover operators, it is
interesting to know how well each of them performs on the
problems we have chosen. Tables 1 and 2 present the av-
erage over the 50 trials of the best performance in the last
generation for each operator for the set of standard functions
and for the HC problem respectively. The highest possible
£tness in our case is 1, which would be achieved in the case
of the optimal individual. The £rst column represents the
graph itself, labeled by the number of vertices. The last col-
umn indicates the operator presenting the best performance
for that graph.

Table 1: Average £tness of the crossover operators on the
standard functions set (minimization problems)

# F 1-point 2-point Uniform Dissociated Best

F1 0.066 0.044 0.344 0.383 uniform

F2 0.414 0.516 0.840 0.734 1-point

F3 12.22 12.34 12.12 10.44 dissoc.

F4 0.981 0.788 1.104 1.526 2-points

F5 5.206 8.175 4.596 5.949 uniform

F6 2.414 2.615 3.916 3.483 1-point

F7 608.37 614.82 670.62 708.84 1-point

F8 1.707 1.501 2.978 3.941 2-points

F9 0.197 0.184 0.243 0.196 2-points

F10 1.887 1.687 2.188 2.527 2-points

From these tables we see that the dissociated crossover
presents the best performance on more than half of the prob-
lems, especially for the large graphs, and is followed by the
2-point crossover. However, the difference between the per-
formance of these operators is not always visible because we
only show the £rst 3 digits of the average £tness. Given the
diversity in the results, we can deduce that, in general, we
cannot predict with great accuracy that one of the operators
will perform better than the others on a new problem.

Combining Crossover Operators
In this section we present several combination models for
crossover operators and compare them with single crossover

Table 2: Average £tness the crossover operators on the HC
problem (£tness maximum of 1)

Graph 1-point 2-point Uniform Dissociated Best

HC50 0.977 0.979 0.978 0.979 dissoc.

HC60 0.981 0.982 0.984 0.985 dissoc.

HC70 0.977 0.980 0.983 0.986 dissoc.

HC80 0.968 0.972 0.981 0.981 dissoc.

HC90 0.953 0.960 0.973 0.976 dissoc.

HC100 0.936 0.944 0.964 0.973 dissoc.

HC110 0.911 0.923 0.950 0.971 dissoc.

HC120 0.889 0.902 0.936 0.971 dissoc.

HC130 0.873 0.887 0.924 0.969 dissoc.

HC140 0.854 0.867 0.911 0.970 dissoc.

HC150 0.793 0.808 0.859 0.973 dissoc.

operators.
The attempts to combine crossover operators have been

far less numerous than the developed forms of crossover.
Schaffer and Morishima (1987) proposed a crossover
scheme based on the n-point crossover where the number
and position of the crossover sites where self-adapting over
the GA run. Following the adaptation idea, Spears (1995)
has developed a model combining the 2-point and uniform
crossover, where the proportion between the two is also
evolved by the GA. Finally, Hong et al. (1995) propose
several adaptive combination strategies based on traditional,
cycle, and geographic crossover. In all the cases, using
more than one crossover seems to outperform each single
crossover.

The three cited approaches use strategies that imply the
use of several operators within the construction of each gen-
eration. We propose three new models, the £rst two apply-
ing several forms of crossover to build every new genera-
tion (intra-generation models). In the third model, a sin-
gle crossover is used in each generation, and this operator
changes after several generations (extra-generation model).

Model Description
Intra-generation schemes. The £rst combination model
we propose aims to use several forms of crossover for build-
ing each generation. In general, for each crossover opera-
tion, the method chooses one of the four operators presented
in the previous section by a random function following two
schemes.

The £rst model, called balanced combination, gives each
operator a probability to be selected of 0.25, which means
that each operator has equal chances to be employed.

The second model we propose, named adaptive, starts the
exact same way as the balanced one, by giving each of the
four operators an equal chance to be selected. The probabil-
ities associated with the basic operators are modi£ed after
completing each generation the following way:



• When the population is too heterogeneous, or when the
change in the £tness value is too dramatic from one gen-
eration to the next, we increase the probability associated
with the conservative operators, which are the 1-point and
the 2-point crossover.

• When the population is too homogeneous, or when the
change in £tness from the previous generation is too
small, we increase the probability associated with the
more exploratory operators, which are the uniform and
the dissociated crossover.

• Otherwise we may modify all of the probabilities by a
small random amount.

Extra-generation Schemes. The third combination
model uses a single crossover operator during a certain
number of generations, then switches to another. The
passage from one operator to the next is accomplished in
a round-robin fashion, with the step equal to 50 or 100
generations. We have denoted these strategies by RR50 and
RR100.

For the moment, all the experiments start with the 1-point
operator, followed in order by the 2-point, then by the uni-
form, and £nally by the dissociated crossover, and restarting
the cycle if needed. The experiment can be extended to see
whether the order and the starting point in the cycle are of
any importance.

Experimental Results
We still expect the best crossover operator for each prob-
lem to be better that the combined models. In the situation
we considered, the crossover form has to perform well on
several different problems, and not only on a particular one.
Thus, we are interested in comparing the combined mod-
els with the crossover operator that has shown the best gen-
eral performance (see Table 2) for each individual problem.
The last column marks the combination scheme that has pre-
sented the best performance so that it can be compared to the
best single operator.

From this table, we can notice that the balanced combina-
tion method shows a better performance than the best single
operator in most of the cases, except for the last 2 prob-
lems where the difference between them is very small. We
believe that this scheme proves to be better than the other
in most cases because it is the one taking advantage of the
strength of each operator for every generation. When the
population becomes more homogeneous in the later genera-
tions, the probability to spawn a better individual with this
method is about equal to the maximum probability consider-
ing each operator separately. There is no signi£cant differ-
ence between the other combining methods, although they
are in general better than most individual operators.

Next, we have thought interesting to observe the evolu-
tion of the best £tness through generations. Thus, Figure 3
shows the average performance for the 2-point, dissociated,
combined balanced, and combined adaptive operators dur-
ing the £rst 500 generations for the HC50 problem.

Table 3: Average £tness of the combined models, standard
functions set (minimization problems)

# F Balanced Adaptive RR5 RR10 Best

F1 0.066 0.044 0.024 0.025 2-point

F2 0.523 0.361 0.473 0.393 2-point

F3 10.4 11.74 10.6 10.92 dissoc.

F4 0.555 0.272 0.538 0.373 dissoc.

F5 1.581 2.409 2.39 2.985 balanced

F6 1.978 1.374 2.133 1.546 adaptive

F7 607.547 504.569 537.98 521.3 adaptive

F8 1.119 0.664 0.808 0.634 2-point

F9 0.165 0.139 0.154 0.156 2-point

F10 1.453 1.062 1.438 1.269 2-point

Table 4: Average £tness of the combined models, HC prob-
lems (£tness maximum of 1)

Graph Balanced Adaptive RR5 RR10 Best

HC50 0.981 0.980 0.980 0.980 balanced

HC60 0.987 0.984 0.987 0.986 RR5

HC70 0.990 0.986 0.990 0.988 RR5

HC80 0.990 0.983 0.989 0.990 balanced

HC90 0.989 0.974 0.988 0.986 balanced

HC100 0.985 0.962 0.985 0.983 balanced

HC110 0.980 0.944 0.980 0.979 RR5

HC120 0.978 0.927 0.978 0.976 RR5

HC130 0.976 0.915 0.976 0.975 RR5

HC140 0.974 0.897 0.975 0.974 RR5

HC150 0.975 0.839 0.975 0.973 dissoc.

Figure 3: Average performance in 500 generations, HC50
graph



Table 5: Best £tness of 50 runs for the best combined
method and the best single operator, HC problems (£tness
maximum of 1)

Graph Best single operator Best combined method

HC50 0.995 (2-point) 0.991 (adaptive)

HC60 0.995 (dissoc.) 0.995 (RR10)

HC70 0.996 (dissoc.) 0.996 (RR5)

HC80 0.994 (uniform) 0.996 (balanced)

HC90 0.991 (uniform) 0.993 (RR5)

HC100 0.987 (uniform) 0.990 (RR5)

HC110 0.982 (dissoc.) 0.985 (balanced)

HC120 0.979 (dissoc.) 0.982 (RR5)

HC130 0.978 (dissoc.) 0.981 (RR5)

HC140 0.978 (dissoc.) 0.979 (RR5)

HC150 0.978 (dissoc.) 0.979 (RR5)

The Quality of the Solutions

For a different view of the quality of the solutions achieved
by each method, we have searched for the best solution ob-
tained in any of the 50 trials. Table 5 show the best solution
found by a single crossover operator and by the best com-
bined method for each problem. We can notice that the best
solution found by the balanced scheme is in general better
than the best solution obtained by any single operator, no
matter which one it is.

The last experiment we have performed was intended to
study the in¤uence of the mutation rate on the quality of
the results for the various crossover operator and combining
methods. Thus, we have plotted the average performance
(£tness of the best individual) of the best single operator
(dissociated), the best combined method (balanced), and the
uniform crossover for a set of experiments without mutation
and another set with a high mutation rate.

Figures 4 and 5 show these new results in 1000 genera-
tions with a mutation rate of 0.0 and of 0.01. The x axis rep-
resents the number of vertices in the graph. The size of the
individual actually depends on the number of edges, which
is signi£cantly larger than the number of vertices.

It is interesting to notice that the difference between the
performance of the dissociated crossover and the other sin-
gle operators increases with the problem size. In these ex-
periments, the dissociated crossover is showing a better per-
formance than the others and the difference increases with
the graph size. Still, the performance of the combined bal-
anced model is much closer to the dissociated crossover than
the uniform operator.

The three models show a better performance without mu-
tation rather than with a mutation rate of 0.01, which sug-
gests that this mutation rate is too high for this class of prob-
lems. The mutation rate of 0.0005 that we have used before
is a much better choice.

Figure 4: Average performance on HC problems without
mutation

Figure 5: Average performance on HC problems with a mu-
tation rate of 0.01



Conclusions
This paper has presented several combination methods for
the crossover operator in an attempt to take advantage of
the strength of each individual operator and produce better
solutions to the problem in a more consistent way.

In the second section we have compared the four basic
crossover operators, which are the 1-point, 2-point, uniform,
and dissociated. The £rst experiments presented in Table 2
have shown that the best operator can be different from one
problem to another.

In the third section we have de£ned several models com-
bining the four crossover operators and we have tested their
performance against the best single operator using the same
test problems. The results from Table 4 show that a com-
bined model can be consistently better than any of the single
crossover operators. Further tests have con£rmed that the
combined balanced model, that chooses between the four
operators in a random fashion with equal probabilities for
each of them, is also capable of generating solutions that are
closer to the optimal one.

We can conclude that a model combining the power of
several crossover operators is a more robust choice and can
£nd better solutions under various circumstances..
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