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Abstract

In this paper we present an application of genetic algorithms to an autonomous pilot designed for
motorized single-track vehicles (motorcycles). The pilotis implemented as a multi-agent application
using a physical model of the motorcycle and is embedded in aninteractive application. We compare
the performance of the configuration obtained by genetic algorithms with the manual configuration of
the pilot and with the performance of human players.

The main contribution of the paper is proposing a model for piloting a single-track vehicle based
only on perceptual information such as it would be observed by a human in the case of a real vehicle,
and showing how the genetic algorithms can contribute efficiently to configuring the autonomous pilot.

Key Words
Genetic algorithms, multi-agents, autonomous pilot.

1



1 Introduction

Single track vehicles (STV) present somewhat different challenges than double-track vehicles like cars
because their balance is not automatically achieved by the disposition of the wheels, but is a dynamic
result of their motion. The input from the rider also comprises an additional component as the centrifuge
force can be used to change direction.

The paper contains two main contributions: first, showing how a single-track vehicle can be driven
on a road based on perceptual information in the absence of a specified path, and second, showing how
the genetic algorithms can be used to configure the autonomous pilot faster and more efficiently than
manually.

The autonomous pilots are an important aspect of developingthe vehicles of the future and they
represent an interesting challenge for intelligent control applications as well as for traffic control [12, 18].
This project starts from a simulation of a vehicle with a multi-agent autonomous pilot using perceptual
information. The application aims to control the vehicle ina non-deterministic way inspired from the
behavior of a human driver and using similar perceptual information to make decisions.

This paper presents an application of genetic algorithms toconfiguring an autonomous pilot for
STVs. The pilot, introduced in [20], is implemented as a multi-agent model using perceptual information.
Previously, the pilot was configured manually by trial and error, method that achieved a reasonably good
performance, but was imprecise and time-consuming. The current research aims to improve the process,
making it faster and with a better performance. We believe that the genetic algorithms are a good choice
for this problem since we are faced with an optimization on multiple variables that is difficult to achieve
by hill-climbing.

The genetic algorithms (GAs) [10, 9] as well as other evolutionary approaches, are a frequent choice
for optimization problems with many applications. They have been successfully applied to related areas
such as path-find for robots [3, 19], scheduling [2], and behavior development [13]. Several approaches
have applied multi-agent models to the simulation of autonomous drivers [15] and our application follows
similar ideas.

Most of the research on autonomous pilots is directed towardpiloting aircrafts [14, 16, 1, 6], and cars
[17]. Our approach targets motorcycles which have not been studied yet as extensively as the other types
of vehicles and which represent a more challenging modelingproblem.

Many of the autonomous pilot simulations, as for example, [4], propose an approach to driving a
vehicle based on an outline of the direction of movement thatthe pilot must follow. While this approach
is valid in a simulated environment, a system capable of driving a real vehicle would have to deal with
situations where the precise path is not known. In this paperwe present an approach where the shape of
the road is not known, but must be inferred from perceptual cues that the pilot senses while driving the
vehicle. Some similar studies exist for robots that move in an environment while trying to avoid obstacles
and aim to reach a given target. Our model is different from those in general settings of the problem,
which consist in driving a vehicle within a given road, following the general forward direction on this road
without a given path or sequence of precise points to reach. We aim to simulate a real environment where
a vehicle must be driven along a track based only on the information that can be obtained from visual
sensors.

The autonomous pilot is a multi-agent probabilistic application where each agent is an independent
process acting on one of the control units of the vehicle, as for example, the gas, the brakes, the handlebars,
or the steering wheel. The agents use some information aboutthe current status of the vehicle to make
a decision about an action to be taken on their respective control units. This information includes both
status data, like the current speed, and perceptual data, like the visible distance on the road in the direction
of movement, the lateral distance to the border of the road, and the current slope. The performance of the



automatic pilot is compared with the performance of a trained human.
The paper is structured the following way. Section 2 describes the physical model and the equations

that we have used for our simulation. Section 3 introduces our multi-agent automatic pilot. Section 5
presents the details of the application of genetic algorithms to this problem and the experimental results of
this method. The paper ends with some conclusions.

2 Physical Model of the Single-Track Vehicle

In this section we introduce the physical model of a single-track motorized vehicle, as for example a
motorcycle, and the equations of motion we used to implementthe interactive application.

2.1 The Vehicle Control and Degrees of Freedom

A motorized STV, as for example, a motorcycle, can be modeledas a system composed of several elements
with various degrees of freedom that can be driven through several control units. Figure 1 shows the
components of the physical model of a motorcycle, whereb is the distance between the wheels.

Figure 1. A motorcycle with control units and degrees of freedom: 1 - wheels, 2 - handlebar, 3 - saddle, 4
- chain, 5 - brakes, 6 - engine, 7 - steering, 8 - leaning, 9 - suspension, 10 - wheel spin, 11 - contact line

An STV is a non-holonomic dynamic system with six degrees of freedom: the rotation of the wheels
around an axis parallel toOz, the rotation of the handlebar and of the front wheel around the fork axis
(steering), the front and back translation along the suspension axis, and the rotation of the whole vehicle
around theOx axis in a system of coordinates relative to the motorcycle where the origin is in the center
of the vehicle, on the ground level.

The driver can control the vehicle through five inputs: the handlebar steering, leaning the vehicle
laterally, the throttle, and the two brakes, front and back.

The state of the STV is described at any moment by the current position of the vehicle’s center on the
road, and by the current direction of movement which can be described either as a vector or as an angle in
the(x, z) plane plus a slope, in general determined by the road. The model must also include the state of
each unit of the STV with a degree of freedom and the current action of the driver on each of the control
units. These two components are in general defined relatively to the STV’s internal system of reference.

Various aspects of the physical model of the bicycle have been studied before. The closest model to
our purposes is [7] which considers a bicycle as a nonlinear,nonholonomic, non-minimum phase system.



The stability and control of a bicycle are also of interest [11], [8], as well as the study of its aerodynamics
[5].

2.2 STV Motion and Control

The STV is modeled as a reduced state system of continuous variables. The generalized coordinates of
the vehicle at a particular moment are given by

q = (s, α, θ)T (1)

wheres(t) = (x(t), z(t)) represents thespatial positionof the STV,θ is theorientation angledetermining
thedirection of movementd = (cos θ, sin θ), andα the leaning angle. Let φ be thesteering angle. Since
our STV is based on a motorcycle and not on a bicycle, we have imposed the constraint that−π/3 ≤ φ ≤
π/3. Figure 2 illustrates these angles and coordinates.

The vertical component of boths andd is determined by the road altitude and slope given the spatial
position and orientation of the vehicle. In this paper we consider the road to be close enough to the sea
level such that the gravitational acceleration is the constantg and the altitude of the vehicle does not really
influence its motion. Letσ(s, d) be the angle made by the contact line of the vehicle with the(x, z) plane,
depending on its position and orientation.

Figure 2. STV coordinate system: 1 - wheels, 2 - handlebar

The driver’s input into the system is defined by the tupleu = (τ, βf , βr, φ, α) whereτ is an acceler-
ation component along the moving directiond andβf , βr represent the front and rear brakes respectively.

The nonholonomic constraints can be expressed by the following, whereb is the distance between
the two contact points of the wheels on the ground:

−x′ sin θ + z′ cos θ = 0 (2)

b cos φ θ′ − sin(φ + θ)x′ + cos(φ + θ)z′ = 0 (3)

Equation 2 expresses the fact that the STV moves in the direction of the vectord. Equation 3 allows
us to compute the change in orientation due to steering. Bothequations are adapted from [7].

In particular, if−π/2 < φ < π/2, we can compute the change in the orientation angle due to steering
as

∆θ =
sin(φ + θ)∆x − cos(φ + θ)∆z

b cos φ
(4)

Let v = s′ be the momentary speed or velocity in the direction of movement, anda = v′ = s′′ the
momentary acceleration in the direction of movement. We consider the motion of the vehicle defined by



Newtonian mechanics. The position and velocity of the vehicle at t + ∆t are defined bys(t + ∆t) =
s(t) + ∆s, v(t + ∆t) = v(t) + ∆v where:

∆s = d

(

v · ∆t + a
∆t2

2

)

, ∆v = a · ∆t (5)

In our case, the acceleration is defined by the gravity, the friction, the drag, and the throttle. The
brakes do not act as a simple negative acceleration, but their input contributes to the drag and friction
forces slowing the vehicle down.

To compute the drag force, a drag coefficient due to the brakesis added to the air resistance which is
rather small, and to the engine brake which prevents the speed of the vehicle from increasing indefinitely.
The resulting drag coefficientD is given by the following equation:

D = ka + kd(Bf + Br) + ke (6)

whereBf and Br represent the brakes input,ka is the air resistance,kd is the drag coefficient of the
brakes, andke is a coefficient due to the engine brake. These forces cause the speed of the vehicle to
become constant after a while for any given throttle inputτ , and also cause the vehicle to eventually stop
when no throttle input is provided anymore. Together with the friction force, they will prevent a resting
motorcycle from going downhill if the slopeσ is not null, and also prevent the speed from increasing
indefinitely due to a gravitation in the direction of movement when the vehicle is going downhill.

The resulting acceleration is defined by

a = τ + g sin σ − k g cos σ − kb(Bf + Br) − Dv2 (7)

whereg = 9.8 m/s2 is the gravitational acceleration at sea level,k is the coefficient of friction, andkb is
a coefficient of friction for the brakes.

The latest model of the motorcycle improved from [20], implements an additional change in the
direction of movement due to leaning that is equally available for the human player, together with fail-safe
conditions that can cause the vehicle to crash if they are notmet, as for example, leaning too far for the
current velocity.

2.3 Leaning

We can define the leaning problem the following way: given theleaning angleα and the speedv, what is
the radius of the circle on which the STV rotates around Oy?

The first force that we are going to consider that affects the change in direction of the vehicle due to
leaning is thecentrifuge force, illustrated by Figure 3 and defined by

Fc = m ω2 r (8)

whereω is the angular speed, andr is the radius of the circle on which the object is turning. Ifv is the
horizontal speed, then we can define the angular speed asω = v/r, so the centrifuge force is equal to

Fc = m
v2

r
(9)

A second force that interacts with the vehicle in the lateralmovement is the lift due to the friction
with the air. We can adapt an equation taken from airplane wing simulation that computes thelifting force
FL as
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Figure 3. The forces and quantities involved in leaning

FL =
1

2
ρv2SrefCL (10)

In this equationρ is the air density, that we can consider to be approximatelyρ = 1.22145kg/m3 at
0 altitude.Sref is the reference area, the horizontal projection of the vehicle surface.

The last component of the lateral movement is the gravitational force itself, which has a norm equal
to g m. From this force, we subtract the lifting force first. Starting from the same angleα, the resulting
gravitation force, which is vertical, is decomposed in a force along the vertical axis of the motorcycle and
another one that is normal to the motorcycle. The rotation will be determined by the component that is
perpendicular to the motorcycle axis. This component, thatwe callcentral gravitationand denote byGc,
is given by

Gc = (g m − FL) sin α (11)

By imposing the condition that the central gravitational force should be equal to the centrifuge force,
we can compute the rotation radiusr:

r =
m v2

(g m − FL) sin α
(12)

3 The Autonomous Pilot

In this section we present the ideas that we used to implementthe autonomous pilot for our motorcycle.
Our autonomous pilot is composed of several agents for the various control units of the vehicle.

We chose a multi-agent model because it allows us to define theequations and parameters for each of
the control units independently. Combining them into a single pilot would introduce an unnecessary
complication in the equations and would render the configuration process more difficult.

Each of the agents composing the pilot acts independently inadjusting their respective control units.
They are implemented as fuzzy controllers, the precise equations for each of them being specified further
down in this section. For each of them, a series of conditionsfor action are specified, a particular course
of action being prescribed in each case. The resulting action taken by the agent is obtained by balancing
or averaging on the actions resulting from each condition.

A small part of the communication between the agents is achieved througheventsthat they generate,
such as the update event being generated by the alert agent. The most part of the communication is



implicit, through the changes generated to the state of the system andthrough the internal and external
perceptual cues. For example, if the brake agent takes action in one state of the system to reduce the
speed, a slower velocity in the next frame will cause the gas agent not to decrease the gas to adjust to a
higher turn in the road. Our model is similar to an ant colony in this respect, where the individual ants
do not communicate explicitly, but implicitly through the changes made to their environment, namely the
presence of pheromones.

3.1 Perceptual Information

The autonomous pilot is using perceptual information to make decisions about the vehicle driving. This
information is inspired from the perceptual cues that a human driver would also be paying attention to
while driving a vehicle.

In our application, the pilot is aware of the following measures:
Thevisible front distance, denoted byfront, defined as the distance to the border of the road from

the current position in the direction of movement, scaled bythe length of the vehicle. This distance is
a measure of how much of the road is visible ahead and also of how straight the road is in front of the
vehicle. We will also mention this as thehorizon.

The front probes, denoted byfrontl andfrontr, are defined as the distances to the border of the
road from the current position of the vehicle in directions rotated left and right by a small angle from the
direction of movement. They give the pilot an indication as to which way from the direction of movement
the front distance would become larger, which can be used to turn that way.

The lateral distances, denoted byleftd andrightd, are measures of the lateral distance from the
vehicle to the border of the road, at a short distance in front, simulating what the pilot might be aware of
without turning their head to look. In our computations we use latn = | leftd−rightd

max(leftd,rightd)
|, the normalized

difference between the lateral distances. A high value of this measure indicates a turn in the road, or that
the vehicle is close to the border. A value close to 0 indicates that the vehicle is in the middle of the road.

Theslope, is a perceptual version ofσ, discretized to simulate the intuitive notion of road inclination
that a human driver would have, approximated by the fuzzy values almost flat, slightly inclined up or
down, or highly inclined up or down. This simulates the fact that a human pilot is not aware of the precise
value ofσ.

Figure 4 shows an example of the geometrical definition of these measures.

Figure 4. Perceptual information used by the autonomous pilot

Beside the perceptual information, the autonomous pilot uses the current status of the motorcycle to
make decisions about the action to be taken on each of the control units of the vehicle. The status includes
measures like thev, τ , Bf , Br, φ.



3.2 Control Units

The motorcycle is driven by several control units (CUs). Each of them is controlled by an independent
agent with a probabilistic behavior. The agents are not active during the computation of each new frame
simulating the evolution of the vehicle on the road, but onlyonce in a while in a non-deterministic manner.
This simulates the behavior or a human driver that may not be able to respond instantly to the road situation
and allows for a certain reaction time.

The current control units focus on the gas (throttle), the brakes, the handlebar/leaning. Each of these
CUs is independently adjusted by an agent whose behavior is intended to drive the motorcycle safely in
the middle of the road at a speed close to a given limit. In our case, the agents controlling the throttle and
the handlebar are in general more active than the agent controlling the brakes.

The next paragraphs introduce the equations used by each of our agents to make a decision and to
perform an action. The equations comprise a fair number of coefficients and thresholds. The configuration
of each agent uses independent values for the coefficients.

The Throttle. This agent controls the amount of gas supplied to the engine and influences the
acceleration that the vehicle is submitted to.

The input for this agent is represented by(v, front, leftd, rightd, slope). The agent uses a minimal
speed thresholdvlow, a maximal speed threshold over which the speed is considered unsafe, and the given
speed limitvlimit. The agent aims to keep the vehicle speed abovevlow and below the maximal one, and
also close to thevlimit.

The agent detects a turn in the road by testinglatn and eventually decreasesτ to allow for a safe
turn. A similar rule is applied to the visible distance in front of the driver: a low value forfront indicates
an unsafe road situation requiring a reducedτ . In any other situation it attempts to keep the speed close to
vlimit.

Equation 13 represents the conditions under whichτ should be decreased, causing the vehicle to
slow down. If the condition bellow i not fulfilled,τ is given an appropriate value to keep the speed close
to the limit.

v > vlow ∧

(v > vlimit ∨ trlat > latn ∨ trfr > front) (13)

Equation 14 illustrates the change in throttle performed bythe agent, wherecincv, cdecv, andcsl are
configurable coefficients. The actual amount of the change isa probabilistic quantity equally distributed
in a small neighborhood around the computed value, to account for the human imperfection.

∆τ = cincv(front − thrfr)(v − vlow)+

cdecv ((v − vlimit) + trlat + trfr) + csl · slope (14)

The Brakes.The agent controlling the brakes presents a similar behavior to the throttle agent because
the rules according to which the speed should decrease are ofgeneral purpose. The equations of this agent
are simpler because the brakes can only decrease the speed and not increase it. The speed is only decreased
when a more drastic change is necessary than we can assume will be achieved only by decreasingτ .

Equation 13 is also used to determine when to apply a force on the brakes, but the coefficientscincv,
cdecv, andcsl can have different values for this agent. The change in either Br or Bf is based on the
following equation.

∆Br,f = cdecv ((v − vlimit) + trlat + trfr) − csl · slope (15)

The Steering / Leaning Agent.The motorcycle can achieve a change in direction either by steering
using the handlebar, or by leaning. The autonomous pilot hasbeen tested under three conditions: when



the motorcycle is driven entirely by steering, when the motorcycle is driven entirely by leaning, and a
combined strategy, consisting of steering at low speed (bellow a threshold) and leaning at a speed above
the threshold. This emulates the general strategy employedby human drivers.

The agent controlling the handlebar and leaning of the motorcycle is the one with the most complex
behavior. This agent is also using the lateral distances to the border of the road, as well as the front
probesfrontl andfrontr, to make decisions about turning left or right. The agent turns the vehicle in the
direction of the longer distance between the left and right,getting away from the closest border.

The agent first considers the immediate distance to either side, given by the lateral distances. Thus,
if the vehicle is not situated within a given percentage (like 20%) of the center of the road, then the agent
moves the vehicle towards the center.

If the first measure (lateral distances) does not provide a condition for the vehicle to turn, the agent
estimates the distance forward to the horizon. Based on the front probes and the front distance, the agent
moves towards the center of the horizon (given by the front probes). The handlebar and leaning angles
depend on the distance to the horizon, a bigger change being required if the horizon is closer.

The agent starts by making a decision whether to use the lateral distances as reference or the front
probes. Let us denote byproben the normalized difference between the front left and right probes as shown
in Equation 16 and byprobeabs = |proben| the absolute value of this quantity.

proben =
frontl − frontd

max(frontld, frontd)
(16)

Let us denote bylatdiff the quantity used by the agent to decide if it must turn and in which direction,
computed according to the following equation.

latdiff =































latn if latn > thr1 and
frontd > thr2

latn+proben

2
if latn > thr3 and

frontd > thr4

proben otherwise

(17)

wherethri, i = 1, 4 are configurable coefficients.
The amount of the angle change depends on the measurelatdiff and on the speed. Thus, if the speed

of the motorcycle is lower, the turning angle must be higher to achieve a given change in direction. If
the vehicle moves at a higher speed, smaller angle changes are necessary to obtain the same change in
direction, both by the handlebar angle or by using the leaning angle.

The agent will update the handlebar angle or the leaning angle if the condition expressed in Equa-
tion 18 is fulfilled. This means that a change is necessary either if the lateral difference measure is greater
than the thresholdthrlat (the vehicle is off-center), or if the distance in the direction of movement to the
border of the road is smaller than another threshold,thrfront, meaning that the vehicle might get off the
road soon if it continues in the current direction.

|latdiff | > thrlat or front < thrfr (18)

If we denote by∆φ = φ(t + ∆t) − φ(t), then the general rule for modifying the orientation of the
handlebar is shown in Equation 19, but the actual amount of the change is a probabilistic quantity equally
distributed in a small neighborhood around the computed value.

∆φ = chbar

(

latdiff +
thrfr − front

thrfr

)

(19)



The change in the leaning angle is computed based on a similarequation as for∆φ, but the coeffi-
cients can be configured independently.

Alerting Agent. Beside all the agents that are in direct control of the motorcycle, the pilot comprises
a fourth agent that does not perform any action on the vehicle. While the other agents are active only
occasionally, this agent is probing the vehicle and road conditions for every new frame and is capable
of activating one of the other agents if the situation requires special attention. Thus, if the speed of the
vehicle is either too high or too low, if the visible front distance is too short, or if the difference between
the left and right lateral distances is too high, this agent considers the situation to be exceptional, meaning
unsafe, and generates an alert event that will randomly activate one of the agents that can take action on
the motorcycle and correct the issue.

Equation 20 describes the condition under which the alerting agent generates an update event that
triggers one of the other agents. The alerting agent does notdecide which other agent will perform the
necessary action.

v < cvlowvlimit ∨ v > cvhighvlimit ∨

latabs < thrlat ∨ front < thrfr (20)

4 Implementation

The program is implemented in C++ using OpenGL. The source code with compilation instructions is
available in the software section of the web site of the Intelligent Systems Laboratory of Indiana University
South Bend.http://www.cs.iusb.edu/∼isl/ The project is composed of four parts:

• the graphics engine,

• the physics engine of the motorcycle,

• the autonomous pilot,

• the user interface.

Each of the four modules is implemented as a set of self-contained classes and units with constrained
interaction with other units, following a modular model that is easier to update and that could be easily
adapted to a different piloting system in the future. For example, to apply the genetic algorithm to config-
uring the pilot, we disabled the graphic implementation of the system and the user interface. The program
structure made this kind of change seamless.

Graphics Engine
The graphics engine implements the scene objects and their conversion into OpenGL commands. It

contains separate classes for the geometry, the animation,and the behavior of the motorcycle, the pilot, and
the road. The geometry classes define the geometric objects composing the motorcycle and of the pilot.
The animation classes define the basic animation propertiesof these objects, starting with the definition of
scene graphs providing the internal structure of the motorcycle and the pilot. The behavior classes provide
higher level functionality for the scene graphs.

For example, the geometric objects composing the wheels aredescribed in the motorcycle geometry
class. The relative position of each of them as a subtree in the motorcycle tree, as well as the internal and
relative rotation of the wheels are defined in the motorcycleanimation class. The transformations applied
at each new frame to apply the current position, orientation, and speed are defined in the behavior class of
the motorcycle.



Physics Engine
The physics engine of the motorcycle contains the functionality of the vehicle implementing the

kinematics laws and its interactions with the environment.This component implements the physics aspects
described in Section 2. Essentially, this model is responsible for computing the new state of the system
from the current one taking into consideration the actions currently in process on each control unit of the
motorcycle.

Autonomous Pilot
The autonomous pilot communicates with the graphics and physics agent through a limited number

of actions to be taken on each control unit, as for example, increasing the gas by a given amount. A
generic Agent class describes the basic functionality of all the agents as virtual functions, as for example,
the callback mechanisms for event reaction. Each individual agent overloads the functionality of the base
class to adapt it to its own behavior.

User Interface
The user interface provides visual display of the state of the system for every new frame and ani-

mation, as well as the interaction of the player with the vehicle. The main application window contains a
mini-map that can be used to monitor the vehicle progressionon the circuit. The perceptual information
is also displayed as small spheres marking the intersectionof the direction of movement with the road, or
the lateral points of reference.

Figure 5 shows the application pipeline and the interactionbetween the components of the program.
Figure 6 shows the main window of the application displayingthe motorcycle on the road, featuring a
mini-map in the top left corner and the perceptual information.

Figure 5. Program components and application pipeline

Figure 6. The main application window displaying the vehicle



5 Applying Genetic Algorithms to the Pilot Configuration

All of the agents composing the autonomous pilot are governed by equations such as we have introduced
in the previous section. These equations comprise a set of thresholds and constants that can be configured
to adjust its behavior and optimize its performance.

To apply the GAs to this problem, we have chosen a representation where each configurable coef-
ficient is assigned 10 binary genes, and the chromosome results by concatenating all of these strings of
genes. Thus, we worked with 32 coefficients for the leaning and steering modes, and with 36 for the
combined mode, which means that the chromosome is of a lengthof 320 and 360 respectively.

We have chosen the one-point crossover for our experiments with a probability of 0.8 and a mutation
rate of probability 0.01. We have used a monotonous reproduction where the best individual from the old
generation replaces the worst from the new one if there is a decay in performance in the new generation.

A chromosome was evaluated by running the motorcycle in a non-graphical environment once with
the pilot configured based on values obtained by decoding thechromosome over the same circuit as the
manually configured pilot. For this we had a number of 50 reference points on the road which were marked
when the motorcycle passed next to them. The fitness was computed as follows:

F (x) =

{

dm

dt

+ 1
1+tm

if the circuit was completed
dm

dt

+ 1
5+tm

if the circuit was not completed
(21)

wheredm is the number of points crossed by the motorcycle,dt is the total number of points, andtm is the
total time taken until either the circuit was completed, or until a failure condition was detected.

Thus the fitness reflects both how much of the circuit the motorcycle completed, and how fast it was
capable of finishing the track. In general, a fitness higher than 1 is an indication of completion of the
circuit.

A failed circuit can be caused by one of the following three situations: a crash occurred because
of too much leaning, the motorcycle exited the road without returning soon enough, or the motorcycle
reached the starting point again without touching all the intermediate points, which means that it took a
shortcut somewhere.

5.1 Experiments

The pilot was tested using a circuit consisting of 3 loops such that a portion of it is elevated to test the
gravitational effects. The circuit was designed with the intention to test the ability of the pilot to drive
correctly in situations where the road is turning both to theleft and to the right, and also where the slope
of the road is going uphill or downhill. The track is shown in Figure 7.

Figure 7. Test circuit for the experiments

We have performed 100 runs of the GAs for each of the 3 modes, steering, leaning, and combined.
We selected the chromosome with the highest fitness over all the trials and performed 100 trials on the



Table 1. Performance of the human players

Human 1 Human 2

Total time 97.4 79.2

Average speed 6.19 8.94

Maximum speed 8.75 12.26

Total distance 2312.05 2316.83

Lateral balance 0.29 0.36

Completed circuits 100% 100%

circuit with a pilot configured based on it, in a graphical environment this time. We compared these new
results with 100 trials of the manually configured pilot in the same conditions, as presented in [20].

The results of these experiments are presented as follows. Figure 8 shows the evolution of the fitness
in the three modes in 100 generations. We can notice from it a big difference in performance between the
three modes. In steer mode, the fitness suggests that the derived pilot was in general capable of completing
the circuit. In the lean mode the fitness indicates that most circuits were ended in failure. In the combined
mode the fitness achieved a value close to 1, which means that the pilot probably succeeded in completing
the circuits at least some of the time.

Table 1 introduces some statistics showing the performanceof two human players, each having
completed the circuit 5 times. The following statistics were taken into consideration: the average time
taken to complete the circuit, average speed over the entirecircuit, maximal speed that the player has
achieved at any time, and total distance covered to completethe circuit, which is a measure of efficiency.
The next measure is the average value oflatabs, marked by lateral balance, taking values between 0 and
1. 0 indicates the center of the road, 1 the extreme borders ofthe road, and lower values indicate a better
driver behavior on the road. The last line shows the percentage of completed circuits in each case.

Table 2 shows the performance of the manually configured autonomous pilot in 100 trials. The
columns entitledC andI mark the statistics made on completed versus incomplete circuits respectively.
Thus, the pilot with this configuration has completed the circuit 92 times out of 100 in the steering mode,
and was not capable of completing the circuit in the leaning and combined modes. The average speed was
in general much lower than the human players.

Tables 3 and 4 show the performance of the pilot configured based on the parameters derived by the
GA, for the completed and incomplete circuits respectively. From these tables we can see that the pilot
was capable of completing at least one circuit in each mode. Moreover, in the steering mode each of the
100 circuits was completed successfully. The average speedis higher than in the manual configuration
case, which is due to the fact that the fitness function favorsthe configurations that finish the circuit faster.
Overall the performance is much closer to the human players.

A T-test with a 95% confidence on the average time and speed indicated a significant improvement
of the configuration derived by GAs over the manually configured pilot in each of the test cases.

6 Conclusions

In this paper we presented an application of the genetic algorithms to configure a multi-agent autonomous
pilot for motorcycles. The application is implemented based on the physical equations describing the vehi-



Table 2. Results of the manually configured pilot

Steer Lean Combined

C I I I

Total time 327.75 78.25 15.79 25.58

Total distance 2338.77 720.42 77.23 108.081

Speed 1.96 2.58 1.25 1.46

Max speed 4.99 4.96 2.56 2.82

Lateral balance 0.32 0.33 0.55 0.44

Completed circuits 92% 0% 0%

Table 3. Results of the GA configured pilot, completed circuits

Steer Lean Combined

Total time 133.73 221 508.67

Total distance 2333.33 2356.08 2361.24

Speed 4.16 2.74 1.01

Max speed 6.49 6.08 2.59

Lateral balance 0.40 0.40 0.30

Completed circuits 100% 1% 3%

Table 4. Results of the GA configured pilot, incomplete circuits

Steer Lean Combined

Total time n/a 52.60 105.2

Total distance n/a 522.46 495.96

Speed n/a 2.07 0.91

Max speed n/a 5.09 1.87

Lateral balance n/a 0.46 0.36

Incomplete circuits 0% 99% 97%



Figure 8. Best fitness in 100 generations

cle’s attributes, motion, and road behavior. The physical model of the vehicle was described in Section 2.
The autonomous pilot is composed of several agents, as described in Section 3, each of them being

defined by a set of equations with configurable parameters. Our previous work has focused on manually
finding the best values of the parameters, which is a time-consuming and imprecise operation. The main
focus of the research presented in this paper was on applyingthe genetic algorithms to configure the
parameters used by the autonomous pilot.

The experiments described in Section 5 show that the pilot configured by genetic algorithms perform
significantly better than the manually configured one. The number of completed circuits has increased, as
well as the efficiency of the pilot in finishing the circuit. The pilot comes closer to the human performance
with the same application. We can entail that the genetic algorithms are indeed a good choice for this
particular task.

As a direction for future research, the equations governingthe behavior of the pilot could be improved
for the leaning mode, where the number of completed circuitsis still low even after applying the genetic
algorithms. A possible approach to this problem would be to apply genetic programming. So far the model
was only applied to a simulated vehicle. Although applying it to an actual vehicle presents many technical
difficulties, we envision a possibility of development by transposing the driving model to an actual robot
or a toy vehicle.
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