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Abstract

In this paper we present an application of genetic algostihonan autonomous pilot designed for
motorized single-track vehicles (motorcycles). The pioimplemented as a multi-agent application
using a physical model of the motorcycle and is embedded intaractive application. We compare
the performance of the configuration obtained by genetiordlgns with the manual configuration of
the pilot and with the performance of human players.

The main contribution of the paper is proposing a model ftwtpig a single-track vehicle based
only on perceptual information such as it would be obserwed human in the case of a real vehicle,
and showing how the genetic algorithms can contribute efiity to configuring the autonomous pilot.
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1 Introduction

Single track vehicles (STV) present somewhat differentlehges than double-track vehicles like cars
because their balance is not automatically achieved by #position of the wheels, but is a dynamic
result of their motion. The input from the rider also compssan additional component as the centrifuge
force can be used to change direction.

The paper contains two main contributions: first, showing laosingle-track vehicle can be driven
on a road based on perceptual information in the absence péafied path, and second, showing how
the genetic algorithms can be used to configure the autonspibat faster and more efficiently than
manually.

The autonomous pilots are an important aspect of develapi@gehicles of the future and they
represent an interesting challenge for intelligent cdrapplications as well as for traffic control [12, 18].
This project starts from a simulation of a vehicle with a matjent autonomous pilot using perceptual
information. The application aims to control the vehicleamon-deterministic way inspired from the
behavior of a human driver and using similar perceptualrmgtion to make decisions.

This paper presents an application of genetic algorithmeotaiguring an autonomous pilot for
STVs. The pilot, introduced in [20], is implemented as a madfent model using perceptual information.
Previously, the pilot was configured manually by trial andermmethod that achieved a reasonably good
performance, but was imprecise and time-consuming. Thecuresearch aims to improve the process,
making it faster and with a better performance. We beliea the genetic algorithms are a good choice
for this problem since we are faced with an optimization oritiple variables that is difficult to achieve
by hill-climbing.

The genetic algorithms (GAs) [10, 9] as well as other evohdiry approaches, are a frequent choice
for optimization problems with many applications. They édeen successfully applied to related areas
such as path-find for robots [3, 19], scheduling [2], and behalevelopment [13]. Several approaches
have applied multi-agent models to the simulation of autoows drivers [15] and our application follows
similar ideas.

Most of the research on autonomous pilots is directed tow#oting aircrafts [14, 16, 1, 6], and cars
[17]. Our approach targets motorcycles which have not basatied yet as extensively as the other types
of vehicles and which represent a more challenging modglinglem.

Many of the autonomous pilot simulations, as for examplg, pdopose an approach to driving a
vehicle based on an outline of the direction of movementtiapilot must follow. While this approach
is valid in a simulated environment, a system capable ofimyiva real vehicle would have to deal with
situations where the precise path is not known. In this pagepresent an approach where the shape of
the road is not known, but must be inferred from perceptuakdhat the pilot senses while driving the
vehicle. Some similar studies exist for robots that movenieavironment while trying to avoid obstacles
and aim to reach a given target. Our model is different frowséhin general settings of the problem,
which consist in driving a vehicle within a given road, follmg the general forward direction on this road
without a given path or sequence of precise points to reaghaW to simulate a real environment where
a vehicle must be driven along a track based only on the irdtion that can be obtained from visual
Sensors.

The autonomous pilot is a multi-agent probabilistic apgtiien where each agent is an independent
process acting on one of the control units of the vehiclepaexXample, the gas, the brakes, the handlebars,
or the steering wheel. The agents use some information abewturrent status of the vehicle to make
a decision about an action to be taken on their respectiveealamits. This information includes both
status data, like the current speed, and perceptual degahk visible distance on the road in the direction
of movement, the lateral distance to the border of the road tlae current slope. The performance of the



automatic pilot is compared with the performance of a trdineman.

The paper is structured the following way. Section 2 degsrine physical model and the equations
that we have used for our simulation. Section 3 introducesnauiti-agent automatic pilot. Section 5
presents the details of the application of genetic algor#tio this problem and the experimental results of
this method. The paper ends with some conclusions.

2 Physical Model of the Single-Track Vehicle

In this section we introduce the physical model of a singhek motorized vehicle, as for example a
motorcycle, and the equations of motion we used to implertieninteractive application.

2.1 The Vehicle Control and Degrees of Freedom

A motorized STV, as for example, a motorcycle, can be modataaisystem composed of several elements
with various degrees of freedom that can be driven througlersé control units. Figure 1 shows the
components of the physical model of a motorcycle, witasethe distance between the wheels.

Figure 1. A motorcycle with control units and degrees of fi@®: 1 - wheels, 2 - handlebar, 3 - saddle, 4
- chain, 5 - brakes, 6 - engine, 7 - steering, 8 - leaning, 9pausion, 10 - wheel spin, 11 - contact line

An STV is a non-holonomic dynamic system with six degreesegdom: the rotation of the wheels
around an axis parallel t0z, the rotation of the handlebar and of the front wheel arolnadfork axis
(steering), the front and back translation along the susiparaxis, and the rotation of the whole vehicle
around theDx axis in a system of coordinates relative to the motorcyclemtihe origin is in the center
of the vehicle, on the ground level.

The driver can control the vehicle through five inputs: thediabar steering, leaning the vehicle
laterally, the throttle, and the two brakes, front and back.

The state of the STV is described at any moment by the curasitipn of the vehicle’s center on the
road, and by the current direction of movement which can Iserileed either as a vector or as an angle in
the (z, z) plane plus a slope, in general determined by the road. Theshmagist also include the state of
each unit of the STV with a degree of freedom and the curreid@mof the driver on each of the control
units. These two components are in general defined relptivehe STV'’s internal system of reference.

Various aspects of the physical model of the bicycle have lséadied before. The closest model to
our purposes is [7] which considers a bicycle as a nonlimearholonomic, non-minimum phase system.



The stability and control of a bicycle are also of interedt][18], as well as the study of its aerodynamics

[5].

2.2 STV Motion and Control

The STV is modeled as a reduced state system of continuoiables. The generalized coordinates of
the vehicle at a particular moment are given by

q=(s,a,0)" 1)

wheres(t) = (z(t), z(t)) represents thepatial positiorof the STV,d is theorientation angledetermining
the direction of movement = (cos#, sin §), anda theleaning angle Let ¢ be thesteering angle Since
our STV is based on a motorcycle and not on a bicycle, we hapesed the constraint thatr /3 < ¢ <
7/3. Figure 2 illustrates these angles and coordinates.

The vertical component of bothandd is determined by the road altitude and slope given the dpatia
position and orientation of the vehicle. In this paper westder the road to be close enough to the sea
level such that the gravitational acceleration is the camtgtand the altitude of the vehicle does not really
influence its motion. Let (s, d) be the angle made by the contact line of the vehicle with{the) plane,
depending on its position and orientation.

x2)

Figure 2. STV coordinate system: 1 - wheels, 2 - handlebar

The driver’s input into the system is defined by the tuple (7, 5¢, 5., ¢, @) wherer is an acceler-
ation component along the moving directi@and3;, 3, represent the front and rear brakes respectively.

The nonholonomic constraints can be expressed by the fimiipwhered is the distance between
the two contact points of the wheels on the ground:

—2'sinf + 2’ cosf = 0 (2
beos ¢ 0" —sin(¢p + 0)z' + cos(¢p + 0)2' =0 (3)

Equation 2 expresses the fact that the STV moves in the direct the vectowr. Equation 3 allows
us to compute the change in orientation due to steering. 8qfations are adapted from [7].

In particular, if—7/2 < ¢ < 7/2, we can compute the change in the orientation angle dueedrsge
as

sin(¢ + 0)Ax — cos(¢p + 0)Az
= 4)
bcos ¢
Letv = s’ be the momentary speed or velocity in the direction of movatrenda = v = s” the
momentary acceleration in the direction of movement. Wesmer the motion of the vehicle defined by

Al



Newtonian mechanics. The position and velocity of the Vehét¢ + At are defined by(t + At) =
s(t) + As, v(t + At) = v(t) + Av where:

2

As:d<v-At+aA7t>, Av =a- At 5)

In our case, the acceleration is defined by the gravity, tietidn, the drag, and the throttle. The
brakes do not act as a simple negative acceleration, butithpit contributes to the drag and friction
forces slowing the vehicle down.

To compute the drag force, a drag coefficient due to the briskadded to the air resistance which is
rather small, and to the engine brake which prevents thedspiethe vehicle from increasing indefinitely.
The resulting drag coefficieri? is given by the following equation:

D = ko + ka(By + B,) + ke (6)

where By and B, represent the brakes input, is the air resistancek, is the drag coefficient of the
brakes, andk, is a coefficient due to the engine brake. These forces caesspied of the vehicle to
become constant after a while for any given throttle inpuand also cause the vehicle to eventually stop
when no throttle input is provided anymore. Together with tiction force, they will prevent a resting
motorcycle from going downbhill if the slope is not null, and also prevent the speed from increasing
indefinitely due to a gravitation in the direction of moverheten the vehicle is going downhill.

The resulting acceleration is defined by

a=1+gsino—kgcoso—ky(By + B,) — Dv* (7

whereg = 9.8 m/s* is the gravitational acceleration at sea levels the coefficient of friction, and, is
a coefficient of friction for the brakes.

The latest model of the motorcycle improved from [20], impknts an additional change in the
direction of movement due to leaning that is equally avé@&tr the human player, together with fail-safe
conditions that can cause the vehicle to crash if they arenatt as for example, leaning too far for the
current velocity.

2.3 Leaning

We can define the leaning problem the following way: givenl&aging anglex and the speed, what is
the radius of the circle on which the STV rotates around Oy?

The first force that we are going to consider that affects ti@nge in direction of the vehicle due to
leaning is thecentrifuge forceillustrated by Figure 3 and defined by

F.=muw?r (8)

wherew is the angular speed, ands the radius of the circle on which the object is turningw lis the
horizontal speed, then we can define the angular speed-as/r, so the centrifuge force is equal to

UQ

F.=m— 9
T
A second force that interacts with the vehicle in the latenavement is the lift due to the friction
with the air. We can adapt an equation taken from airplangwimulation that computes thi&ing force

Fr as
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Figure 3. The forces and quantities involved in leaning

1
Fr, = 5/)@25refCL (10)

In this equatiorp is the air density, that we can consider to be approximatety1.22145kg/m? at
0 altitude.S,.; is the reference area, the horizontal projection of thealetsurface.

The last component of the lateral movement is the gravitatitorce itself, which has a norm equal
to g m. From this force, we subtract the lifting force first. Stagifrom the same angle, the resulting
gravitation force, which is vertical, is decomposed in a&&along the vertical axis of the motorcycle and
another one that is normal to the motorcycle. The rotatidhbe@ determined by the component that is
perpendicular to the motorcycle axis. This component,wetall central gravitationand denote by,
is given by

Ge.=(gm— F)sina (11)

By imposing the condition that the central gravitationatfshould be equal to the centrifuge force,
we can compute the rotation raditts

mv2

"= (gm — Fp)sina (12)

3 The Autonomous Pilot

In this section we present the ideas that we used to implether@utonomous pilot for our motorcycle.

Our autonomous pilot is composed of several agents for theuscontrol units of the vehicle.
We chose a multi-agent model because it allows us to definegbations and parameters for each of
the control units independently. Combining them into a Englot would introduce an unnecessary
complication in the equations and would render the configamgrocess more difficult.

Each of the agents composing the pilot acts independendgjursting their respective control units.
They are implemented as fuzzy controllers, the preciseteapsafor each of them being specified further
down in this section. For each of them, a series of conditionaction are specified, a particular course
of action being prescribed in each case. The resultingmtéiken by the agent is obtained by balancing
or averaging on the actions resulting from each condition.

A small part of the communication between the agents is gebithrougheventghat they generate,
such as the update event being generated by the alert agéet.mdst part of the communication is



implicit, through the changes generated to the state of the systeth@angh the internal and external
perceptual cues. For example, if the brake agent takesnaictione state of the system to reduce the
speed, a slower velocity in the next frame will cause the g@manot to decrease the gas to adjust to a
higher turn in the road. Our model is similar to an ant colomyhis respect, where the individual ants
do not communicate explicitly, but implicitly through theanges made to their environment, namely the
presence of pheromones.

3.1 Perceptual Information

The autonomous pilot is using perceptual information to endécisions about the vehicle driving. This
information is inspired from the perceptual cues that a humha er would also be paying attention to
while driving a vehicle.

In our application, the pilot is aware of the following messsi

Thevisible front distancedenoted byfront, defined as the distance to the border of the road from
the current position in the direction of movement, scaledh®ylength of the vehicle. This distance is
a measure of how much of the road is visible ahead and alsowfsktraight the road is in front of the
vehicle. We will also mention this as tiherizon

The front probes denoted byfrontl and frontr, are defined as the distances to the border of the
road from the current position of the vehicle in directiontated left and right by a small angle from the
direction of movement. They give the pilot an indication@svhich way from the direction of movement
the front distance would become larger, which can be useatrtathat way.

The lateral distancesdenoted byle ftd andrightd, are measures of the lateral distance from the
vehicle to the border of the road, at a short distance in freintulating what the pilot might be aware of
without tuming their head to look. In our computations we ug,, = |_<<=rehee |, the normalized
difference between the lateral distances. A high valueisfriteasure indicates a turn in the road, or that
the vehicle is close to the border. A value close to 0 ind#tat the vehicle is in the middle of the road.

Theslope, is a perceptual version of, discretized to simulate the intuitive notion of road ineliion
that a human driver would have, approximated by the fuzzyeslalmost flat, slightly inclined up or
down, or highly inclined up or down. This simulates the fdtta human pilot is not aware of the precise
value ofo.

Figure 4 shows an example of the geometrical definition aehmeasures.

front probes

Figure 4. Perceptual information used by the autonomows pil

Beside the perceptual information, the autonomous piles tilse current status of the motorcycle to
make decisions about the action to be taken on each of theotanits of the vehicle. The status includes
measures like the, 7, By, B,, ¢.



3.2 Control Units

The motorcycle is driven by several control units (CUs). liEa€them is controlled by an independent
agent with a probabilistic behavior. The agents are novacturing the computation of each new frame
simulating the evolution of the vehicle on the road, but amge in a while in a non-deterministic manner.
This simulates the behavior or a human driver that may nobleeta respond instantly to the road situation
and allows for a certain reaction time.

The current control units focus on the gas (throttle), thekbs, the handlebar/leaning. Each of these
CUs is independently adjusted by an agent whose behaviotasded to drive the motorcycle safely in
the middle of the road at a speed close to a given limit. In ase¢the agents controlling the throttle and
the handlebar are in general more active than the agentatiomgrthe brakes.

The next paragraphs introduce the equations used by eadlr afgents to make a decision and to
perform an action. The equations comprise a fair number efficdents and thresholds. The configuration
of each agent uses independent values for the coefficients.

The Throttle. This agent controls the amount of gas supplied to the engideirg&luences the
acceleration that the vehicle is submitted to.

The input for this agent is represented (y front, le ftd, rightd, slope). The agent uses a minimal
speed threshold,,,,, a maximal speed threshold over which the speed is considegafe, and the given
speed limitv;;,,,;;. The agent aims to keep the vehicle speed akgyeand below the maximal one, and
also close to they;,,:.

The agent detects a turn in the road by testimg and eventually decreasesto allow for a safe
turn. A similar rule is applied to the visible distance inrit@f the driver: a low value fofront indicates
an unsafe road situation requiring a reduecedh any other situation it attempts to keep the speed close to
Vlimit »

Equation 13 represents the conditions under whicdhould be decreased, causing the vehicle to
slow down. If the condition bellow i not fulfilled; is given an appropriate value to keep the speed close
to the limit.

UV > Vo N

(V> Vit V trig > lat, V tre > front) (13)

Equation 14 illustrates the change in throttle performedhgyagent, where;,.., c4ec,, @andc; are
configurable coefficients. The actual amount of the changepi®babilistic quantity equally distributed
in a small neighborhood around the computed value, to acdouthe human imperfection.

AT = Ciney(front — thrs) (v — View)+

Cdecv ((U - Ulimit) + trlat + trfr) + Cg 510p€ (14)

The Brakes. The agent controlling the brakes presents a similar beh&wtbe throttle agent because
the rules according to which the speed should decrease gemefal purpose. The equations of this agent
are simpler because the brakes can only decrease the spkeotamncrease it. The speed is only decreased
when a more drastic change is necessary than we can assurbe adhieved only by decreasing

Equation 13 is also used to determine when to apply a force@brakes, but the coefficients..,,
caecvs @Ndcg can have different values for this agent. The change in eitheor B; is based on the
following equation.

ABr,f = Cdecv ((/U - Ulimit) + trige + trfr) — Cs1 - SZOPG (15)

The Steering / Leaning Agent.The motorcycle can achieve a change in direction eitherédsristg
using the handlebar, or by leaning. The autonomous pilobleas tested under three conditions: when



the motorcycle is driven entirely by steering, when the motole is driven entirely by leaning, and a
combined strategy, consisting of steering at low speeddved threshold) and leaning at a speed above
the threshold. This emulates the general strategy employé&adiman drivers.

The agent controlling the handlebar and leaning of the negtde is the one with the most complex
behavior. This agent is also using the lateral distancetddobrder of the road, as well as the front
probesfrontl and frontr, to make decisions about turning left or right. The agemduhe vehicle in the
direction of the longer distance between the left and rigbtiing away from the closest border.

The agent first considers the immediate distance to eitder given by the lateral distances. Thus,
if the vehicle is not situated within a given percentageg([#0%) of the center of the road, then the agent
moves the vehicle towards the center.

If the first measure (lateral distances) does not providendition for the vehicle to turn, the agent
estimates the distance forward to the horizon. Based orrdiné fprobes and the front distance, the agent
moves towards the center of the horizon (given by the froobps). The handlebar and leaning angles
depend on the distance to the horizon, a bigger change beguired if the horizon is closer.

The agent starts by making a decision whether to use thalatistances as reference or the front
probes. Let us denote by obe, the normalized difference between the front left and rigbbgs as shown
in Equation 16 and byrobe,,s = |probe,| the absolute value of this quantity.

frontl — frontd
max( frontld, frontd)

(16)

probe,, =

Let us denote byut,; f; the quantity used by the agent to decide if it must turn andhitlvdirection,
computed according to the following equation.

lat, if lat, > thr; and
frontd > thry
latgips = % if lat, > thr; and a7
frontd > thry
probe, otherwise

wherethr;,i = 1, 4 are configurable coefficients.

The amount of the angle change depends on the measuyg and on the speed. Thus, if the speed
of the motorcycle is lower, the turning angle must be higleea¢hieve a given change in direction. If
the vehicle moves at a higher speed, smaller angle changeaseaessary to obtain the same change in
direction, both by the handlebar angle or by using the legaaimgle.

The agent will update the handlebar angle or the leaningeaihglhe condition expressed in Equa-
tion 18 is fulfilled. This means that a change is necessahngeit the lateral difference measure is greater
than the thresholdhr,,; (the vehicle is off-center), or if the distance in the direstof movement to the
border of the road is smaller than another thresholdy,.,.;, meaning that the vehicle might get off the
road soon if it continues in the current direction.

\latgifg| > thrie or front < thry, (18)

If we denote byA¢ = ¢(t + At) — ¢(t), then the general rule for modifying the orientation of the
handlebar is shown in Equation 19, but the actual amounteotiiange is a probabilistic quantity equally
distributed in a small neighborhood around the computedeval

thrs, — front)

19
th?”fr ( )

Ad = chpar (latdz‘ff +



The change in the leaning angle is computed based on a siegiletion as for\¢, but the coeffi-
cients can be configured independently.

Alerting Agent. Beside all the agents that are in direct control of the motde; the pilot comprises
a fourth agent that does not perform any action on the vehidlaile the other agents are active only
occasionally, this agent is probing the vehicle and roadditmms for every new frame and is capable
of activating one of the other agents if the situation reggispecial attention. Thus, if the speed of the
vehicle is either too high or too low, if the visible front tsice is too short, or if the difference between
the left and right lateral distances is too high, this agentsaders the situation to be exceptional, meaning
unsafe, and generates an alert event that will randomlyaetone of the agents that can take action on
the motorcycle and correct the issue.

Equation 20 describes the condition under which the algrigent generates an update event that
triggers one of the other agents. The alerting agent doedewtle which other agent will perform the
necessary action.

V < CylowVlimit Vv > CohighUlimit \%

latgps < thrige V' front < thry, (20)

4 Implementation

The program is implemented in C++ using OpenGL. The sourcke eath compilation instructions is
available in the software section of the web site of the ligieht Systems Laboratory of Indiana University
South Bendht t p: / / www. cs. i usb. edu/ ~i sl / The project is composed of four parts:

e the graphics engine,
¢ the physics engine of the motorcycle,
e the autonomous pilot,

e the user interface.

Each of the four modules is implemented as a set of self-awedalasses and units with constrained
interaction with other units, following a modular model ths easier to update and that could be easily
adapted to a different piloting system in the future. Fomegke, to apply the genetic algorithm to config-
uring the pilot, we disabled the graphic implementationhaf $ystem and the user interface. The program
structure made this kind of change seamless.

Graphics Engine

The graphics engine implements the scene objects and theiersion into OpenGL commands. It
contains separate classes for the geometry, the animatidrihe behavior of the motorcycle, the pilot, and
the road. The geometry classes define the geometric objeetpasing the motorcycle and of the pilot.
The animation classes define the basic animation propeitieese objects, starting with the definition of
scene graphs providing the internal structure of the mgtbecand the pilot. The behavior classes provide
higher level functionality for the scene graphs.

For example, the geometric objects composing the wheeldesm@ibed in the motorcycle geometry
class. The relative position of each of them as a subtreesimidtorcycle tree, as well as the internal and
relative rotation of the wheels are defined in the motorcadienation class. The transformations applied
at each new frame to apply the current position, orientatowl speed are defined in the behavior class of
the motorcycle.



Physics Engine

The physics engine of the motorcycle contains the functignaf the vehicle implementing the
kinematics laws and its interactions with the environm&his component implements the physics aspects
described in Section 2. Essentially, this model is resgmasor computing the new state of the system
from the current one taking into consideration the actiamsantly in process on each control unit of the
motorcycle.

Autonomous Pilot

The autonomous pilot communicates with the graphics angipsygent through a limited number
of actions to be taken on each control unit, as for examplaeasing the gas by a given amount. A
generic Agent class describes the basic functionalityldhalagents as virtual functions, as for example,
the callback mechanisms for event reaction. Each inditidgant overloads the functionality of the base
class to adapt it to its own behavior.

User Interface

The user interface provides visual display of the state efdystem for every new frame and ani-
mation, as well as the interaction of the player with the gkhiThe main application window contains a
mini-map that can be used to monitor the vehicle progressiothe circuit. The perceptual information
is also displayed as small spheres marking the interseofitre direction of movement with the road, or
the lateral points of reference.

Figure 5 shows the application pipeline and the interadtiemveen the components of the program.
Figure 6 shows the main window of the application displayiimg motorcycle on the road, featuring a
mini-map in the top left corner and the perceptual inforimati

Autonomous
pilot User

|
' "
Physics | State of Graphu:s User Application
engine ) Lthe system engine Interface window

Figure 5. Program components and application pipeline

L

Figure 6. The main application window displaying the vedicl



5 Applying Genetic Algorithms to the Pilot Configuration

All of the agents composing the autonomous pilot are govkhyeequations such as we have introduced
in the previous section. These equations comprise a setasfttblds and constants that can be configured
to adjust its behavior and optimize its performance.

To apply the GAs to this problem, we have chosen a represemtahere each configurable coef-
ficient is assigned 10 binary genes, and the chromosomesédsutoncatenating all of these strings of
genes. Thus, we worked with 32 coefficients for the leaning) steering modes, and with 36 for the
combined mode, which means that the chromosome is of a l@@P0 and 360 respectively.

We have chosen the one-point crossover for our experimattisavprobability of 0.8 and a mutation
rate of probability 0.01. We have used a monotonous repitaziuehere the best individual from the old
generation replaces the worst from the new one if there iaydm performance in the new generation.

A chromosome was evaluated by running the motorcycle in agraphical environment once with
the pilot configured based on values obtained by decodingtlir@mmosome over the same circuit as the
manually configured pilot. For this we had a number of 50 egiee points on the road which were marked
when the motorcycle passed next to them. The fithess was d¢ethps follows:

dm 1 ; A
F(z) = P !f the c!rcu!t was completed 21)
(fi—’j + 5+1tm if the circuit was not completed

whered,, is the number of points crossed by the motorcydlas the total number of points, artg is the
total time taken until either the circuit was completed, otila failure condition was detected.

Thus the fitness reflects both how much of the circuit the nogtde completed, and how fast it was
capable of finishing the track. In general, a fitness highanth is an indication of completion of the
circuit.

A failed circuit can be caused by one of the following threaions: a crash occurred because
of too much leaning, the motorcycle exited the road with@ttiming soon enough, or the motorcycle
reached the starting point again without touching all ttenmediate points, which means that it took a
shortcut somewhere.

5.1 Experiments

The pilot was tested using a circuit consisting of 3 loopshsilnat a portion of it is elevated to test the
gravitational effects. The circuit was designed with thisimion to test the ability of the pilot to drive
correctly in situations where the road is turning both tolgfeand to the right, and also where the slope
of the road is going uphill or downhill. The track is shown ilgére 7.

Figure 7. Test circuit for the experiments

We have performed 100 runs of the GAs for each of the 3 modestisg, leaning, and combined.
We selected the chromosome with the highest fithess ovenalirials and performed 100 trials on the



Table 1. Performance of the human players

Human 1 Human 2

Total time 97.4 79.2
Average speed 6.19 8.94
Maximum speed 8.75 12.26
Total distance 2312.05 2316.83
Lateral balance 0.29 0.36

Completed circuits  100% 100%

circuit with a pilot configured based on it, in a graphical komment this time. We compared these new
results with 100 trials of the manually configured pilot i ttame conditions, as presented in [20].

The results of these experiments are presented as follagisteF8 shows the evolution of the fithess
in the three modes in 100 generations. We can notice fromig difference in performance between the
three modes. In steer mode, the fithess suggests that thiedipiiot was in general capable of completing
the circuit. In the lean mode the fitness indicates that mositits were ended in failure. In the combined
mode the fitness achieved a value close to 1, which meansthpilot probably succeeded in completing
the circuits at least some of the time.

Table 1 introduces some statistics showing the performafdevo human players, each having
completed the circuit 5 times. The following statistics eéaken into consideration: the average time
taken to complete the circuit, average speed over the etititait, maximal speed that the player has
achieved at any time, and total distance covered to comfhieteircuit, which is a measure of efficiency.
The next measure is the average valuéaof,;, marked by lateral balance, taking values between 0 and
1. O indicates the center of the road, 1 the extreme borddtseabad, and lower values indicate a better
driver behavior on the road. The last line shows the pergentd completed circuits in each case.

Table 2 shows the performance of the manually configurednamaous pilot in 100 trials. The
columns entitledC andl mark the statistics made on completed versus incompletaitsrrespectively.
Thus, the pilot with this configuration has completed thewir92 times out of 100 in the steering mode,
and was not capable of completing the circuit in the leanimy@mbined modes. The average speed was
in general much lower than the human players.

Tables 3 and 4 show the performance of the pilot configureddas the parameters derived by the
GA, for the completed and incomplete circuits respectivélsom these tables we can see that the pilot
was capable of completing at least one circuit in each modarebVer, in the steering mode each of the
100 circuits was completed successfully. The average sigeeidher than in the manual configuration
case, which is due to the fact that the fitness function fatl@onfigurations that finish the circuit faster.
Overall the performance is much closer to the human players.

A T-test with a 95% confidence on the average time and speéchied a significant improvement
of the configuration derived by GAs over the manually confgglpilot in each of the test cases.

6 Conclusions

In this paper we presented an application of the genetiaidthgas to configure a multi-agent autonomous
pilot for motorcycles. The application is implemented lzhse the physical equations describing the vehi-



Table 2. Results of the manually configured pilot

Steer Lean Combined
C [ I I

Total time

Total distance
Speed

Max speed
Lateral balance

Completed circuits

327.75 78.25 15.79 25.58
2338.77 720.42 77.23 108.081

196 258 1.25 1.46
499 496 256 2.82
032 033 0.55 0.44
92% 0% 0%

Table 3. Results of the GA configured pilot, completed ciscui

Steer Lean Combined

Total time

Total distance
Speed

Max speed
Lateral balance

133.73 221 508.67

2333.33 2356.08 2361.24
4.16 2.74 1.01
6.49 6.08 2.59
0.40 0.40 0.30

Completed circuits 100% 1% 3%

Table 4. Results of the GA configured pilot, incomplete diu

Steer Lean Combined

Total time
Total distance
Speed

Max speed

Lateral balance

n/a 52.60 105.2
n/fa 522.46 495.96
nfa 2.07 0.91
n/a 5.09 1.87
n/a 0.46 0.36

Incomplete circuits 0% 99% 97%
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Figure 8. Best fitness in 100 generations

cle’s attributes, motion, and road behavior. The physicadleh of the vehicle was described in Section 2.

The autonomous pilot is composed of several agents, asildegén Section 3, each of them being
defined by a set of equations with configurable parameters p@wious work has focused on manually
finding the best values of the parameters, which is a timewming and imprecise operation. The main
focus of the research presented in this paper was on applimgenetic algorithms to configure the
parameters used by the autonomous pilot.

The experiments described in Section 5 show that the pildigored by genetic algorithms perform
significantly better than the manually configured one. Thalper of completed circuits has increased, as
well as the efficiency of the pilot in finishing the circuit. &pilot comes closer to the human performance
with the same application. We can entail that the genetiordlgns are indeed a good choice for this
particular task.

As adirection for future research, the equations goverttiedpehavior of the pilot could be improved
for the leaning mode, where the number of completed cirgsissill low even after applying the genetic
algorithms. A possible approach to this problem would bepygyagenetic programming. So far the model
was only applied to a simulated vehicle. Although applyirtg an actual vehicle presents many technical
difficulties, we envision a possibility of development bgrisposing the driving model to an actual robot
or a toy vehicle.
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