
Shared Memory Genetic Algorithms in a Multi-Agent
Context

Dana Vrajitoru
Intelligent Systems Laboratory

Computer and Information Sciences
Indiana University South Bend
South Bend, IN 46634, USA

danav@cs.iusb.edu

ABSTRACT
In this paper we present a concurrent implementation of
genetic algorithms designed for shared memory architec-
tures intended to take advantage of multi-core processor
platforms. Our algorithm divides the problems into sub-
problems as opposed to the usual approach of dividing the
population into niches. We show tests for timing and per-
formance on a variety of platforms.
Track: Parallel Evolutionary Systems

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence, Multiagent Systems

General Terms
Algorithms

Keywords
Parallel genetic algorithms, shared memory, multi-agents

1. INTRODUCTION
The hardware developments from recent years have shown
a clear tendency towards improving the CPUs performance
by increasing the number of cores. Thus, dual core architec-
tures have become common place in the industry and even
quad core computers are now available to the large public.
The issue we are now facing is taking advantage of such plat-
forms and writing programs that make use efficiently of the
multiple CPU cores.

The shared-memory genetic and evolutionary computing al-
gorithms are closely related to the parallel and distributed
models. The parallelization techniques can be ported from
one type of architecture to the other, with the only difference
being the APIs being used. Each architecture and library
can offer unique opportunities for the optimization of the
execution time. A survey of these algorithms can be found

in [3], [5]. In a multi-core context, a shared memory API
is expected to provide a faster and more direct way for the
processes to communicate and synchronize and avoid the
overhead of a message-passing API.

Parallel and distributed versions of the genetic and evolu-
tionary algorithms are popular and diverse. The simplest
parallel models are function-based where the evaluation of
the fitness function is distributed among the processes. The
most popular parallel models are population-based where
the population itself is distributed in niches [1], [7], [9], [11].
Such models require a periodic migration of individuals be-
tween the sub-populations, and the influence of migration
patterns has also been an object of study [4], [15].

Our model is based on a division at the genotype level of
the population into several agents or processes. Each process
then receives a partial chromosome to evolve. All the genetic
operations are then restricted to this subset of genes. For
evaluation purposes, a template is kept by every process
containing information about the best genes found by all of
the other processes up to that point. A periodic exchange
procedure keeps this information up to date.

Although a division of the population among the processes
is a more popular approach and certainly defendable, we
believe that making the split along the genotype can also
present some advantages. In a previous study [12], we have
investigated the role of the population size versus the num-
ber of generations and concluded that a larger population
can lead to better results. Splitting the chromosome among
the processes allows each of them to work with a larger pop-
ulation while having to focus on a smaller number of genes.
The latter should allow a faster evolution for those genes if
the fitness is defined well enough.

Similar ideas to our parallel model of genetic algorithms have
been used in [10] to distribute the compact genetic algorithm
in a message-passing architecture. The model proposed in [8]
also distributed the chromosome another the processes, and
combines this with a temporal distribution of the solutions.

Multiple cores have started to be used in genetic and evo-
lutionary computations as well. For example, [2] distributes
the evolutionary operations themselves among threads exe-
cuted on four cores, while the population remains whole and
is shared by the threads without distribution.



Section 2 presents our multi-threaded model of genetic al-
gorithms designed for shared memory platforms. Section
3 introduces two two test problems we have used for our
model. Section 4 presents our experimental results, and we
finish the paper with some conclusions.

2. MULTI-AGENT PARALLEL MODEL
Our model for parallel genetic algorithms follows a similar
idea to the one described in [13]. The difference is that the
current model is implemented for a shared memory architec-
ture as opposed to a Beowulf cluster, and the experiments
use a different set of problems.

2.1 Problem Division
According to the most popular approach to parallel genetic
algorithms, which is the nested one, the population is de-
composed in several nests or niches, each of them evolving
in parallel. In such a model, the evolution in each popu-
lation is self-contained, and the only thing that makes it
a unified process is an occasional migration of individuals
between the nests.

In the approach proposed in this paper, all of the chromo-
somes are divided among the processes, such that the task
of each process consists in evolving part of the chromosome.
Figure 1 illustrates this concept. In some cases, the fitness
function is of such nature that the problem to be solved can
also be divided into several sub-units conceptually, while in
other cases this division is purely artificial. We do not make
a distinction between the two situations in our model.

Figure 1: The division of the chromosome among
the processes or agents

All the genetic operators are applied just as usual, except
that they are restricted to a subset of the genes that was
assigned to each process. Since the evaluation of the fitness
function usually requires the entire set of genes, the pro-
cess will have access to a template set for the part of the
chromosome that is not under its control. This template
is periodically exchanged between the processes. Figure 2
illustrates this idea.

The idea behind this parallel model is that the problem to
be solved is divided into several tasks. Each task is then
assigned to a different agent that will focus on it while ex-
changing information with the other agents. The multi-
agent approach is one that has proved efficient for many
applications before, in a variety of contexts.

Let n be the size of the chromosome, with the indexes for
the genes going from 0 to n−1. Let us suppose that we have
p processes. Each agent/process will receive a part of the
chromosome of size np = n/p. Then the process or agent

Figure 2: A template for the population evolved by
one of the agents

number id will be in charge of the genes between the indexes
(id − 1) ∗ np and id ∗ np − 1.

2.2 Fitness Evaluation
In the literature about genetic algorithms one can find a
good number of examples where the fitness function can be
nicely divided into several sub-problems such that the eval-
uation of each of them can be accomplished independently.
Our model does not focus on these types of problems specif-
ically. It is designed in a general way such that it can be
applied to any fitness function. However, the evaluation
process can be sped up for these special cases and a greater
performance can be achieved in terms of execution time and
use of each CPU core. This might be the subject of future
research.

We start from the assumption that to evaluate the fitness
function for any combination of genes, we need a full set
spanning from 0 to n − 1. Thus, to evaluate a partial chro-
mosome, we need to complete it with a sample of the genes
that it does not contain. We call this sample a template,
and each process will hold one in memory. The evaluation
consists in plugging the partial chromosome into the com-
mon template, and then passing this complete individual to
the fitness function.

An exchange procedure insures that the template is kept
reasonably up to date with respect to the latest best per-
forming genes obtained by each agent. During the exchange
phase, each process copies the genes of the best chromosome
found so far in terms of fitness to a common “best chromo-
some” which is shared by all the processes. After all of the
processes have finished this update, each of them makes a
copy of the genes in the best chromosome belonging to all
the other agents. This becomes then the new template for
each process.

The exchange procedure is shown in Figure 3 in C++ based
pseudocode. In this algorithm we assume that the indexes in
the partial chromosome are kept consistent with the position
of the genes in the complete chromosome. Just to make
the procedure easier to understand, the id of the process
is used as an index for the best partial chromosome and



for the template. Practically, our implementation is object
oriented, the exchange function is a class method, and these
objects are class attributes.

void Exchange(int id) { // the process

np = chromosome_size/ number_of_proc;

Barrier(number_of_proc);

for (i=(id-1)*np; i<id*np; i++)

best_chromosome[i] = best_partial_chr[id][i];

Barrier(number_of_proc);

for (i=0; i<(id-1)*np; i++)

template[id][i] = best_chromosome[i];

for (i=id*np; i<n; i++)

template[id][i] = best_chromosome[i];

}

Figure 3: The best chromosome exchange procedure

Technically the exchange process is the only synchronization
required between the processes. For this we employ a barrier
after the first phase of the exchange, to make sure that all
the processes have finished updating the best chromosome
before they start copying the information from it into their
own templates.

The population is initialized for each process randomly, as
is usually the case. The template is initialized by calling the
function exchange before the evolution process starts.

The exchange takes place every few generations, 10 for most
of our experiments. One of the questions we shall attempt
to answer is how much it interferes both with the execu-
tion time and with the performance in terms of best fitness
achieved.

Given the fact that the number of variables was divisible
by the number of processes that we’ve employed in all the
cases, we were able to implement a small optimization to
our algorithm. Thus, for each process, the variables be-
longing to the template do not need to be converted from
their binary representation to real values every time, and
we can simply store and reuse their real values in between
the exchange phases. Experimentally this has shown a small
improvement for one of the functions where the fitness is not
computationally expensive, but has no visible impact for the
second one.

3. PROBLEMS
We have chosen two completely different problems to test
our parallel model and the specifics of each of them should
allow us to showcase different features of our program. These
two problems have a common feature, which is the fact that
they use a given number of variables taking real values. For
both problems we have used 36 variables and 10 binary genes
to represent each of them.

3.1 Polynomial Problem
The first problem is a simple maximizing function where the
evaluation of the function itself is not very costly. Thus, we
need to find values for the variables xi that maximize the

following polynomial:

Fp(x1, x2, . . . xm) =
m

X

i=0

(i + 1) · (16 − x4

i ),

where −0.5 ≤ xi ≤ 1.27, ∀i, 1 ≤ i ≤ m.

This is a function that is not computationally expensive, and
the experiments with timing the program using this function
will tell us in particular how good the parallelization of the
genetic operations themselves is. A second feature of this
function is that its evaluation is uniform across the chromo-
somes from the point of view of the complexity, making it
easier to parallelize.

The second problem that we are using is optimizing the pa-
rameters defining a pilot for a simulated motorcycle. Since
this problem is more complex, we shall describe it more in
detail in the next section. For this second problem, the eval-
uation requires significantly more computations, and thus it
will allow us to observe the improvement in performance in
that respect. Contrary to the first function, the complexity
of evaluating a chromosome is not uniform, but can vary sig-
nificantly from one individual to the next, This constitutes
an additional challenge for the parallel model.

3.2 Autonomous Pilot for a Motorcycle
In this subsection we introduce the details of the simulated
vehicle and its autonomous pilot, as well as the application
of genetic algorithms to its configuration.

The physical model of the motorcycle has been more exten-
sively described in [14] and is close to [6]. The motorcycle or
STV, is modeled as a system composed of several elements
with various degrees of freedom that can be driven through
several control units. Figure 4 shows the components of the
physical model for a motorcycle.

1 Wheels
2 Handlebar
3 Saddle
4 Chain
5 Brakes
6 Engine
7 Steering
8 Leaning
9 Suspension
10 Wheel spin
11 Contact line

1

2

5

3

4

2

f

3

5

6

7

7

8

8

9

9

10 10

4
1

1

1

11
b

x

y

z

Figure 4: A motorcycle with control units and de-
grees of freedom

An STV is a non-holonomic dynamic system with six degrees
of freedom: the rotation of the wheels around an axis par-
allel to Oz, the rotation of the handlebar and of the front
wheel around the fork axis (steering), the front and back
translation along the suspension axis, and the rotation of
the whole vehicle around the Ox axis in a system of coor-
dinates relative to the motorcycle where the origin is in the
center of the vehicle, on the ground level. The driver can
control the vehicle through five inputs: the handlebar steer-
ing, leaning the vehicle laterally, the throttle, and the two
brakes, front and back.

The STV is modeled as a reduced state system of continuous



variables. The generalized coordinates of the vehicle at a
particular moment are given by

q = (s, α, θ)T (1)

where s(t) = (x(t), z(t)) represents the spatial position of
the STV, α the leaning angle, and θ the orientation angle
determining the direction of movement d = (cos θ, sin θ).

The vertical component of both s and d is determined by
the altitude and by the slope of the road considering the
current position and orientation of the vehicle. The altitude
is considered low enough that the gravitational acceleration
is the constant g = 9.8 m/s2. Let σ(s, d) be the angle made
by the contact line of the vehicle with the horizontal plane
(x, z).

The driver’s input into the system is defined by the tuple u =
(τ, βf , βr, φ, α) where τ is the component of the acceleration
tangent to the direction of movement d and βf , βr represent
the front and rear brakes respectively. This driver can be
either a human player or an autonomous agent controlling
the vehicle.

Let v = s′ be the momentary speed or velocity in the direc-
tion of movement, and a = v′ = s′′ the momentary accelera-
tion in the direction of movement. The motion of the vehicle
is modeled using Newtonian mechanics. The position and
velocity of the vehicle at t + ∆t are defined by

s(t + ∆t) = s(t) + ∆s, v(t + ∆t) = v(t) + ∆v (2)

where:

∆s = d

„

v · ∆t + a
∆t2

2

«

, ∆v = a · ∆t (3)

The acceleration is defined by the gravity, the friction, the
drag, and the throttle. The brakes do not act as a simple
negative acceleration, but contribute to the friction force
instead.

3.3 The Autonomous Pilot
In this subsection we present the multi-agent autonomous
pilot for our motorcycle and the perceptual information it
uses.

The autonomous pilot uses perceptual information to make
decisions about the vehicle driving. This information is in-
spired from the perceptual cues that a human driver would
also be paying attention to while driving a vehicle. In this
application, the pilot is aware of the following measures:

The visible front distance, denoted by front, defined as the
distance to the border of the road from the current position
in the direction of movement, scaled by the length of the
vehicle, or horizon.

The front probes, denoted by frontl and frontr, are defined
as the distances to the border of the road from the current
position of the vehicle in directions rotated left and right by
a small angle from the direction of movement.

The lateral distances, denoted by leftd and rightd, are mea-
sures of the lateral distance from the vehicle to the border of

the road, at a short distance ahead of the vehicle, simulating
what the pilot might be aware of without turning their head
to look.

The slope is a perceptual version of σ, discretized to simulate
the intuitive notion of road inclination that a human driver
would have, approximated by the values almost flat, slightly
inclined up or down, or highly inclined up or down. This
simulates the fact that a human pilot is not aware of the
precise value of σ.

Figure 5 shows an example of the geometrical definition of
these measures.

Figure 5: Perceptual information used by the au-
tonomous pilot

The motorcycle is driven by several control units (CUs).
Each of them is controlled by an independent agent with
a probabilistic behavior. The agents are not active during
the computation of each new frame simulating the evolution
of the vehicle on the road, but only once in a while in a
non-deterministic manner. This simulates the behavior or a
human driver that may not be able to respond instantly to
the road situation and requires some reaction time.

The current control units focus on the gas (throttle), the
brakes, the handlebar/leaning. Each of these CUs is inde-
pendently adjusted by an agent whose behavior is intended
to drive the motorcycle safely in the middle of the road at
a speed close to a given limit. In our case, the agents con-
trolling the throttle and the handlebar are in general more
active than the agent controlling the brakes.

The agents behave based on a set of equations relating the
road conditions to action. The full set of equations is de-
scribed in [14]. Here we will briefly describe each of the
agents. The equations comprise a fair number of coefficients
and thresholds. The configuration of each agent uses inde-
pendent values for the coefficients.

The Throttle. This agent controls the amount of gas sup-
plied to the engine and thus the speed of the vehicle.

The agent uses a minimal speed threshold vlow, a maximal
speed threshold over which the speed is considered unsafe,
and the given speed limit vlimit. The agent aims to keep the
vehicle speed above vlow and below the maximal one, and
also close below the vlimit.

The agent detects a turn in the road by testing leftd and
rightd and if needed, cuts the gas to allow for a safe turn.
A similar rule is applied to the visible distance in front of
the driver: a low value for front indicates an unsafe road
situation requiring a reduced speed. In any other situation
it attempts to keep the speed close to vlimit.



The Brakes. The agent controlling the brakes presents a
similar behavior to the throttle agent but can only decrease
the speed. This agent acts when a more dramatic change is
necessary.

The Steering / Leaning Agent. The motorcycle can
achieve a change in direction either by steering using the
handlebar, or by leaning. The autonomous pilot has been
tested under three conditions: when the motorcycle is driven
entirely by steering, when the motorcycle is driven entirely
by leaning, and a combined strategy, consisting of steering at
low speed (bellow a threshold) and leaning at a speed above
the threshold. This emulates the general strategy employed
by human drivers.

Alerting Agent. Beside all the agents that are in direct
control of the motorcycle, the pilot comprises a fourth agent
that does not perform any action on the vehicle. While
the other agents are active only occasionally, this agent is
probing the vehicle and road conditions for every new frame
and is capable of activating one of the other agents if the
situation requires special attention. Such situations include
the speed of the vehicle being too high or too low, or the
visible front distance being too short.

3.4 Pilot Configuration by Genetic Algorithms
All of the agents composing the autonomous pilot are gov-
erned by equations comprising a set of thresholds and con-
stants that can be configured to adjust its behavior and op-
timize its performance.

To apply the GAs to this problem, we chose a representa-
tion where each configurable coefficient is assigned 10 binary
genes, and the chromosome results by concatenating all of
the coefficients. Thus, we worked with 36 coefficients be-
cause the pilot combines the leaning and steering modes.
This means that the chromosome is of a length of 320 and
360 respectively.

We used the one-point crossover for our experiments with
a probability of 0.8 and a probability of mutation of 0.01.
We employed an elitist reproduction preserving the best in-
dividual from each generation to the next.

A chromosome is evaluated by running the motorcycle in
a non-graphical environment once with the pilot configured
based on values obtained by decoding the chromosome over a
test circuit presenting various turning and slope challenges.
To compute the objective fitness we marked 50 reference
points on the road and counted how many of them were
almost touched by the motorcycle. The fitness is computed
as follows:

F (x) =
dm

dt

+
1

1 + tm

(4)

where dm is the number of points crossed by the motorcycle,
dt is the total number of points, and tm is the total time
taken until either the circuit was completed, or until a failure
condition was detected.

Thus the objective fitness reflects both how much of the cir-
cuit the motorcycle completed, and how fast it was capable
of finishing the track. In general, a fitness higher than 1 is
an indication of completion of the circuit.

Table 1: Technical specifications of the platforms
used for testing

Label CPU Make CPU Speed Core OS

U1 Intel Pentium 4 2.8 GHz 1 Ub

M2 Intel Core 2 Duo 2.4 Ghz 2 OsX

X2 Intel Dual Core T7200 2.0 GHz 2 XP

X4 Intel Quad Core Q6600 2.4 GHz 4 XP

Table 2: Timing in seconds of the polynomial func-
tion in 1000 generations, average over 100 runs

Platform #Processes

1 2 4 8

U1 2.41 3.77 5.56 13.17

M2 0.7 1.52 1.34 2.07

X2 1.82 1.24 2.71 4.87

X4 1.26 0.77 0.53 1.42

A failed circuit can be caused by one of the following three
situations: a crash due to a high leaning angle, an exit from
the road with no immediate recovery, or crossing the start-
ing line without having reached all the marks, as when the
vehicle takes a turn of 180 degrees and continues backward.

4. EXPERIMENTAL RESULTS
In this section we present some of the experimental results
testing both the executions time/speedup and the fitness
performance.

We have performed a set of experiments for each of our two
problems that consisted on a number of runs: 100 for the
polynomial problem, 10 for the motorcycle one, on four dif-
ferent platforms. The starting population was the same for
each platform, but different for each run. We’ve let the evo-
lution run for 1000 generations in each case and we have
measured the execution time and the fitness achieved in all
the cases. Since the platforms present different operating
systems and numbers of CPU cores, testing the program in
these various conditions will tell us how efficient the imple-
mentation is on each of them, as well as how efficient each
operating system is. In terms of fitness it shouldn’t matter
which platform the program is tested on.

Table 1 introduces the four platforms that we have used
for our computations. In the operating system column, XP
stands for Windows XP, OsX stands for the Mac OsX 10.5.6,
and Ub stands for Ubuntu 8.04.

Table 2 shows the average execution time in number of sec-
onds of the polynomial function. The chromosome length
is 360, the population is of size 50, and we have run 1000
generations in all the cases. The results are averaged over
100 runs.

To complement these timing results, Table 3 shows the speedup
in all of these cases computed as the execution time on a



Table 3: Speedup for the polynomial function com-
puted as the sequential time divided by the parallel
time based on Table 2

Platform #Processes

2 4 8

U1 63.93% 43.35% 18.30%

M2 46.05% 52.24% 33.82%

X2 146.77% 67.16% 37.37%

X4 163.64% 237.74% 88.73%

Table 4: Timing in seconds of the motorcycle driv-
ing, 1000 generations, average over 10 runs

Platform #Processes

1 2 4 8

U1 1969.3 6488.0 13308.1 32031.9

M2 1789.7 7459.4 8396.22 12882.0

X2 1292.5 2922.7 9542.0 10301.3

X4 2081.0 3054.7 5452.5 16955.7

single process divided by the execution time of each multi-
threaded run. A speedup of more than 100% represents a
faster execution time in parallel than sequentially. Note that
the speedup for 8 processes is not expected to be improved
on any of the platforms, since the maximum number of cores
that were available on any of the machines is 4. This table
shows that on most architectures where several cores were
available, the execution time for a number of processes less
or equal to the number of core presents a speedup. These
results showcase the type of problem where the genetic op-
erations themselves might take a significant amount of com-
putational time compared to the evaluation of the fitness
function.

Table 4 shows the timing in seconds for the motorcycle driv-
ing problem. The settings in terms of chromosome length,
population size, and number of generations are exactly the
same as for the polynomial function. Since the evaluation
itself can take a variable amount of time depending on how
long the pilot survives on the road, we have also recorded
the total number of times that the function move has been
called for the motorcycle during the evaluation. We can con-
sider these calls to be basic operations because they require
a uniform amount of time. Since the function move is called
repeatedly until either a crash condition occurs, or until the
vehicle finishes the track, it is the number of such calls that
introduces a great variety in the evaluation time. Thus, this
measure tells us the number of operations executed in every
case. Table 5 shows the number of such calls divided by 104

as an average over 10 runs.

The synchronization protocol requires the threads or agents
to periodically wait for each other. Since the complexity of
the fitness evaluation is not uniform, this means that every
10 generations each of them will be as slow as the slowest
of them. This observation explains why the speedup for the

Table 5: Total number of moves for the motorcycle
driving, divided by 104, average over 10 runs

Platform #Processes

1 2 4 8

U1 18678.0 4180.98 5849.64 11063.75

M2 1881.98 6578.59 7344.52 13074.47

X2 2063.64 5856.67 18086.01 19882.85

X4 4051.34 7763.57 5942.87 14961.18

Table 6: Computational time in seconds for 104

moves

Platform #Processes

1 2 4 8

U1 1.05 1.55 2.28 2.90

X2 0.63 0.50 0.53 0.52

X4 0.51 0.39 0.92 1.13

M2 0.95 1.13 1.14 0.99

motorcycle problem is not as straightforward on the Quad-
Core architecture (X4) as it is the case for the polynomial
function. As future research we intend to find out how nec-
essary this synchronization is. Thus, we could allow the
threads to evolve at their own pace and examine how the
general performance is affected.

To compute the speedup for this problem, we need to com-
pute a baseline of comparison that does not depend on the
number of operations executed for each case. Thus, Table
6 computes the average time is seconds for every 104 move
operations by dividing the time in Table 4 by the number
of moves in Table 5. Then Table 7 shows the speedup for
this problem by dividing this new timing measure for the
sequential case by its value for the parallel case.

Finally we need to observe the average fitness achieved af-
ter 1000 generation for both problems to see if the parallel
model can perform just as well as the sequential one. Table
8 shows these results for the polynomial function first, then
for the motorcycle pilot. We have denoted the fitness func-
tion for the polynomial problem Fp − 10600 because all the

Table 7: Speedup for the motorcycle pilot problem
computed as the sequential time divided by the par-
allel time in Table 6

Platform #Processes

2 4 8

U1 67.94% 46.34% 36.41%

M2 83.87% 83.19% 96.52%

X2 125.51% 118.71% 120.89%

X4 130.55% 55.99% 45.32%



Table 8: Average fitness after 1000 generations

Problem #Processes

1 2 4 8

Fp-10600 54.92 55.86 55.99 56.0

moto 0.7999 0.9999 0.9165 0.7950

Table 9: Average execution time (s) for 1000 genera-
tions as the process communication/synchronization
period varies

#Processes

Synch. Period 1 2 4 8

1 1.28 0.89 0.71 1.96

10 1.26 0.77 0.53 1.42

50 1.27 0.76 0.51 1.07

100 1.26 0.76 0.51 1.01

500 1.26 0.76 0.52 0.86

1000 1.27 0.76 0.51 0.80

values achieved for this problem were higher than this num-
ber, so we decided to subtract it from the reported fitness
for compactness of the table and to make it easier to read.
Larger numbers are better in both cases. We can see that
the parallel model outperforms the sequential one in terms
of fitness for both problems. For the polynomial problem
it seems that even a higher division of the genotype among
the processes is not detrimental to the performance. On the
other hand, for the motorcycle pilot, a higher division of the
genotype doesn’t help improve the performance further.

This fact can be explained by the fact that the polynomial
function, is more separable, while for the motorcycle pilot,
one set of genes can influence the performance of a separate
set. For example, a good function for the change in direction
cannot easily be found if the function adapting the speed to
the road conditions is not adequate.

Table 9 show an experiment where we varied the number of
generations after which the different threads exchange their
best individuals periodically. We have used the polynomial
function and the X4 platform (QuadCore) for this purpose.
The exchange period appears in the first column. This af-
fects the amount of necessary synchronization between the
processes and thus the execution time. The total number
of generations is 1000, so a period of 1000 represents al-
most no synchronization, while a period of 1 represents a
complete synchronization done after each new generation is
built. The time in seconds represents the average execution
time over 100 trials with a population of size 50. For a single
process, the time should be the same in all the cases, since
the exchange is not applicable. The small differences can be
attributed to background OS processes interfering with the
computations.

This table suggests that the communication does not inter-
fere much with the execution time beyond a period of 10

Table 10: Average fitness for the polynomial func-
tion -10600 for 1000 generations as the process com-
munication/synchronization period varies

#Processes

Synch. Period 1 2 4 8

1 54.92 55.85 55.99 55.09

10 55.86 55.99 56.0

50 55.83 56.00 56.00

100 55.81 56.00 56.00

500 55.36 55.97 55.99

1000 18.45 -12.86 -21.46

generations. To complement these results, Table 10 sum-
marizes the average fitness obtained after 1000 generation
with each synchronization period. The table shows that a
communication step of 10 yields a similar performance to a
communication step of 1, or even better. The performance
remains good up to a step of 100 generations, but decreases
significantly when it is up to 1000. This means that the
communication period of 10 generations that we have cho-
sen will not affect the execution time significantly, while also
providing a good performance in terms of fitness.

5. CONCLUSIONS
In this paper we presented a multi-agent parallel model of
genetic algorithms designed to take advantage of multiple
CPU cores in a shared memory architecture. We have tested
our model with two sets of problems of various difficulty and
on four different platforms with several types of processors
and operating systems.

In Section 2 we introduced our parallel model that divides
the genotype among parallel threads or agents on a shared
memory architecture. In this section we also introduced a
polynomial optimization problem that we used for the test.
Section 3 presented the test problems, a polynomial one and
configuring an autonomous pilot for a simulated motorcycle.
This constitutes a hard problem to solve as the evaluation
function is complex and costly.

The experimental results presented in Section 4 explore the
performance of the parallel model on several levels. First,
in what concerns the speedup, for the polynomial function
there is a clear improvement on the platforms with multiple
CPUs. A more modest but still noticeable speedup can be
observed as well for the more difficult problem of configuring
the autonomous pilot. This is due to the need for synchro-
nization and to the non-uniformity of the fitness evaluation
in terms of execution time.

In terms of average fitness achieved in 1000 generations, for
both test problems we can observe that the parallel model
outperforms the sequential model for a number of processes
less or equal to 4, which is also the maximum number of
available cores on our test platforms.

Finally, a set of experiments has shown that the synchro-
nization and communication period of 10 generations that



we have chosen has little impact on the execution time, but
allows the fitness to achieve better levels than the sequential
model.

In conclusion, our model presents a valid approach to taking
advantage of the computing technologies that are becoming
widely available.

6. REFERENCES
[1] E. Alba and M. Tomassini. Parallelism and

evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 6(5):443–462, 2002.

[2] B. Baker, C. Carter, and G. Dozier. Sema: A new
paradigm for distributed genetic and evolutionary
computating. In B. Kim, editor, Proceeding of the
Midwest Artificial Intelligence and Cognitive Science
Conference, pages 35–39, Fort Wayne, IN, 2009.

[3] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs Paralleles, Reseaux et Systems Repartis,
10(2):141–171, 1998. Paris: Hermes.

[4] E. Cantú-Paz. Migration polices, selection pressure,
and parallel evolutionary algorithms. Journal of
heuristics, 7(4):311–334, 2001.

[5] G. Dozier. A comparison of static and adaptive
replacement strategies for distributed steady-state
evolutionary path planning in non-stationary
environments. International Journal of
Knowledge-Based Intellident Engineering Systems
(KES), 7(1):1–8, January 2003.

[6] N. Getz. Control of balance for a nonlinear
nonholonomic no-minimum phase model of a bicycle.
In American Control Conference, Baltimore, June
1994.

[7] K.B. Harvey and C.C. Pettey. The outlaw method for
solving multimodal functions with split ring parallel
genetic algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 274–280,
Orlando (FL), 1999. Morgan Kaufmann Publishers.

[8] M. Kim, V. Aggarwal, U. O’Reilly, and M. Médard. A
doubly distributed genetic algorithm for network
coding. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages
1272–1279, London, UK, July 7-11 2007. ACM.

[9] X. Llorà, R. Reddy, B. Matesic, and R. Bhargava.
Towards better than human capability in diagnosing
prostate cancer using infrared spectroscopic imaging.
In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 2098–2105, London,
UK, July 7-11 2007. ACM.

[10] K. Sastry, D. Goldberg, and X. Llorà. Towards
billion-bit optimization via a parallel estimation of
distribution algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages
577–584, London, UK, July 7-11 2007. ACM.

[11] I. Sekaj and M. Oravec. Selected population
characteristics of fine-grained parallel genetic
algorithms with re-initialization. In GEC ’09:
Proceedings of the first ACM/SIGEVO Summit on
Genetic and Evolutionary Computation, pages
945–948, New York, NY, USA, 2009. ACM.

[12] D. Vrajitoru. Soft Computing in Information
Retrieval. Techniques and Applications, chapter Large

Population or Many Generations for Genetic
Algorithms? Implications in Information Retrieval,
pages 199–222. Physica-Verlag, Heidelberg, Germany,
2000.

[13] D. Vrajitoru. Parallel genetic algorithms based on
coevolution. In R.K. Belew and H. Juillé, editors,
Proceedings of the Genetic and Evolutionary
Computation Conference, Late breaking papers, pages
450–457, 2001.

[14] D. Vrajitoru and R. Mehler. Multi-agent autonomous
pilot for single-track vehicles. In Proceedings of the
IASTED Conference on Modeling and Simulation,
Oranjestad, Aruba, 2005.

[15] K. De Jong Z. Skolicki. The influence of migration
sizes and intervals on island models. In Proceedings of
the Genetic and Evolutionary Computation
Conference, pages 1295–1302, Washington DC, USA,
June 25-29 2005.


