
On the Optimality of a Family of Binary Trees
Dana Vrajitoru

Computer and Information Sciences Department
Indiana University South Bend

South Bend, IN 46645
Email: danav@cs.iusb.edu

William Knight
Computer and Information Sciences Department

Indiana University South Bend
South Bend, IN 46645

Email: wknight@iusb.edu

Abstract—In this paper we present an analysis of the complex-
ity of a class of algorithms. These algorithms recursively explore
a binary tree and need to make two recursive calls for one of the
subtrees and only one for the other. We derive the complexity of
these algorithms in the worst and in the best case and show the
tree structures for which these cases happen.

I. I NTRODUCTION

Let us consider a traversal function for an arbitrary binary
tree. Most of these functions are recursive, although an itera-
tive version is not too difficult to implement with the use of a
stack [1]. The object of this paper, though, is those functions
that are recursive.

For the remainder of the paper we’ll consider the classic
C++ implementation of a tree node as follows:

template <class otype>
struct node {
otype datum;
node *left, *right;

};

When a recursive function makes asimple traversalof a
binary tree withn nodes, in which the body of the traversal
function contains exactly two recursive calls, one on the left
subtree and one on the right, and all other parts of each
call require Θ(1) time, then the execution time is roughly
proportional to the total number of calls (initial and recursive)
that are made. In this case that will be1 + 2n (the call on
the pointer to the root of the tree and one call on each of the
2n pointers in the tree), so the execution time isΘ(n). The
analysis would apply, for example, to the function below that
traverses the tree to calculate its height [2].

int height (node_ptr p) {
if (p == NULL)

return -1;
int left_height = height (p->left);
int right_height = height (p->right);
if (left_height <= right_height)

return 1 + right_height;
else

return 1 + left_height;
}

The next function,height1, is a differently coded version
of the functionheight. Note that this function looks simpler
than the first one. The code ofheight1, though, is not
a “simple traversal” of the kind described above. Here is

the reason: when recursive calls are made, exactly one of
the recursive calls isrepeated. Clearly, then the total number
of calls is not just2n + 1. We shall try to figure out the
total number of calls that could be made when the function
height1 is called on a treeT with n nodes.

int height1 (node_ptr p) {
if (p == NULL)

return -1;
if (height(p->left) <= height(p->right))

return 1 + height(p->right);
else

return 1 + height(p->left);
}

At first sight it would seem that this is not a very useful
problem to study because we can easily correct the fact that
this function performs two recursive calls on one of the
subtrees. We can store the result of the function in a local
variable and use it instead of the second recursive call, as
implemented in the first version of the function. Even if thisis
the case indeed, it would still be useful to know just “how bad”
the complexity of the function can get from a simple change.
Although the problem might sound simple, the complexity
calculation requires a careful analysis of the tree structure and
reveals interesting tree properties related to the height of the
larger subtree.

The second motivation is that just as the functionheight

is representative of a whole class of traversal functions for
binary trees, the analysis for the functionheight1 can also
be applied to a whole class of functions. Some of these can
be optimized with the method used for the functionheight,
but some of them might require operations making the second
recursive call on the same subtree necessary.

An example of such a problem would be modifying the
datum in each of the nodes situated in the taller subtree of
any node. One traversal is necessary to determine the height
of the subtrees. A second traversal is necessary for the subtree
of larger height to increment its datum values.

The trees that we are studying here are somewhat related to
increasing trees that are also related to recursion [3]. Theorems
providing limits to sum of weights and the path length of such
trees can be found [4]. The problem is also related to binary
trees with choosable edge length and cryptography [5].

The idea of balancing the weights in a tree to optimize a
particular function is of a more general nature and is also



related to binary search trees [6], B-trees [7], priority queues
[8], and mergeable trees [9]. These techniques have numerous
applications, as for example, cryptography [10].

II. COMPLEXITY FUNCTION

Let K(T ) denote the total number of calls (initial and
recursive) made when the second height function is called on
a binary treeT , and letLT andRT denote the left and right
subtrees ofT . Then we can write

K(T ) =















1 if T is empty
1 + K(LT ) + 2 K(RT ) if RT

is at least as tall asLT and T 6= φ
1 + 2 K(LT ) + K(RT ) otherwise

Theorem 2.1:For a tree withn nodes, the functionK has
complexityΘ(2n) in the worst case.
Proof. For non-empty trees withn nodes, we can maximize
the value ofK(T ) by making every node (except the root)
the right child of its parent. This results in a tree that has the
maximum possible heightn − 1. Let F (n) denoteK(T ) for
this kind of treeT with n nodes. Then we can write

F (0) = 1, F (n) = 1+F (0)+2F (n−1) = 2F (n−1)+2. (1)

This problem is easy to solve forF (n), and the solution
is Θ(2n). That is, the functionheight1 is exponential on
degenerate binary trees of maximal height. This is the worst
possible case for that algorithm.�

Having identified the worst case forK(T ), let’s now try to
find the best case.

Definition 2.2: A K-optimal treeof sizen is a binary treeT
with n nodes that minimizes the value ofK among all trees
with n nodes.

Based on what we have just seen with trees that maximize
K(T ), it is reasonable to conjecture that the way to build a
K-optimal tree of size is to make it as short as possible.

Perhaps, one might guess, a binary tree isK-optimal if and
only if it is compact, meaning that all of its levels except for
the last one contain all the nodes that they can contain. As
it turns out, however, many compact trees are notK-optimal,
and manyK-optimal trees are not compact.

Definition 2.3: A right-heavytree is one in which every node
has a left subtree of height less than or equal to the height of
its right subtree.

Lemma 2.4:Let T be a binary tree. For any node inT, if
the left subtree is taller than the right subtree, then the two
subtrees can be interchanged without changing the value of
the functionK.
Proof. This is easy to see by examining the code in the second
height function. �

Lemma 2.4 allows us to simplify our search forK-optimal
binary trees by restricting it to right-heavy trees.

For convenience, let’s label each nodeN in a tree with the
number of calls to the functionheight1 that will be made
on the pointer toN, and label each empty subtreeE with the
number of calls on the corresponding null pointer. Note that
these labels will always be powers of 2. Figure 1 shows a tree

labeled using this system. TheK value of this tree is obtained
by adding up all the numeric labels in the tree (118 in this
example). We will also refer to the sum of the labels in a
subtree as theweightof the subtree. Because the tree in Figure
1 is right heavy, for each nodeN in the tree, the left child of
N always has the same label asN, while the right child always
has a label that’s twice the label onN.

Fig. 1. An example of right-heavy tree with labeled nodes. Thedashed lines
indicate null pointers.

SupposeA and n are nodes in a binary tree; ifA is an
ancestor ofn, and if n is reached fromA by following only
right pointers, thenn is a “right descendant” ofA, andA is a
“right ancestor” ofn.

Lemma 2.5:Let T be a right-heavy binary tree, and letL
be a leaf ofT. ThenL can be removed without changing the
label of any other node if and only ifL satisfies one of the
following conditions:
a) L is the only node inT;
b) L is a left child of its parent;
c) L is a right child of its parent, and for each right ancestor
A of L, the left subtree ofA is strictly shorter than its right
subtree. (Figure 2 shows an example of a right leaf, in solid
black color, that can be removed without changing the label
on any other node in the tree.)

Fig. 2. A right leaf that can be removed without changing the labels in the
tree

Proof. A simple observation tells us that the leafL can be
removed fromT without changing the label of any other node
in T if and only if the remaining tree is right-heavy afterL is
removed. Thus, to prove the Lemma, we’ll prove that each
of the three conditions (a), (b), and (c) separately implies
that whenL is removed fromT the remaining tree is right-
heavy; then we’ll prove that if all three conditions are false,
the remaining tree is not right-heavy afterT is removed from
T.



First, suppose the leafL is the only node inT. Then
removingL from T leaves the empty tree, which is vacuously
right-heavy.

Second, suppose the leafL is the left child of some nodeP.
SinceT is right-heavy,P must have a non-empty right subtree.
It is now easy to see that ifL is removed fromT the remaining
tree is right-heavy.

Now suppose the leafL is the right child of some nodeP,
and that for each right ancestorA of L, the left subtree ofA is
strictly shorter than its right subtree. Thus, by removing this
node, each of these left subtrees will now have a height at
most equal to their right counterparts. Then after the first left
ancestor ofL, if there is one, by removingL we reduce the
height of a left subtree, and thus the tree remains right-heavy.

Finally, suppose that all three conditions (a), (b), and (c)
of the Lemma are false, which means that the leafL is the
right child of some node inT and at least one right ancestor
of L has left and right subtrees of equal height (the left can’t
be strictly taller becauseT is right-heavy). In this case, by
removingL, we make the left subtree that had a height equal
to its right sibling, now higher than it, so the tree would not
be right-heavy anymore. �

This proof is provided in more detail in [11].
Corollary 2.6: Let T be a right-heavy binary tree. We can

add a new leafL to the tree without changing the label of any
other node if and only ifL andT satisfy one of the following
conditions:
a) T is empty before insertingL;
b) L is added as a left child of any node that has a right child;
c) L is added as the right-most leaf in the tree or in a place
such that the first ancestor ofL that is not a right ancestor has
a right subtree of height strictly greater than the height ofthe
left subtree before addingL.
Proof. This is a direct consequence of Lemma 2.5.�

Theorem 2.7:The K function is strictly monotone over the
number of nodes on the set ofK-optimal trees. In other words,
if Tm andTn are twoK-optimal trees with number of nodes
equal tom andn respectively, wherem < n, thenK(Tm) <
K(Tn).
Proof. It suffices to prove the statement in the theorem for
m = n− 1. Let Tn be aK-optimal tree withn nodes. Without
loss of generality, we can assume thatTn is right-heavy.

Let us locate the left-most leaf, call itL. There are 3 possible
situations that we need to consider, as shown in Figure 3
(shown without the labels of the empty subtrees for better
clarity).

Fig. 3. Possible placement of the left-most leaf, denoted byL

SupposeL, is at the end of a left branch (left-most case in
Figure 3). SinceTn is right-heavy, Lemma 2.5, case (b), tells
us that we can removeL from Tn without changing any of the
labels on the other internal nodes of the tree. This producesa
right-heavy tree withn−1 nodes and strictly smallerK value.
This smaller tree may not be optimal among all binary trees
with n− 1 nodes, in which case there is someK-optimal tree
Tn−1 with even smallerK value. Thus aK-optimal tree with
n − 1 nodes has a smallerK-value thanK(Tn).

Now suppose the leafL is a right child. LetA be its highest
right ancestor inTn. In the most extreme case,A is the root
of Tn andL is the only leaf inTn, as shown in the right-most
case in Figure 3. Then each of the right ancestors ofL must
have an empty left subtree, otherwiseL would not be the left-
most leaf. By Lemma 2.5 we can removeL without changing
any of the other labels inTn, leaving a right-heavy tree with
smaller K-value. As in the preceding paragraph, this proves
that K-optimal trees withn − 1 nodes have smallerK-value
thanK(Tn). �

III. T WO SPECIAL CASES

Definition 3.1: A perfect binary treeis one where all the
levels contain all the nodes that they can hold.

A perfect tree of heighth has a number of nodesn = 2h+1−
1. We can reverse this to expressh = lg(n+1)−1 = Θ(lg(n)).

Theorem 3.2:The functionK has a complexity ofΘ(nlg(3))
on perfect trees, wheren is the number of nodes in the tree.
Proof. For a perfect tree of heighth ≥ 0, the two subtrees are
perfect trees of heighth − 1. If we denote byκ the value of
the functionK on a perfect tree of heighth, we can write the
sum of labels on these trees as

κ(h) = 1 + 3κ(h − 1), κ(0) = 4.

We can solve this recurrence relation by following the standard
procedure and obtain the solution

κ(h) =
9

2
3h − 1

2
= Θ(3h).

Let us denote byPn a perfect binary tree withn nodes. Using
the relationship betweenn andh, we can now express the same
sum of labels as a function of the number of nodes, getting
us back to the functionK itself:

K(Pn) = Θ(3lg(n)) = Θ(nlg(3)).

Even though most perfect trees turn out not to beK-optimal,
knowing what their sum of labels is and knowing that theK-
optimal function is monotone gives us an upper bound for the
minimal complexity for a given number of nodes.�

Corollary 3.3: The height of aK-optimal tree withn nodes
cannot be larger thanc + lg(3) lg(n), wherec is a constant.
Proof. A K-optimal tree withn nodes and heighth must have
one longest path where the label of every node is an increasing
power of 2, going from 1 for the root to2h for the leaf, plus
the empty subtrees of the leaf, of labels2h and 2h+1. The
sum of the labels is2h+2 − 1 + 2h. This sum is less than
or equal to theK-value of thisK-optimal tree withn nodes,



which, by monotonicity, is less than or equal to theK-value
of the smallest perfect tree of a number of nodesm ≥ n. If g
is the height of this perfect tree, then its number of nodes is
m = 2g+1 − 1. If we choose the smallest of these trees, then
2g − 1 < n ≤ 2g+1 − 1, which impliesg = ⌊lg(n)⌋.

Thus, the height of this perfect tree is equal to⌊lg(n)⌋ and
its number of nodes ism = 2⌊lg(n)⌋+1 − 1 ≤ 2n − 1. By
Theorem 3.2, this implies that,

2h+2 − 1 + 2h ≤ amlg(3) ≤ a(2n − 1)lg(3) < a(2n)lg(3)

= 3 anlg(3)

for some constanta. From this we can write

5 2h ≤ 3anlg(3) ⇒ h ≤ lg(3a/5) + lg(3) lg(n)

and the quantitylg(3a/5) is the constantc in the corollary.
�

Lemma 3.4:The sum of labels on levelk of a perfect binary
tree is equal to3k.
Proof. This Lemma is easily proved by induction, using the
fact that every non-leaf node has two children nodes with a
sum of labels equal to 3 times its own label.�

Lemma 3.5:The number of nodes on levelk of a perfect
binary tree that have labels equal to2j , where0 ≤ j ≤ k,
is equal to C(k, j), where C(k,j) denotes the number of
combinations of k things taken j at a time.
Proof. We will prove this lemma by induction overk using the
following property of the combinations function:

C(m, p) = C(m − 1, p) + C(m − 1, p − 1).

Let us denote byCt(k, j) the count of nodes with label
equal to2j on level k. We’ll prove thatCt is identical with
the functionC.
Base case.For k = 0 we only have one node, soCt(0, 0) =
1 = C(0, 0).
Inductive step.For an arbitraryk andj, there are two types of
nodes with label2j on levelk. The first type are left children
of their parents and their labels are identical to those of their
parents. The count of such nodes isCt(k − 1, j) = C(k −
1, j) by the inductive step. The second type of nodes are right
children of their parents. These nodes have labels that are the
double of the labels of their parents, so they come from nodes
of label 2j−1 on level k − 1. Thus, the count of such nodes
on levelk is equal toCt(k − 1, j − 1) = C(k − 1, j − 1) (by
the inductive step).

By summing up the count of nodes that are left children
and those that are right children, we have that

Ct(k, j) = C(k − 1, j) + C(k − 1, j − 1) = C(k, j). �

Theorem 3.6:A perfect binary tree of heighth ≥ 16 is not
K-optimal.

Proof. Let T be a perfect binary tree of heighth ≥ 16. Our
strategy will be to show that we can find another binary tree,
say T ′, with the same number of nodes asT but a smaller
K-value. This will prove thatT is not K-optimal. T ′ will be

constructed by removingh + 2 of the leaves ofT and re-
attaching them elsewhere, as shown in Figure 4. Now let’s
look at how to do the removals.

Fig. 4. Tree of smaller weight built from a perfect tree

The next-to-last level (levelh − 1) of our perfect treeT
contains2h−1 nodes, each with a label that’s a power of 2.
By Lemma 3.5, there areC(h − 1, h − 2) labels of the form
2h−2. Note thatC(h − 1, h − 2) = h − 1. By Lemma 2.5,
the left child of each of theseh − 1 nodes can be removed
from T without changing any of the labels on the remaining
nodes. For each of these nodes, we remove two empty subtrees
of labels2h−2 and2h−1, and replace the leaf with an empty
subtree of the same label. The net effect, then, is to decrease
the sum of labels inT by 2h−2 + 2h−1 = 3 ∗ 2h−2. When we
do this for allh − 1 of these left leaves with label2h−2, we
have decreased the total weight (i.e., sum of labels) ofT by
3(h − 1)2h−2.

Then we are going to select 3 out of theC(h − 1, h − 3)
(> 3 for h ≥ 6) leaves on levelh−1 of label2h−3 and remove
their left children. Each child removed reduces the weight of
the tree by3 ∗ 2h−3 by the same reasoning as we used in the
preceding paragraph. Thus the total decrease in the weight of
the tree is9 ∗ 2h−3 when these 3 nodes are removed. Thus,
we’ve removedh + 2 nodes fromT with a total decrease in
weight of 3 ∗ (h − 2)2h−2 + 9 ∗ 2h−3.

We are going to re-attach them as shown in Figure 5: one
of them will become the root of a new treeT ′, and all the
others will be placed on a path going straight to the right. The
labels in the original tree do not change. The nodes on the
new path have labels1, 2, 22, . . ., 2h+1, while their empty
subtrees have labels2, 22, 23, . . ., 2h+2. The total weight that
has been added by the re-attachment of the nodes is therefore
3(2h+2 − 1).

Fig. 5. Labels on the added path

Now we need to prove that the weight we subtracted is
greater than the weight we added. That is, we need to verify



that
3(h − 1)2h−2 + 9 ∗ 2h−3 > 3(2h+2 − 1).

Solving this inequation results in

2(h − 1) + 3 ≥ 32,

which, sinceh is an integer, simplifies toh ≥ 16. �

Note. A slightly more complex proof allows us to lower the
threshold in Theorem 3.6 to 12.

Definition 3.7: A binary tree T with n nodes is asize-
balanced tree if and only if its left and right subtrees contain
exactly⌊(n − 1)/2⌋ and⌈(n − 1)/2⌉ nodes respectively, and
a similar partition of the descendents occurs at every node in
the tree.

Theorem 3.8:The functionK on a size-balanced tree with
n nodes has a complexity that isΘ(nlg(3)).
Proof. Let S(n) denote the value ofK(T ) whenT is the size-
balanced tree containingn nodes.

It is easy to prove by induction that size-balanced trees are
right-heavy. Theheight1 function will then make one call on
the pointer to the left subtree and two calls on the pointer to
the right subtree. Thus, we can write the following recurrence
relation forS(n):

S(n) = 1 + S

(⌊

n − 1

2

⌋)

+ 2S

(⌈

n − 1

2

⌉)

,

which is valid for alln ≥ 1, with the initial value isS(0) =
1. This is a difficult recurrence relation to solve exactly, but
instead, we can use the recurrence relation and induction to
prove the inequalities

S(n) ≤ 3⌊lg(n)⌋+2 − 1

2
andS(n) ≥ 3⌊lg(n+1)⌋+1 − 1

2
,

which imply thatS(n) = Θ(nlg(3)). Since lg(3) ≈ 1.585, it
follows that the growth rate ofS(n) is only a little greater
thanΘ(n

√
n). Finally, remember that size-balanced trees are

not necessarilyK-optimal trees, and thus aK-optimal treeT
with n nodes will satisfyK(T ) ≤ S(n). From this it follows
thatK(T ) = O(nlg(3)), wheren denotes the number of nodes
in T. �

Theorem 3.8 now gives us an example of a class of trees
where the functionK has a complexity that isΘ(nlg(3)) for
any arbitrary number of nodesn.

IV. B EST CASE COMPLEXITY

Theorem 4.1:For K-optimal binary treesTn with n nodes,
K(Tn) = Θ

(

nlg(3)
)

.
Suppose we want to build aK-optimal binary tree with a

prescribed number of nodesn. We shall show how the majority
of the nodes must be inserted so as to minimize the sum of
labels. This will allow us to show that theK-optimal n-node
tree we are building must have a sum of labels that’s at least
A(nlg(3)) for some numberA independent ofn. Since Theorem
3.8 implies that the sum of labels in aK-optimal tree withn
nodes can be at mostB(nlg(3)) for some constantB, we will
have proved Theorem 4.1.

So suppose we are given some positive integern. In building
a K-optimal n-node tree, we can without loss of generality
require that it be right-heavy (see Lemma 2.4). Then the
longest branch in the tree will be the one that extends along
the right edge of the tree. Its lowest node will be at levelh,
whereh is the height of the tree. By Corollary 3.3,h will have
to satisfy⌊lg(n)⌋ ≤ h ≤ c+lg(3) lg(n) for a constantc. Thus
h is Θ(log(n)). We can start withh = ⌊lg(n)⌋, then attach
additional nodes to this longest branch if they are needed late
in the construction. Whenn is large, we will have used only
a small fraction of the prescribedn nodes during construction
of this right-most branch. We will still have many nodes left
over to insert into the optimal tree we are building. Finally,
note that the longest branch will haveh+1 nodes, with labels
20, 21, 22, . . ., 2h. Their sum is2h+1 − 1.

Let us add nodes to this branch in the order of labels,
following Corollary 2.6. Note that it is not always possible
to add the node of lowest label, and oftentimes we need to
add a right leaf of higher label before we can add a left one
of lower label.

The first node that we can add is the left child of the root,
of label 1, as shown in Figure 6 left. Then we can add all 3
nodes in the empty spots on level 2 of the tree, as shown in
the second tree in Figure 6. At this point, there are 3 spots
available for nodes of label 4, and that is the lowest label
that can be added, as shown in the third tree in Figure 6. The
left-most node of label 4 would allow us to add 3 nodes of
labels lower than 4. The one to its right would allow only the
addition of one node of label 2. The right-most node of label
4 does not open any other spots on the same level.

Fig. 6. Incremental level addition in aK-optimal tree

It stands to reason that we should insert the left-most label
4 first, as shown in the right-most tree in Figure 6. After this
insertion there are two spots at which a label 2 can be added.
The left-most one allows us to add a node of label 1, while
the other one doesn’t. Thus we would insert the left-most 2,
followed by a 1. Then we can insert the other 2 into level 3,
as shown in Figure 7.

Fig. 7. Nodes that the addition of the one labeled 4 allows in the tree

Continuing a few more steps the same way, we notice that
a structure emerges from the process, shown in Figure 8. We



shall call it theskeleton structure. At every step in a new level,
these nodes represent the ones that would open the most spots
of lower labels out of all available spots of optimal label. This
figure does not show all the nodes added on a level before the
next one is started, but rather the initial structure that the rest
of the nodes are added on. In fact, the first few levels in the
tree are filled up completely by the procedure. At some point
it can become less expensive to start adding nodes on the next
level down rather than continuing to complete all the upper
levels. Theorem 3.6 indicates the level where this situation
occurs.

The skeleton structure of theK-optimal tree we will con-
struct will consist of the right-most branch of heighth, the
right-most branch of the left subtree, the right-most branch of
the left subtree of the left subtree, and so on down the tree.
Let’s useg to denote the height of the left subtree, so that
g ≤ h − 1. It follows that g = O(log(n)).

Note that the skeleton structure without the longest branch
contains the first new nodes added to every new level. By
trimming the whole tree at the levelg, we only cut offh − g
number of nodes on the right-most branch, and their number
is at mosth = Θ(log(n)). Thus, this subtree of heightg
will contain at leastn − h + g nodes, and this number is
asymptotic ton. Thus, g ≥ ⌊lg(n)⌋ for n large enough. In
general,g = Θ(log(n)). For the remaining of the proof, let us
consider the skeleton structure to be trimmed at the levelg.

Fig. 8. The skeleton structure for a tree of height 4

Let us now examine the contribution of the skeleton struc-
ture trimmed to levelg in terms of number of nodes and sum
of labels. Thenumber of nodesin this structure is calculated by
noting that it is composed ofg + 1 paths, starting from one
composed ofg + 1 nodes and decreasing by 1 every time. So
we have

g
∑

i=0

i =
(g + 1)(g + 2)

2
= Θ((log(n))2).

The sum of labels can be computed by observing that on
each of these paths, we start with a label equal to 1, and then
continue by incremental powers of 2 up to the length of the
path. The sum of the labels on a path of lengthi is computed
just like we did for the right-most branch, and is equal to
2i+1 − 1. Thus, we can compute the totalsum of labelsas

g
∑

i=0

(2i+1 − 1) = 2g+2 − 2− (g + 1) = 2g+2 − g − 3 = Θ(n).

TABLE I
NODES OF LOWEST WEIGHT THAT CAN BE ADDED TO THE SKELETON

STRUCTURE

Iteration # Nodes Weight
i = 1 g − 1 2(g − 1) = 21 · 30(g − 1)
i = 2 g − 2 4(g − 2) = 22 · 30(g − 2)

2(g − 2) 6(g − 2) = 21 · 31(g − 2)
i = 3 20(g − 3) 8(g − 3) = 23 · 30(g − 3)

21(g − 3) 22 · 31(g − 3)
22(g − 3) 21 · 32(g − 3)

We can see that this skeleton structure contributes onlyΘ(n)
to the sum of labels in the tree, which will not change its
overall complexity, but it also uses onlyΘ((log(n))2) of the
n nodes.

Minimal Node Placement.For the next part of the proof,
we shall place the remainder of the nodes in this structure in
order starting from the empty places of lowest possible label
going up. These nodes are naturally placed in the tree while
the skeleton structure is being built up, but for the purposeof
the calculation, it is easier to consider them separately.

A simple observation is that the empty spots of lowest labels
available right now are the left children of all the nodes labeled
2. For all of them, a branch on the right side is present, so we
can add them without any changes to the labels in the tree.
There areg − 1 such empty spots available, because the first
of them is on level 2, as shown in Figure 9 left.

Next, by the same reasoning, we can addg−2 left children
of label 4. At the same time, we can add a right child of label
4 to every node added at the previous step with label 2, except
for the lowest one. That is, we can addg − 2 right children,
each having label 4, as shown in thei = 2 column of Figure
9. In addition, we can also add theg − 2 left children of the
same parents. None of these additions causes any changes in
the labels of the original nodes in Figure 8.

We can thus proceed in several steps, at each iteration
adding nodes with labels going from 2 up to a power of 2
incrementing at every step. Let us examine one more step
before we draw a general conclusion.

For the third step, we can addg − 3 nodes of label8 = 23.
Next to this, we can add a complete third level tog−3 perfect
subtrees added at the very first step, that have a root labeled
2, and a second complete level tog − 3 perfect subtrees of
root labeled 4. This continues to grow the perfect subtrees
started at the previous levels. The sum of labels on a level of
a perfect tree is equal to a power of 3, but this quantity must
also be multiplied by the label of the root in our case. Table
I summarizes the nodes we have added and their total weight
for the 3 steps we’ve examined so far. Figure 9 also illustrates
this explanation.

From this table we can generalize that for the iteration
numberi we will have groups of nodes that can be added, with
a count ofg − i groups in each category. For each category
we will be adding the levelk of a perfect tree that has a root
labeled2i−k. The number of nodes in each such group is2k.



The weight of each group is2i−k · 3k.

Fig. 9. Nodes added to the skeleton structure in 3 steps for a tree of height
5

Let us assume that to fill up the tree with the remainder
of the nodes up ton, we needm such operations, and maybe
another incomplete step after that. We can ignore that step for
now, since it will not change the overall complexity. To find
out what the total sum of labels is, we need to find a way to
expressm as a function ofg or n.

The total number of nodes added at stepi is
i−1
∑

k=0

2k(g−i) =

(g− i)(2i −1). If we addm such steps, then the total number

of nodes that we’ve added is
m

∑

i=1

(g − i)(2i − 1). We need to

find m such that this sum is approximately equal to2g − (g +
1)(g + 2)/2, which is n from which we subtract the nodes in
the skeleton structure. This is assuming thatg ≈ lg(n) and
later we will address the case whereg is approximately equal
to a constant timeslg(n), constant less than or equal tolg(3).

The total weight added in the step numberi is

i−1
∑

k=0

(g − i)2i−k3k = 2(g − i)

i−1
∑

k=0

2(i−1)−k3k =

2(g − i)2i−1
i−1
∑

k=0

3k

2k
= 2i(g − i)

i−1
∑

k=0

(

3

2

)k

We can use the formula
∑i−1

k=0 xk = xi−1
x−1 to compute the sum

as

2i(g−i)
(3/2)i − 1

(3/2) − 1
= 2i(g−i)

3i − 2i

2i

2

3 − 2
= 2(g−i)(3i−2i)

To compute the number of nodes, we will need the following
known sum, valid for all positive integersp and real numbers
t 6= 1,

1+2t+3t2+. . .+ptp−1 =

p
∑

i=1

iti−1 =
1 + ptp+1 − (p + 1)tp

(t − 1)2

We can rewrite our sum as
m

∑

i=1

(g − i)(2i − 1) = 2g
m

∑

i=1

(g − i)
1

2g−i+1
−

m
∑

i=1

(g − i) .

By making the change of variable in both sumsj = g− i, we
have

2g

g−1
∑

j=g−m

j
1

2j+1
−

g−1
∑

j=g−m

j =

2g−2

g−1
∑

j=g−m

j
1

2j−1
− (m − 1)(2g − m − 1)

2

Let us compute the sum in the last expression separately.

g−1
∑

j=g−m

j
1

2j−1
=

g−1
∑

j=1

j
1

2j−1
−

g−m−1
∑

j=1

j
1

2j−1
=

1 + (g − 1)(1/2)g − g(1/2)g−1

(1/2 − 1)2
−

1 + (g − m − 1)(1/2)g−m − (g − m)(1/2)g−m−1

(1/2 − 1)2

The two fractions have common denominator 1/4, so we
combine the numerators. The leading 1s cancel each other.
We can factor out1/2g from the remaining terms to obtain

4

2g
((g − 1) − 2g − (g − m − 1)2m + (g − m)2m+1)

1

2g−2
((g − 1) − 2g − (g − m − 1)2m + (g − m)2m+1)

=
1

2g−2
(2m(g − m + 1) − g − 1).

By replacing it back into the original formula, the number of
nodes is equal to

2m(g−m+1)−g−1− (m − 1)(2g − m − 1)

2
= Θ(2m(g−m)).

Given the similarity between the two sums, we obtain that the
total weight of the nodes in the tree is

Θ((3m − 2m)(g − m)) = Θ(3m(g − m)).

Coming back to the question of expressingm as a function
of g, if we write

(g − m + 1)2m = 2g ⇔ g − m + 1 = 2g−m

and then introducer = g−m, we have the equationr+1 = 2r

which has the solutionsr = 0 and r = 1. Figure 10 shows
the graph of the function2x − x in the interval[−1, 3].

The first solution would mean that the tree is almost perfect,
and we have proved before that perfect trees are notK-optimal.
So we can conclude thatm = g− 1. Considering that the last
level of the skeleton structure itself may be incomplete, this
means that forg large enough, only 1 or 2 levels beyond the
last may not be complete in the tree trimmed at the levelg.

To examine the relationship betweenm andg further, let us
assume thatg ≈ d lg(n), where1 ≤ d ≤ lg(3) ≈ 1.585. Then
we can writen ≈ 2g/d. Going back to the formula computing
the number of nodes in the tree, we have

2m(g − m + 1) ≈ 2g/d



Fig. 10. The graph of the function2x
− x

from which we can write

g − m + 1 ≈ 2g/d−m = 2g−m+(g/d)−g =
2g−m

2g(d−1)/d
.

Again, making the substitutionx = g − m, we get

2g(d−1)/d ≈ 2x

x + 1
.

Remembering thatg ≈ d lg(n), we can write

nd(d−1)/d = nd−1 ≈ 2x

x + 1
or n ≈

(

2x

x + 1

)1/(d−1)

,

where0 ≤ d − 1 ≤ 0.585.
Let us writef(y) = 2y

y+1 and start with the observation that
this function is monotone ascending fory ≥ 1. Let us examine
the hypothesis thatf(b lg(n)) > f(x) for some constantb to
be defined later. The hypothesis is true if and only if

f(b lg(n)) =
2b lg(n)

b lg(n) + 1
=

nb

b lg(n) + 1
> f(x) ≈ nd−1

which is equivalent to

nb

b lg(n) + 1
> nd−1 ⇔ nb−d+1 > b lg(n) + 1.

Since a positive power ofn grows faster than the logarithm in
any base ofn, we can say that the inequality above is true for
any constantb > d−1. So we can choose a constantb, d−1 <
b < d, such thatf(x) < f(b lg(n)). By the monotonicity of
the function, this implies thatx < b lg(n), which means that
g − m < b lg(n), and considering thatg ≈ d lg(n), we can
say that(d− b) lg(n) < m ≤ lg(3) lg(n), from which we can
conclude thatm = Θ(log(n)).

Coming back to the formula computing the weight as
Θ(3m(g − m)), based on the result thatm = Θ(log(n)), we
can conclude that the complexity of the function is minimal in
the case where the value ofg −m is a constant, and that this
complexity is indeedΘ(nlg(3)) in this case. While this does
not necessarily mean thatg − m = 1, the difference between
the two numbers must be a constant.

Now we can examine how many nodes we can have on the
longest branch in the tree beyond the level of the skeleton
structure. One node can be expected, for example in those
cases where a perfect tree isK-optimal for small values of

n, and a new node is added to it. If more nodes are present
on the same branch, those node will have labels incrementing
exponentially and larger than any empty spots still available
on lower levels. They can easily be moved higher in the tree
to decrease the total weight. Thus, we can deduce thatg = h
or g = h − 1.

The weight of the tree, and thus the complexity of theK
function, is the order ofΘ(3h) = Θ(3lg(n)) = Θ(nlg(3)). �

It is interesting to note that this is also the order of
complexity of the functionK on perfect trees and on size-
balanced trees, even though neither of them isK-optimal in
general.

V. CONCLUSION

In this paper we have studied the complexity of a special
class of recursive functions traversing binary trees. We started
with a recurrence relation describing this complexity in the
general case. We continued with a simple analysis of the worst
case complexity, which turned out to be exponential. Next, we
showed two particular types of trees that give us a complexity
of Θ(nlg(3)).

Finally, after discussing a few more properties of theK-
optimal trees that minimize the complexity function over the
trees with a given number of nodes, we showed a constructive
method to build these trees. In the process we have also shown
that the complexity of the function on these trees is also
Θ(nlg(3)), which concludes the study of this function.

We can conclude from this analysis that any method that
allows us to avoid repeating recursive calls will significantly
improve the complexity of a function in all the cases.

REFERENCES

[1] D. E. Knuth, The Art Of Computer Programming, Volume 1: Funda-
mental Algorithms, 3rd ed. Addison-Wesley, 1997.

[2] R. Sedgewick,Algorithms in C++, 3rd ed. Addison-Wesley, 2001.
[3] M. Kuba and A. Panholzer, “The left-right-imbalance of binary search

trees,” Theoretical Computer Science, vol. 370, no. 1-3, pp. 265–278,
2007, elsevier Science Publishers.

[4] R. Neininger and L. Rachendorf, “A general limit theorem for recur-
sive algorithms and combinatorial structures,”The Annals of Applied
Probability, vol. 14, no. 1, pp. 378–418, 2004.

[5] J. Masberg and D. Rautenbach, “Binary trees with choosable edge
lengths,” Infomation Processing Letters, vol. 109, no. 18, pp. 1087–
1092, 2009.

[6] N. Askitis and J. Zobel, “Redesigning the string hash table, burst trie,
and bst to exploit cache,”ACM Journal of Experimental Algorithmics,
vol. 15, no. 1, p. 7, January 2011.

[7] M. Bender, M. F.-C. dand J. Fineman, Y. Fogel, B. Kuszmaul, and
J. Nelson, “Cache-oblivious streaming b-trees,” inProceedings of the
ACM Symposium on Parallelism in Algorithms and Architectures, San
Diego, CA, June 9-11 2007, pp. 81–92.

[8] L. Arge, M. Bender, and E. Demaine, “Cache-oblivious priority queue
and graph algorithm applications,” inProceedings of the ACM Sympo-
sium on Theory of Computing, Montreal, Quebec, Canada, May19-21
2002, pp. 268–276.

[9] L. Georgiadis, H. Kaplan, N. Shafrir, R. E. Tarjan, and R.F. Werneck,
“Data structures for mergeable trees,”ACM Transactions on Algorithms,
vol. 7, no. 2, p. 14, 2011.

[10] N. Talukder and S. I. Ahamed, “Preventing multi-query attack in
location-based services,” inProceedings of the ACM Conference on
Security and Privacy in Wireless and Mobile Networks, Hoboken, New
Jersey, March 22-24 2010, pp. 25–35.

[11] D. Vrajitoru and W. Knight, “On the k-optimality of a family of binary
trees,” Indiana University South Bend, Tech. Rep., 2011.


