On the Optimality of a Family of Binary Trees

Dana Vrajitoru William Knight
Computer and Information Sciences Department Computer and Information Sciences Department
Indiana University South Bend Indiana University South Bend
South Bend, IN 46645 South Bend, IN 46645
Email: danav@cs.iusb.edu Email: wknight@iusb.edu

Abstract—In this paper we present an analysis of the complex- the reason: when recursive calls are made, exactly one of
ity of a class of algorithms. These algorithms recursively explore the recursive calls isepeated Clearly, then the total number
a bhinary tree and need to make two recursive calls for one of the of calls is not just2n + 1. We shall try to figure out the

subtrees and only one for the other. We derive the complexity of .
these algorithms in the worst and in the best case and show the total number of calls that could be made when the function

tree structures for which these cases happen. hei ght 1 is called on a tred with n nodes.

I. INTRODUCTION int heightl (node_ptr p) {
. . . . if (p == NULL)
Let us consider a traversal function for an arbitrary binary = [ot yrn -1

tree. Most of these functions are recursive, although aa-ite jf (hei ght (p->left) <= hei ght (p->right))
tive version is not too difficult to implement with the use of a return 1 + height(p->right);
stack [1]. The object of this paper, though, is those fumstio €l se)
that are recursive. return 1 + height(p->left);
For the remainder of the paper we’ll consider the class'}c
C++ implementation of a tree node as follows: At first sight it would seem that this is not a very useful
problem to study because we can easily correct the fact that
struct node { this function performs two recursive calls on one of the
otype datum subtrees. We can store the result of the function in a local
node *left, =right; variable and use it instead of the second recursive call, as
b implemented in the first version of the function. Even if tisis
When a recursive function makes simple traversalof a the case indeed, it would still be useful to know just “how’bad
binary tree withn nodes, in which the body of the traversaf€ complexity of the function can get from a simple change.
function contains exactly two recursive calls, one on tie lgAlthough the problem might sound simple, the complexity
subtree and one on the right, and all other parts of eagflculation requires a careful analysis of the tree strecand
call require ©(1) time, then the execution time is rough|yreveals interesting tree properties related to the heiftthe
proportional to the total number of calls (initial and resiue) larger subtree. _
that are made. In this case that will ber 2n (the call on The second motivation is that just as the functtan ght
the pointer to the root of the tree and one call on each of tfe representative of a whole class of traversal functions fo
2n pointers in the tree), so the execution timei¢n). The binary trees, the analysis for the funpnbai ght 1 can also
analysis would apply, for example, to the function belowt th&€ applied to a whole class of functions. Some of these can

tenpl ate <cl ass otype>

traverses the tree to calculate its height [2]. be optimized with the method used for the functiosi ght,
but some of them might require operations making the second
int height (node ptr p) { recursive call on the same subtree necessary.
if (p == NULL) An example of such a problem would be modifying the
return -1; dat umin each of the nodes situated in the taller subtree of

int |eft_height hei ght (p->left);
int right_height = height (p->right);
if (left_height <= right_height)

any node. One traversal is necessary to determine the height
of the subtrees. A second traversal is necessary for theegubt

return 1 + right_height; of larger height to increment its datum values.
el se The trees that we are studying here are somewhat related to
return 1 + |eft_height; increasing trees that are also related to recursion [3of&mas
} providing limits to sum of weights and the path length of such

The next functionhei ght 1, is a differently coded version trees can be found [4]. The problem is also related to binary
of the functionhei ght . Note that this function looks simplertrees with choosable edge length and cryptography [5].
than the first one. The code dfei ght 1, though, is not The idea of balancing the weights in a tree to optimize a
a “simple traversal” of the kind described above. Here jsarticular function is of a more general nature and is also

related to binary search trees [6], B-trees [7], prioriteges labeled using this system. Thkevalue of this tree is obtained
[8], and mergeable trees [9]. These techniques have numerby adding up all the numeric labels in the tree (118 in this
applications, as for example, cryptography [10]. example). We will also refer to the sum of the labels in a
subtree as theveightof the subtree. Because the tree in Figure
1 is right heavy, for each node in the tree, the left child of

Let K(T) denote the total number of calls (initial andy ajways has the same label iswhile the right child always
recursive) made when the second height function is called gRs a label that's twice the label o

a binary treeT’, and letL; and R denote the left and right
subtrees ofl’. Then we can write

II. COMPLEXITY FUNCTION

1 if T is empty
1+ K(Ly)+2K(Ry) if Ry

is at least as tall ad. and T # ¢
1+2K(Lt)+ K(Rr) otherwise

Theorem 2.1:For a tree withn nodes, the functiolX has VAN
complexity ©(2™) in the worst case. % %
Proof. For non-empty trees witln nodes, we can maximize _ _ _ ,
the value OfK(T) by making every node (except the romﬂgi.cgte ﬁﬂlle;gmgfs?f right-heavy tree with labeled nodes. @ashed lines
the right child of its parent. This results in a tree that Hees t
maximum possible height — 1. Let F'(n) denote&(T) for gypnosea and n are nodes in a binary tree; & is an
this kind of treeT with n nodes. Then we can write ancestor ofn, and if n is reached froma by following only
F(0) =1, F(n) = 1+F(0)+2F(n—1) = 2F(n—1)+2. (1) "ght pointers, them is a “right descendant” oA, andA is a
“right ancestor” ofn.
This problem is easy to solve fdf(n), and the solution | emma 2.5:Let T be a right-heavy binary tree, and let
is ©(2"). That is, the functiorhei ght 1 is exponential on pe a |eaf ofT. ThenL can be removed without changing the
degenerate binary trees of maximal height. This is the wolgbel of any other node if and only If satisfies one of the

K(T)

possible case for that algorithm. B following conditions:
Having identified the worst case fdf(T), let's now try to &) L IS the only node i;
find the best case. b) L is a left child of its parent;

Definition 2.2: A K-optimal treeof sizen is a binary treer c) L is a right child of its pa_rent, .and for each right. ang:estor
with n nodes that minimizes the value &f among all trees A of L, the_left subtree ofA is strictly shorter_ than its _rlght _
with n nodes. subtree. (Figure 2 shows an example of a right leaf, in solid

Based on what we have just seen with trees that maximi2ick color, that can be removed without changing the label
K(T), it is reasonable to conjecture that the way to build @ @ny other node in the tree.)

K-optimal tree of size is to make it as short as possible.

Perhaps, one might guess, a binary treg-igptimal if and
only if it is compact meaning that all of its levels except for
the last one contain all the nodes that they can contain. As
it turns out, however, many compact trees are Kwaptimal,
and manyK-optimal trees are not compact.

Definition 2.3: A right-heavytree is one in which every node
has a left subtree of height less than or equal to the height of
its right subtree.

Lemma 2.4:Let T be a binary tree. For any node 1 if
tSTJT)tIg(tes'Sli:k::leselslr:?el :iL;?]Zg;h\f” trFII?)rl]Jtt iﬁgﬁ:gﬁ;gthtﬁg ::‘Tu;tr& 2. Arright leaf that can be removed without changing theels in the
the functionk.

Proof. This is easy to see by examining the code in the secoRdof. A simple observation tells us that the lelafcan be

height function. W removed fromT without changing the label of any other node
Lemma 2.4 allows us to simplify our search fieroptimal in T if and only if the remaining tree is right-heavy afteiis
binary trees by restricting it to right-heavy trees. removed. Thus, to prove the Lemma, we'll prove that each

For convenience, let's label each nodén a tree with the of the three conditions (a), (b), and (c) separately implies
number of calls to the functiohei ght 1 that will be made that whenL is removed fromT the remaining tree is right-
on the pointer ta\, and label each empty subtréewith the heavy; then we’ll prove that if all three conditions are &ls
number of calls on the corresponding null pointer. Note th#tte remaining tree is not right-heavy afteis removed from
these labels will always be powers of 2. Figure 1 shows a trée

First, suppose the leaf is the only node inT. Then Suppose,, is at the end of a left branch (left-most case in
removingL from T leaves the empty tree, which is vacuouslyigure 3). Sincerl,, is right-heavy, Lemma 2.5, case (b), tells
right-heavy. us that we can removefrom T,, without changing any of the

Second, suppose the ldafs the left child of some node. labels on the other internal nodes of the tree. This prodaces
SinceT is right-heavyP must have a non-empty right subtreeflight-heavy tree withn — 1 nodes and strictly smalles value.

It is now easy to see thatlifis removed fronT the remaining This smaller tree may not be optimal among all binary trees
tree is right-heavy. with n — 1 nodes, in which case there is som@ptimal tree

Now suppose the ledf is the right child of some node, In-1 with even smalleK value. Thus &-optimal tree with
and that for each right ancestarof L, the left subtree oA is 7 — 1 nodes has a smallet-value thank (7),).
strictly shorter than its right subtree. Thus, by removihgt NOw suppose the leafis a right child. LetA be its highest
node, each of these left subtrees will now have a height f@ht ancestor iril’,. In the most extreme cas8, is the root
most equal to their right counterparts. Then after the fedfit | Of 7 andL is the only leaf inT’,, as shown in the right-most
ancestor ofL, if there is one, by removing we reduce the case in Figure 3. Then each of the right ancestors pfust
height of a left subtree, and thus the tree remains righisheahave an empty left subtree, otherwisevould not be the left-

Finally, suppose that all three conditions (a), (b), and (&0St leaf. By Lemma 2.5 we can remolevithout changing
of the Lemma are false, which means that the leas the any Of the other labels iff;,, leaving a right-heavy tree with
right child of some node i and at least one right ancestosMallerk-value. As in the preceding paragraph, this proves
of L has left and right subtrees of equal height (the left carffat K-optimal trees withn — 1 nodes have smallek-value
be strictly taller becaus& is right-heavy). In this case, by Nan&(Z,). ®
removingL, we make the left subtree that had a height equal

to its right sibling, now higher than it, so the tree would not o)
be right-heavy anymore. B Definition 3.1: A perfect binary treeis one where all the

levels contain all the nodes that they can hold.

A perfect tree of height has a number of nodes= 2"+1 —
We can reverse this to exprdss= lg(n+1)—1 = ©(lg(n)).
Theorem 3.2:The functionk has a complexity 08 (n'e(3))
on perfect trees, wheneis the number of nodes in the tree.
Proof. For a perfect tree of heigfhit > 0, the two subtrees are

b) L is added as a left child of any node that has a right chil erfect tr_ees of height — 1. If we der_10te bys: the va_lue of
c) L is added as the right-most leaf in the tree or in a placee functionk on a perfect tree of heigfit, we can write the
such that the first ancestor bfthat is not a right ancestor has "™ of labels on these trees as

a right subtree of height strictly greater than the heighthef k(h)=1+3k(h—1), £(0)=4.

left subtree before addinig

Proof. This is a direct consequence of Lemma 2.5

Theorem 2.7:The K function is strictly monotone over the
number of nodes on the set foptimal trees. In other words, K(h) = ggh _ L
if 7,, and T}, are twoK-optimal trees with number of nodes 2 2
equal tom andn respectively, wheren < n, then K (T,,,) < Let us denote by, a perfect binary tree with nodes. Using
K(T,). the relationship betweenandh, we can now express the same
Proof. It suffices to prove the statement in the theorem f&um of labels as a function of the number of nodes, getting
m =n— 1. LetT, be aK-optimal tree withn nodes. Without Us back to the functioi itself:
loss of generality, we can assume thgtis right-heavy. K(P,) = @(Slg(n)) _ @(nlg(B)).

Let us locate the left-most leaf, calllit There are 3 possible
situations that we need to consider, as shown in Figure 3Even though most perfect trees turn out not takeptimal,

(shown without the labels of the empty subtrees for bettkRowing what their sum of labels is and knowing that the
clarity). optimal function is monotone gives us an upper bound for the

minimal complexity for a given number of nodes.li

104 Corollary 3.3: The height of ek-optimal tree withn nodes

N cannot be larger than+ 1g(3) 1g(n), wherec is a constant.

. AN Proof. A K-optimal tree withn nodes and height must have

2 2dA s, one longest path where the label of every node is an incrgasin

N . .. power of 2, going from 1 for the root t?" for the leaf, plus

24g 2m [leam g Y the empty subtrees of the leaf, of lab&s and 2"*!. The
sum of the labels i2"*2 — 1 + 2", This sum is less than

Fig. 3. Possible placement of the left-most leaf, denoted. by or equal to thek-value of thisk-optimal tree withn nodes,

IIl. Two SPECIAL CASES

This proof is provided in more detail in [11].
Corollary 2.6: Let T be a right-heavy binary tree. We can
add a new leat to the tree without changing the label of any”
other node if and only if. and T satisfy one of the following
conditions:
a) T is empty before inserting;

We can solve this recurrence relation by following the stadd
procedure and obtain the solution

=0(3").

which, by monotonicity, is less than or equal to tkesalue constructed by removing + 2 of the leaves ofT and re-
of the smallest perfect tree of a number of node$ n. If ¢ attaching them elsewhere, as shown in Figure 4. Now let's
is the height of this perfect tree, then its number of nodesl@ok at how to do the removals.
m = 2971 — 1. If we choose the smallest of these trees, then
29 — 1 <n <2971 — 1, which impliesg = |lg(n)].

Thus, the height of this perfect tree is equal tg(r)] and
its number of nodes isn = 2Us(]+1 _ 1 < 2p — 1. By
Theorem 3.2, this implies that,

2ht2 142k <am'®® < qa(2n — 1)) < q(2n)8®)

=3an's® fissing h+2 nodes

for some constant. From this we can write Fig. 4. Tree of smaller weight built from a perfect tree

h 1g(3) <
52" < 3an = h<lg(3a/5) +1g(3)la(n) The next-to-last level (leveh — 1) of our perfect treeT

and the quantitylg(3a/5) is the constant in the corollary. contains2"~! nodes, each with a label that's a power of 2.

[| By Lemma 3.5, there ar€'(h — 1, h — 2) labels of the form
Lemma 3.4:The sum of labels on levéi of a perfect binary 2"~2. Note thatC'(h — 1,h — 2) = h — 1. By Lemma 2.5,
tree is equal ta*. the left child of each of thesé — 1 nodes can be removed

Proof. This Lemma is easily proved by induction, using th&om T without changing any of the labels on the remaining

fact that every non-leaf node has two children nodes withr@des. For each of these nodes, we remove two empty subtrees

sum of labels equal to 3 times its own label® of labels2"~2 and 2", and replace the leaf with an empty
Lemma 3.5:The number of nodes on levél of a perfect subtree of the same label. The net effect, then, is to dexreas

binary tree that have labels equal 26, where0 < j < k, the sum of labels i by 2"~2 + 2"~* = 3+ 2"~2. When we

is equal to C(k,j), where C(k,j) denotes the number oo this for allh — 1 of these left leaves with lab&*—2, we

combinations of k things taken j at a time. have decreased the total weight (i.e., sum of labels} b¥
Proof. We will prove this lemma by induction ovérusing the 3(h —1)2"72. _
following property of the combinations function: Then we are going to select 3 out of th&h — 1,4 — 3)
(> 3 for h > 6) leaves on leveh—1 of label2"~3 and remove
C(m,p)=C(m —1,p)+C(m —1,p—1). their left children. Each child removed reduces the weight o

Let us denote byC,(k, j) the count of nodes with label the tree by3 x 2"—3 by the same reasoning as we used in the

equal t02’ on level k. We'll prove thatC; is identical with preceding paragraph. Thus the total decrease in the weight o
the functionC. the tree is9 * 23 when these 3 nodes are removed. Thus,

Base caseFor k = 0 we only have one node, s6,(0,0) = WeVve€ removedh + 2 }?PQdes frorgjgwnh a total decrease in
1=C(0,0). weight of 3 % (h — 2)2"=2 4 9 4 2h—3,

Inductive stepFor an arbitraryk and j, there are two types of V€ are going to re-attach them as shown in Figure 5: one

nodes with label? on level k. The first type are left children ththem ,‘|’|Vig belcoms the r°°th°f a new t.réf’ a”r‘]j all :‘heTh
of their parents and their labels are identical to those efrth ©"€r's Will be placed on a path going straight to the right

parents. The count of such nodesGs(k — 1,5) = C(k — labels in the original tree do not change. The nodes on the

2 h+1 i i
1,7) by the inductive step. The second type of nodes are ridpﬁ’w path have labels, 2, 2%, ..., 27", while their empty

2 93 h+2 i
children of their parents. These nodes have labels thathare §ubt[)ees ha(;/g Igl:l;eksﬁ 2% r2]) Thfe ;Otal v(\j/e|g_ht t::at ¢
double of the labels of their parents, so they come from nod@ s been added by the re-attachment of the nodes Is therefore

. h+2 _
of label 27~! on level k — 1. Thus, the count of such nodes 2 D).
on levelk is equal toCy(k — 1, — 1) =C(k—1,5 —1) (by
the inductive step). 1 5
By summing up the count of nodes that are left children AW
and those that are right children, we have that Ll
. . . . a7 g
Ct(ka]):C(k_17])+0(k_17.7_1):C(kaj) u \thn
Theorem 3.6:A perfect binary tree of height > 16 is not g \‘g he2
K-optimal.
Proof. Let T be a perfect binary tree of height> 16. Our Fig. 5. Labels on the added path

strategy will be to show that we can find another binary tree,
say 7", with the same number of nodes @sbut a smaller Now we need to prove that the weight we subtracted is
K-value. This will prove thafl is not K-optimal. 77 will be greater than the weight we added. That is, we need to verify

that S0 suppose we are given some positive integér building
3(h —1)2""2 4 9% 203 > 3(2h*2 — 1), a K-optimal n-node tree, we can without loss of generality
require that it be right-heavy (see Lemma 2.4). Then the

Solving this inequation results in longest branch in the tree will be the one that extends along

2(h —1) + 3> 32, the right edge of the tree. Its lowest node will be at lekel
) .) . N whereh is the height of the tree. By Corollary 3.8,will have
which, sinceh is an integer, simplifies té > 16. W to satisfy|lg(n)| < h < c+1g(3)1g(n) for a constant. Thus

Note A slightly more complex proof allows us to lower they, g O(log(n)). We can start with: = |lg(n)], then attach

threshold in Thgorem 3.6t012. _ additional nodes to this longest branch if they are needed la
Definition 37 A b'”afY ree T with n nodes is asize- _in the construction. When is large, we will have used only
balancedtree if and only if its left and right subtrees contain, gmaj| fraction of the prescribednodes during construction
exactly |(n —1)/2] and [(n —1)/2] nodes respectively, and of this right-most branch. We will still have many nodes left
a similar partition of the descendents occurs at every noded, e to insert into the optimal tree we are building. Finally

the tree. _ _ _ _note that the longest branch will hater 1 nodes, with labels
Theorem 3.8:The functionK on a size-balanced tree Wlth207 9l 92 oh Their sum is2"+! — 1.

n nodes has a complexity that &(n's). Let us add nodes to this branch in the order of labels,

Proof. Let 5(n) denote the value ok (T') whenT is the size- {o)10ing Corollary 2.6. Note that it is not always possible
balanced tree containingnodes. to add the node of lowest label, and oftentimes we need to

_Itis easy to prove by induction that size-balanced trees afgq 5 right leaf of higher label before we can add a left one
right-heavy. Thehei ght 1 function will then make one call on ¢ |ower label.

the pointer to the left subtree and two calls on the pointer 1O The first node that we can add is the left child of the root,
the right subtree. Thus, we can write the following recuceen ¢ |apel 1. as shown in Figure 6 left. Then we can add all 3

relation for 5(n): nodes in the empty spots on level 2 of the tree, as shown in
n—1 n—1 the second tree in Figure 6. At this point, there are 3 spots
Sn)y=1+8(|——1)+2S ,

available for nodes of label 4, and that is the lowest label
o) i L) that can be added, as shown in the third tree in Figure 6. The
which is valid for alln > 1, with the initial value isS(0) = et most node of label 4 would allow us to add 3 nodes of
1. This is a difficult recurrence relation to solve exactlyt by pais jower than 4. The one to its right would allow only the
instead, we can use the recurrence relation and induction{4ition of one node of label 2. The right-most node of label
prove the inequalities 4 does not open any other spots on the same level.
3llg(n)]+2 _ 1 3llg(n+1)]+1 _ 1
Sn)< —— andS(n) > ——— 1
2 2
which imply thatS(n) = ©(n's®). Sincelg(3) ~ 1.585, it 4
follows that the growth rate of(n) is only a little greater 316
than ©(n+/n). Finally, remember that size-balanced trees a 'ongestbranch %,
not necessaril\K-optimal trees, and thus lg-optimal treeT
with n nodes will satisfyK (T") < S(n). From this it follows
that K (T) = O(n'8(®)), wheren denotes the number of nodes
inT. W

Fig. 6. Incremental level addition in ld-optimal tree

It stands to reason that we should insert the left-most label
4 first, as shown in the right-most tree in Figure 6. After this
Theorem 3.8 now gives us an example of a class of trei@sertion there are two spots at which a label 2 can be added.
where the functiork has a complexity that i®(n's(®)) for The left-most one allows us to add a node of label 1, while
any arbitrary number of nodes the other one doesn’t. Thus we would insert the left-most 2,
followed by a 1. Then we can insert the other 2 into level 3,

IV. BESTCASE COMPLEXITY as shown in Figure 7.

Theorem 4.1:For K-optimal binary treed’;, with n nodes,
K(T,) =0 (nlg<3>>.

Suppose we want to build &-optimal binary tree with a
prescribed number of nodesWe shall show how the majority
of the nodes must be inserted so as to minimize the sum of
labels. This will allow us to show that thi€-optimal n-node
tree we are building must have a sum of labels that's at least
A(n'#(3)) for some numbea independent of.. Since Theorem Fig. 7. Nodes that the addition of the one labeled 4 allowhnttee
3.8 implies that the sum of labels inkaoptimal tree withn
nodes can be at mogt(n'¢(®) for some constars, we will Continuing a few more steps the same way, we notice that
have proved Theorem 4.1. a structure emerges from the process, shown in Figure 8. We

. . TABLE |
shall call it theskeleton structureAt every step in a new level, Nopes oF LOWEST WEIGHT THAT CAN BE ADDED TO THE SKELETON

these nodes represent the ones that would open the most spots STRUCTURE
of lower labels out of all available spots of optimal labehi§ i i
figure does not show all the nodes added on a level before the _!tération # Nodes Weight

next one is started, but rather the initial structure thatrest i=1 g-1 2(g—1)=2'-3%g 1)
of the nodes are added on. In fact, the first few levels in the =2 g—2 Ag—2)=2%-3%g - 2)
tree are filled up completely by the procedure. At some point 2(9-2) 6(g—2)=2"-3'(g-2)
it can become less expensive to start adding nodes on the next =3 2(g-3) 8(9—3)=2°-3"(g—3)
level down rather than continuing to complete all the upper 2'(g—3) 2*-3'(9-3)

levels. Theorem 3.6 indicates the level where this situatio 2°(g—3) 2'-3(9—-3)

occurs.

The skeleton structure of thi€-optimal tree we will con-
struct will consist of the right-most branch of height the ~ We can see that this skeleton structure contributes ©1ily)
right-most branch of the left subtree, the right-most braot to the sum of labels in the tree, which will not change its
the left subtree of the left subtree, and so on down the tréwerall complexity, but it also uses on#y((log(n))?) of the
Let's useg to denote the height of the left subtree, so thatnodes.
g < h— 1. It follows thatg = O(log(n)). Minimal Node Placement. For the next part of the proof,
Note that the skeleton structure without the longest branét¢ shall place the remainder of the nodes in this structure in
contains the first new nodes added to every new level. Ryder starting from the empty places of lowest possiblellabe
trimming the whole tree at the level we only cut offh — g going up. These nodes are naturally placed in the tree while
number of nodes on the right-most branch, and their numbBBge skeleton structure is being built up, but for the purpafse
is at mosth = O(log(n)). Thus, this subtree of height the calculation, it is easier to consider them separately.
will contain at leastn — h 4+ g nodes, and this number is A simple observation is that the empty spots of lowest labels
asymptotic ton. Thus,g > |lg(n)] for n large enough. In available right now are the left children of all the node<lakl
general,g = ©(log(n)). For the remaining of the proof, let us2. For all of them, a branch on the right side is present, so we
consider the skeleton structure to be trimmed at the lgvel can add them without any changes to the labels in the tree.
There areg — 1 such empty spots available, because the first
of them is on level 2, as shown in Figure 9 left.
Next, by the same reasoning, we can gdd?2 left children
of label 4. At the same time, we can add a right child of label
4 to every node added at the previous step with label 2, except
for the lowest one. That is, we can agd- 2 right children,
each having label 4, as shown in the- 2 column of Figure
9. In addition, we can also add tle— 2 left children of the
same parents. None of these additions causes any changes in
the labels of the original nodes in Figure 8.
Fig. 8. The skeleton structure for a tree of height 4 We can thus proceed in several steps, at each iteration
adding nodes with labels going from 2 up to a power of 2
Let us now examine the contribution of the skeleton struincrementing at every step. Let us examine one more step
ture trimmed to level in terms of number of nodes and sunbefore we draw a general conclusion.
of labels. Thenumber of nodeén this structure is calculated by For the third step, we can add- 3 nodes of labeB = 23.
noting that it is composed aof + 1 paths, starting from one Next to this, we can add a complete third levelte 3 perfect
composed of; + 1 nodes and decreasing by 1 every time. Seubtrees added at the very first step, that have a root labeled

we have 2, and a second complete level go— 3 perfect subtrees of
9. (g+1)(g+2) , root labeled 4. This continues to grow the perfect subtrees
> i= 5 = 6((log(n))7). started at the previous levels. The sum of labels on a level of
i=0 a perfect tree is equal to a power of 3, but this quantity must

The sum of labels can be computed by observing that aiso be multiplied by the label of the root in our case. Table
each of these paths, we start with a label equal to 1, and tHe&gmmarizes the nodes we have added and their total weight
continue by incremental powers of 2 up to the length of tHer the 3 steps we've examined so far. Figure 9 also illustrat
path. The sum of the labels on a path of lengih computed this explanation.
just like we did for the right-most branch, and is equal to From this table we can generalize that for the iteration
2¢+1 _ 1. Thus, we can compute the totalm of labelsas number; we will have groups of nodes that can be added, with

9 a count ofg — i groups in each category. For each category
Z(2¢+1 —1)=29t2 2 (g+1)=29t2_g_3=0(n). We Wil be adding the levek of a perfect tree that has a root
= labeled2'—*. The number of nodes in each such group’is

The weight of each group &'~ - 3%, By making the change of variable in both sughs: g — i, we

have
=
2 > 32j+1*.z J=

Jj=g—m Jj=g—m

g—1
_ 1 (m—1)(2g—m—1)
9—2 —
27) g ;

j=g—m

Let us compute the sum in the last expression separately.

g—1 1 g—1 1 g—m—1 1
Z ij—l :ngj—l - Z j2j71 =
j=g—m Jj=1 j=1
L+ (g—1)(1/2)7 — g(1/2)7~"
Fig. 9. Nodes added to the skeleton structure in 3 steps fieadf height (1/2 - 1)2
° L+ (g —m = 1)(1/2)7~™ — (g = m)(1/2)9~""!
Let us assume that to fill up the tree with the remainder (1/2-1)2

of the nodes up ta, we needn such operations, and mayberpe two fractions have common denominator 1/4, so we
another incomplete step after that. We can ignore that step ombine the numerators. The leading 1s cancel each other.

now, since it will not change the overall complexity. To findpe can factor outl /29 from the remaining terms to obtain
out what the total sum of labels is, we need to find a way to

f t- . _ _ _ _ _ _ m _ m—+1
expressm as a function ofy or n - o (g—1) =29 — (g —m—1)2" + (g —m)2™+)
The total number of nodes added at stép » 2*(g—i) = 1
_ kzzo 5oz ((9=1) =29 — (g —m—1)2" + (g — m)2"*")
(g—1)(2"—1). If we addm such steps, then the total number 1
of nodes that we've added B (g — i)(2’ — 1). We need to = 522" (g—m+1) —g-1).

By replacing it back into the original formula, the number of

. . . 2:1 .
find m such that this sum is approximately equabto— (g + nodes is equal to

1)(g + 2)/2, which isn from which we subtract the nodes in
the skeleton structure. This is assuming that 1g(n) and (m—1)(2g—m—1) m

. ; . = 0(2™(g—m)).
later we will address the case wherdés approximately equal 2

to a constant timeks(n), constant less than or equalltg(3). Given the similarity between the two sums, we obtain that the

2™ (g—m+1)—g—1—

The total weight added in the step numlés total weight of the nodes in the tree is
1—1 1—1
Slg— 275 = 2(g -)Y 20k O((3" = 2")(g = m)) = OE" (g ~ m).
k=0 k=0 Coming back to the question of expressingas a function
i1 gk =1 g\ k of g, if we write
Noi—1 Y o i et
2(9 —1)2 Z2k_2(g Z)Z<2) (g-m+1)2" =2 g-—m+1=2""

k=0 k=0
We can use the formulsri—t 2% — =1 to compute the sum an(_Jl then introduce =g—m, we have the eq_uatio;rH-l =2
as B0 ® el P which has the solutions = 0 andr = 1. Figure 10 shows
, , 4 the graph of the functio” — z in the interval[—1, 3].
(3/2) —1 3 —20 2

2 (g—i)m = 21(g—i) 53 5= 2(g—i)(3'=2%) The first solution would mean that the tree is almost perfect,
/2) - B and we have proved before that perfect trees aréragitimal.
To compute the number of nodes, we will need the followingo we can conclude that = g — 1. Considering that the last

known sum, valid for all positive integegsand real numbers |evel of the skeleton structure itself may be incompletés th

t#1, means that fog large enough, only 1 or 2 levels beyond the
P il last may not be complete in the tree trimmed at the Igvel
- i1 L4ptPth — (p+1)tP
2 1 _ 1 _ . . .
14264387+ Apt?™" = Z e = (t—1)2 To examine the relationship betweenandg further, let us
_ =1 assume thay ~ dlg(n), wherel < d < 1g(3) ~ 1.585. Then
We can rewrite our sum as we can writen ~ 29/, Going back to the formula computing

m 1 m the number of nodes in the tree, we have

Z(g —9)(2'-1) =29 ;(9 —1) 29—it+1 Z(g - 2™ (g —m + 1) ~ 29/4

=1 i=1

2%x

o X
-0.4 o 0.4 08 1 12 16 2 24 28 3

Fig. 10. The graph of the functio2® — =

from which we can write

29— m
_ ~ 99/d—m _ 9g—m+(g/d)—g _
g—m+1=2 =2 = Se@Dyd
Again, making the substitutiom = g — m, we get
27)
99(d-1)/d)
z+1

Remembering thag ~ dlg(n), we can write

or n%<

2£E
r+1
where0 < d — 1 < 0.585.

21
r+1

pdld=1)/d _ pd—1

n

>1/<d1>

n, and a new node is added to it. If more nodes are present
on the same branch, those node will have labels incrementing
exponentially and larger than any empty spots still avélab
on lower levels. They can easily be moved higher in the tree
to decrease the total weight. Thus, we can deducegthat,
org=h-—1.

The weight of the tree, and thus the complexity of the
function, is the order 0B(3") = ©(3'8(") = O(n's®). M

It is interesting to note that this is also the order of
complexity of the functionK on perfect trees and on size-
balanced trees, even though neither of thenk-gptimal in
general.

V. CONCLUSION

In this paper we have studied the complexity of a special
class of recursive functions traversing binary trees. Vaeted
with a recurrence relation describing this complexity i th
general case. We continued with a simple analysis of thetwors
case complexity, which turned out to be exponential. Next, w
showed two particular types of trees that give us a complexit
of ©(n's®).

Finally, after discussing a few more properties of tie
optimal trees that minimize the complexity function ovee th
trees with a given number of nodes, we showed a constructive
method to build these trees. In the process we have also shown
that the complexity of the function on these trees is also

Let us write f(y) = y% and start with the observation that®(n'*®), which concludes the study of this function.

this function is monotone ascending fpe> 1. Let us examine
the hypothesis thaf(blg(n)) > f(z) for some constank to
be defined later. The hypothesis is true if and only if

9blg(n) nb g1
f(blg(n)) = blg(n)+1 - blg(n) +1 > f(z)~n
which is equivalent to
n’ d—1 b—d+1
W>n en > blg(n) + 1.

Since a positive power of grows faster than the logarithm in

any base of, we can say that the inequality above is true for[5]

any constanb > d—1. So we can choose a constantl—1 <

b < d, such thatf(z) < f(blg(n)). By the monotonicity of
the function, this implies that < blg(n), which means that
g —m < blg(n), and considering thag ~ dlg(n), we can
say that(d — b) lg(n) < m <1g(3)1g(n), from which we can
conclude thatn = ©(log(n)).

Coming back to the formula computing the weight as

We can conclude from this analysis that any method that
allows us to avoid repeating recursive calls will signifittgn
improve the complexity of a function in all the cases.

REFERENCES
(1]

(2]
K]

D. E. Knuth, The Art Of Computer Programming, Volume 1: Funda-
mental Algorithms3rd ed. Addison-Wesley, 1997.

R. Sedgewick Algorithms in C++, 3rd ed. Addison-Wesley, 2001.
M. Kuba and A. Panholzer, “The left-right-imbalance ohhry search
trees,” Theoretical Computer Scienceol. 370, no. 1-3, pp. 265-278,
2007, elsevier Science Publishers.

R. Neininger and L. Rachendorf, “A general limit theoreor fecur-
sive algorithms and combinatorial structure$fie Annals of Applied
Probability, vol. 14, no. 1, pp. 378-418, 2004.

J. Masberg and D. Rautenbach, “Binary trees with choles&ulge
lengths,” Infomation Processing Lettervol. 109, no. 18, pp. 1087—
1092, 2009.

N. Askitis and J. Zobel, “Redesigning the string hashle¢alburst trie,
and bst to exploit cache ACM Journal of Experimental Algorithmics
vol. 15, no. 1, p. 7, January 2011.

M. Bender, M. F.-C. dand J. Fineman, Y. Fogel, B. Kuszmauld a
J. Nelson, “Cache-oblivious streaming b-trees,”Hroceedings of the
ACM Symposium on Parallelism in Algorithms and ArchiteeguSan
Diego, CA, June 9-11 2007, pp. 81-92.

(4

(6]

(7]

@(3m(g _ m)), based on the result that = @(log(n)), we [8] L. Arge, M. Bender, and E. Demaine, “Cache-oblivious ptioqueue

lude th h lexi fthe f . . L li and graph algorithm applications,” iroceedings of the ACM Sympo-
can conclude that the comp eXIty'O the tunction is mmm"a_ I sium on Theory of Computind/ontreal, Quebec, Canada, May19-21
the case where the value gf- m is a constant, and that this 2002, pp. 268-276.
complexity is indeeda(nlg(3)) in this case. While this does [9] L. Georgiadis, H. Kaplan, N. Shafrir, R. E. Tarjan, andRWerneck,

. . “Data structures for mergeable treeACM Transactions on Algorithms

not necessarily mean that— m = 1, the difference between vol. 7, no. 2, p. 14, 2011.
the two numbers must be a constant. [10] N. Talukder and S. I. Ahamed, “Preventing multi-queryaekt in

Now we can examine how many nodes we can have on the
longest branch in the tree beyond the level of the skeleton
structure. One node can be expected, for example in thgsg
cases where a perfect tree Ksoptimal for small values of

location-based services,” iRroceedings of the ACM Conference on
Security and Privacy in Wireless and Mobile Networkeboken, New
Jersey, March 22-24 2010, pp. 25-35.

D. Vrajitoru and W. Knight, “On the k-optimality of a fanyilof binary
trees,” Indiana University South Bend, Tech. Rep., 2011.

