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Abstract

Like other learning paradigms, the performance
of the genetic algorithms (GAs) is dependent on
the parameter choice, on the problem
representation, and on the fitness landscape.
Accordingly, a GA can show good or weak
results even when applied on the same problem.
Following this idea, the crossover operator plays
an important role, and its study is the object of
the present paper. A mathematical analysis has
led us to construct a new form of crossover
operator inspired from genetic programming
(GP) that we have already applied in field of
information retrieval. In this paper we extend the
previous results and compare the new operator
with several known crossover operators under
various experimental conditions.

1. INTRODUCTION
A major difficulty encountered when using GAs is
parameter setting. There exist many forms and variations
of GAs and the best choice is problem dependant
(Mitchell et al., 1991; Spears, 1995). An important
parameter choice concerns the crossover operator.
Various studies have shown that the form of crossover
can influence the performance of GAs (Spears, 1995).
From the invention of GAs (Holland, 1975), several
variations of the crossover have been developed (De Jong,
1975; Syswerda, 1989; Maini et al., 1994; Mohan, 1998).
Some particularities of chromosome representation in GP
have entailed a crossover operator adapted to them. The
present research is based on the same ideas.

In our previous work (Vrajitoru, 1998), we have used the
GAs in information retrieval. During the initial
experiments, we have encountered difficulties to improve
the baseline performance. We have related these
difficulties to a particular phenomenon: after a crossover
operation, the performances of the children are situated in
between the performances of the parents. The analysis of
this phenomenon has shown that the reason for it was the
fact that the same crossover site is applied to both parents.

In GP, as the individual size is variable, cutting two
individuals at the same place has no meaning and each
parent has its own cross site. Koza (1992) remarks that,
with this operator, the genetic population converge,
because an individual crossed with itself can produce
offspring different from itself. We also think that the cited
phenomenon can be avoided more often by using this
operator. Thus, we propose a new crossover operator
called dissociated, which follows the same idea as the GP
crossover.

The results of the new operator have been promising in
the difficult problem information retrieval. This success
has led us to extend the previous work to various fitness
landscapes and this is the main object of the present
paper. We have used the set of ten classical test functions
and some NP-complete problems to compare the new
operator with other known crossover operators. To
anticipate the results, the dissociated operator presents
some advantages in a great number of situations, but also
shows some weak points.

Section 2 introduces the dissociated crossover and
presents the theoretical analysis that led us to its
conception. Section 3 presents the experimental test
conditions and the results. Finally, Section 4 discusses the
advantages and disadvantages of the new operator.

2. THEORETICAL PRESENTATION
The present section describes the dissociated crossover as
well as the operators that we will to compare with it.

2.1 CROSSOVER OPERATORS

In a previous paper (Vrajitoru, 1998), we introduced a
new crossover operator, named dissociated crossover, that
we will describe first. If parent1 and parent2 are two
individuals, or potential solutions to the problem, and
1 ≤ crossSite1 ≤ crossSite2 ≤ L (the length of the
individual) are two crossover sites, the dissociated
crossover creates two new individuals, child1 and child2,
in the following manner:



(1)

We have chosen to compare this operator with three
others: the 1-point, the n-point, and the uniform
crossover. We will briefly recall the functionality of these
operators.

If parent1 and parent2 are two individuals, and crossSite
is a random position from 1 through L, the
1-point crossover (Holland, 1975) cuts each parent at the
point crossSite, and swaps the resulting parts.

The n-point crossover is equivalent to n independent 1-
point crossovers applied in sequence (De Jong, 1975). For
our experiments, we have chosen the 2-point crossover
operator, because it uses the same number of cross sites as
the dissociated crossover.

The uniform crossover (Syswerda, 1989) consists of
independently choosing, for each locus i from 1 to L,
whether the parents genes will be swapped or not. This
choice depends on a swap probability denoted pswap. We
have adopted the 0.5 swap probability for our research.

Even if both the 2-point and the dissociated crossover
operators use two cross sites, there is an important
difference between them (Figure 1), which can be
expressed by the following:

• the two-point crossover applies the same two simple
crossover operators to each parent,

• the dissociated crossover applies a different 1-point
crossover operator to each parent. In this case, the
question is not "how do we obtain each child", but
"what happens to each parent."
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Figure 1: Dissociated Crossover Versus Two-Point
Crossover.

2.2 THEORETICAL MOTIVATION

We have initially developed the dissociated crossover in
the field of information retrieval (Vrajitoru, 1998) and
this subsection presents the theoretical considerations that
led us to define this operator.

The main idea of the GAs is to simulate the mechanism of
natural selection of living beings, which makes the
ecosystems develop and become stable. Within this
mechanism, the organisms adapt themselves through
generations to their environment and to specifics survival
tasks. Through rough competition, the best individuals
mate to produce descendants that can inherit their skills,
and even increase them.

Inspired by this natural phenomenon, the purpose of the
crossover operation is to create new individuals having,
hopefully, greater performance than their parents. In our
case, we have noticed that the performance of the children
can often be expressed by the following:

( ) ( ) ( )22,11 parentfchildfparentf ≤≤
Intuitively we would say that the children are convex
linear combinations of the parents. We will show that it is
almost true, and that this phenomenon can slow the
performance improvement.

Notation. If H is a hyperplane, o(H) denotes its number of
fix values, or length, and E(o(H)) its expected length.

Let us consider a crossover between parent1 and parent2
and an optimal individual indopt maximising the length of
the intersection with parent1 ∪ parent2. We chose indopt
so that

( ) ( )
( ) ( ) 
















=

=
≤≤

iparentiind

oriparentiind
Liicardinal

opt

opt

2

1
,1,

is maximal.
Let us consider, for each parent, the hyperplane of
maximal length containing both the parent and the
optimal individual indopt.:
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Without loss of generality, we can assume that o(H1) >
o(H2).

Let child1 and child2 be the individuals produced by one
crossover between parent1 and parent2. As our goal is to
find an optimal individual, at least one of the children
should contain a greater part of indopt than the parents.
Let H3 be the hyperplane of maximal length containing
both child1 and indopt, as we defined it for the parents
(Equation 2). We would like to tune the crossover so that
o(H3) > o(H1).
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If crossSite is the cut point for the crossover, we denote
by Ileft the interval [1..crossSite] and by Iright the
interval [crossSite + 1..L]; then each of Hi, i = 1,2, is the
intersection of two hyperplanes Hi left and Hi right, each
having fix values only on one side of crossSite (see Figure
2).
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Figure 2: Hyperplanes Created By Crosssite

After the crossover (see Figure 3), it seams clear that H3
is the intersection between H1 left and H2 right; then we
can compute:

( ) ( ) ( )rightleft HoHoHo 213 +=
We also know that

( ) ( ) ( )rightleft HoHoHo 111 +=
The condition o(H3) > o(H1) becomes:

( ) ( ) ( ) ( )rightright HoHoHoHo 1213 >⇔>
(3)
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Figure 3: Crossover Result

Equation (3) means that child1 can be closer to the
optimal individual if and only if we replace H1 right with
a hyperplane of greater length. We already know that
o(H1) > o(H2). Under this condition, can H2 be more
dense than H1 on the interval Iright? We will show that
the chances are low, especially when starting with a
random population and when L is large.

Let us consider the case of the starting population, where
each individual has been chosen at random; then we could
say that the probability that a gene has a property Q :
[1..L] •  {true, false} should not depend on the position

of the gene (all genes have equal chances). If I is an
interval, we could express this property by:

( )( )( ) 21constant, ,jI,iiparentQp j =∈∀= (4)
Equation (4) is the key to our analysis and we should
check its probability. We already mentioned that it should
hold for the starting population. The schemata theorem
(Goldberg, 1989) tells us that as the individuals evolve
through generations, large connected schemata tend to
dominate the population. This also means that Equation
(4) becomes more probable, and that the following
analysis should hold especially in the convergence
situation.

In Equation (4), we will now replace the property Q by
the fact that the gene is a fix position in H1,2:
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By computing the expected length of H1 right and of H2
right:
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e obtain that:
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We can see that there is a contradiction between
Equations (3) and (5). This contradiction implies that the
expected length of the hyperplane containing both child1
and indopt does not exceed the length of the largest
hyperplane containing one of the parents and indopt. In
other words, the child is no closer to the optimal
individual than its parents were and the search cannot
succeed.

If we note by LcrossSite=α , then we could write:

( )( ) ( ) ( ) ( )213 1 HoHoHoE ⋅−+⋅= αα
This means that the child is expected to be a convex
linear combination of the parents, as we have stated it in
the beginning of the section.

3. EXPERIMENTAL COMPARISON
This section describes the various experimental
conditions and the results of the comparison between the
dissociated crossover and the classical operators we
presented in Section 2.



3.1 EXPERIMENT DESCRIPTION

The domain of information retrieval has provided us with
some special experimental conditions: a very large
individual size, a small number of generations, for reasons
of computational time, and the fact that all optimal
individuals share similar relevant information. On this
problem, the dissociated crossover has systematically and
significantly performed better than the 1-point crossover
(Vrajitoru, 1998).

Nevertheless, from the fact that the new operator is fit for
this problem, we cannot conclude that it should perform
well in any condition. So, we have run new experiments
with completely different fitness landscapes and
parameter settings that we will describe in detail.

For each of the chosen functions, we have performed 10
experiences for each operator. We have limited the
number of generations to 1000 or until convergence of the
population. For each experiment, the population is
composed of 20 individuals. As we were only interested
in crossover comparison, the mutation probability equals
0, and the crossover probability is equal to 1. We have
used the fitness-proportionate selection (Goldberg, 1989),
and a variant of the elitist reproduction: the ancient best
individual replaces the worst individual in the new
generation, if and only if the new generation contains
nothing better than it.

We have only considered the performance of the best
individual in each generation. To evaluate the
experiments, we have chosen two measures: the mean
performance over 10 runs, and the best run for each
crossover operator. For each measure, we have used the
Mann-Whitney test (Saporta, 1990) to decide if the results
of the top operator are significantly better than those
obtained by the second one.

We were interested in four results for each problem: the
top first and second operator for the mean and the best
run. In case the top operator is significantly better than the
second one according to the Mann-Whitney test, its name
is emboldened. For the best run we have denoted in
parenthesis the minimal number of generations that the
operator has needed in this run to find an optimal
individual, assuming the search was successful.

3.2 STANDARD FUNCTIONS SET

The evolution of the Gas for many years, has brought the
researchers to build a set of standard test functions that
are often used to test a form or to compare two variants of
GAs. They seamed like a good start for our experiment, as
many researchers have already used them (Kingdom and
Dekker, 1995; Belew, 1992). F1 through F5 have been
developed by De Jong (1975), F6 by Rastrigin, F7 by
Schwefel, F8 by Griewank, F9, and F10 by Schaffer
(1989). Their full description can be found in (Whitley et
al., 1996).

Recent studies (Davis, 1991; Whitley et al., 1996) have
criticised these functions as being easy for hill-climbing,
scalable, symmetric on their variables, and linear. They
still offer a variety of characteristics and test the GA
against different search spaces, reasons for which we
chose to use them in our experiment.

The results presented in Table 1 show an important
advantage of the dissociated crossover over the others. It
appears on the top for more than half of the runs, and its
results are often significant.

We can also remark that, for these functions, the best
operator always found the optimal solution, which
suggests that they are not very hard for the GAs. For this
reason, we have also tried more difficult test functions.

Table 1: Result Of The Standard Functions Set

FUNCTION MEAN
TOP

MEAN
2ND

BEST RUN
TOP

BEST
RUN 2ND

F1 dissociated 2-points dissociated
(10)

2-points
(650)

F2 dissociated 1-point dissociated
(10)

uniform
(250)

F3 dissociated uniform dissociated
(10)

uniform
(450)

F4 dissociated uniform dissociated
(30)

2-points

F5 1-point 2-points dissociated
(10)

2-points
(30)

F6, N=2 dissociated 1-point uniform
(350)

1-point
(650)

F6, N=5 dissociated 2-points 1-point
(850)

uniform

F7, N=5 dissociated 2-points 2-points
(1000)

dissociated

F8, N=5 dissociated 1-point dissociated
(10)

uniform
(1000)

F9 dissociated 1-point uniform (30) dissociated
(70)

F10 dissociated 1-point dissociated
(20)

2-points
(50)

3.3 NP-COMPLETE PROBLEMS

To increase the difficulty of the test, we have chosen the
class of NP-complete problems. Several researchers have
already applied the GAs to some of these functions (De
Jong and Spears, 1989, 1990). Their work was of great
help in our experiments, concerning the general concepts
and the set of problems they provided.

The first NP-complete problem we have used is the
Boolean satisfiability problem (SAT). Given a Boolean
expression depending on some variables, does there exist
an assignment of those variables such that the value of the
expression becomes true?

The genetic representation of this problem is
straightforward. Each gene is a variable occurring in the
expression, and the values 0 / 1 are interpreted as false /
true.



The difficulty is the choice of the fitness function. The
classical evaluation of a Boolean expression returns only
the true or false values. Within this evaluation, as long as
an individual does not represent an exact solution for the
expression, it is evaluated to 0. This makes it difficult for
the GA to improve the individual performance, because it
cannot decide whether an individual is far from or close to
the researched solution.

De Jong and Spears (1989), propose an improvement of
this fitness function by the following:
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We have performed our experiences with p = 1. Greater
values of p have not shown significantly different results.

We have used the set of problems provided by De Jong
and Spears (1989). All problems are noted according to
their number of optimal and suboptimal peaks. They all
have a single optimal solution, and several suboptimal
ones, which makes them hard for the GAs.

From the results presented in Table 2, we can see that the
other operators perform better than the dissociated
crossover on these problems. This result shows that this
problem is especially difficult for the dissociated
crossover for reasons we will explain later on.

Table 2: Results On The SAT Problems

PROBLEM MEAN
TOP

MEAN
2ND

BEST RUN
TOP

BEST RUN
2ND

Peak1 dissociated 2-points dissociated
(10)

uniform
(150)

Peak2 2-points 1-point uniform (50) 1-point
(150)

Peak3 2-points uniform 1-point (90) uniform
(110)

Peak4 Uniform 2-points uniform (90) 2-points
(100)

Peak5 2-points 1-point 1-point (90) uniform
(110)

Peak6 1-point 2-points uniform
(100)

1-point
(250)

Kingdon and Dekker (1995) have suggested that when an
evolutionary algorithm has difficulties in finding the best
solution, reshaping the search space can help recover
these difficulties. We have followed this idea and have
reshaped the problems by a permutation of the genes. The
new results, presented in Table 3, show again an
advantage of the dissociated crossover over the others.

The second NP-complete problem we have tested is the
hamiltonian circuit (HC). Given an oriented graph, does
there exist a circuit that passes once and only once by
each node? This well-known NP-complete problem is
equivalent to a travelling salesman (TS) problem where
all arc costs would be equal to 1. Several researchers have

already used Gas to solve the TS problem (Maini et al.,
1994; Sushil and Gong, 1997; Ross et al., 1998).

Table 3: Reshaped SAT Problems

PROBLEM MEAN
TOP

MEAN
2ND

BEST RUN
TOP

BEST RUN
2ND

Peak2’ dissociated 2-points uniform (60) dissociated
(90)

Peak3’ dissociated 2-points dissociated
(10)

uniform (50)

Peak4’ dissociated 1-point dissociated
(20)

uniform
(110)

Peak5’ dissociated 2-points dissociated
(20)

uniform
(170)

Peak6’ dissociated 2-points dissociated
(20)

2-points

We could represent the HC problem directly in a genetic
form, but it is easier to transform the HC instances into
SAT instances, whose genetic representation we already
know, as suggested by De Jong & Spears (1989, 1990).

Given a graph with the nodes { }nAAA K,, 21 , and some
oriented arches between these nodes, the transformation
of this HC instance into a SAT instance contains the
following steps:

For each node iA , we construct the following expression:
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Then the SAT expression is:
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We have used graphs with the number of nodes from 4 to
15, and some of them were provided by De Jong and
Spears (1989). We have noted the problems according to
the number of nodes in the graph. The results, presented
in Table 4, show that, even if the dissociated crossover
performs quite well on the whole, almost none of the top
operators is significantly better than the others. We think
that this fact is due to the difficulty of the HC problems.

As we can notice from Table 4, on the problems where
the graphs have 9 to 15 nodes, the GA was not able to
find the solution under any of the crossover operators. We
have performed new experiments where the population
size went up to 200 individuals. The graphs with more
than 12 nodes were still too hard, but for the others, the
optimal solution was found several times. With the new
experiments, we have classified the operators by the
number of times they found the optimal solution. We
have considered that the best run for each operator was
the one where the optimal solution was found with the
least effort, computed as the population size multiplied by
the number of generations, measure inspired from GP
(Koza, 1992).



Table 4: HC Results

PROBLEM MEAN
TOP

MEAN
2ND

BEST
RUN TOP

BEST
RUN 2ND

HC4 dissociated uniform all (10)
HC5 2-points dissociated all
HC6 uniform 2-points uniform

(10)
dissociated

(50)
HC7 dissociated 2-points 1-point

(50)
2-points

(100)
HC8 dissociated uniform uniform

(50)
dissociated

HC9 dissociated 2-points 1-point uniform
HC10 dissociated 1-point dissociated uniform
HC11 dissociated uniform uniform 2-points
HC12 1-point dissociated uniform dissociated
HC13 2-points 1-point 2-points 1-point
HC14 uniform dissociated uniform dissociated
HC15 uniform 2-points 2-points 1-point

Table 5 presents these new results in the same form. For
the mean run, the parentheses contain the number of times
that the operator has found the optimal solution. For the
best run, the parentheses contain the minimal
computational effort (population size multiplied by the
number of generations) needed by the operator to find an
optimal solution. The dissociated crossover still performs
well according to these new measures, but is surpassed by
the 2-points crossover.

Table 5 Results on Hard HC Problems

PROBLEM MEAN
TOP

MEAN
2ND

BEST RUN
TOP

BEST
RUN 2ND

hc9 2-points
(13)

1-point
(9)

2-points
(176*30)

dissociated
(100*98)

hc10 uniform (3) 2-points
(3)

uniform
(176*163)

2-points
(176*109)

hc11 dissociated
(1)

- dissociated
(90*738)

-

4. DISCUSSION
The results presented in Tables 1 to 5 suggest that the new
crossover operator is an efficient one. We will first
discuss the reasons for our optimism, and then some of its
disadvantages we have found.

4.1 ADVANTAGES OF THE DISSOCIATED
CROSSOVER

The crossover operator presented in this article, seams to
perform quite well on the whole. To justify this
affirmation, Table 6 presents the percentage of occurrence
of each operator on each of the four positions we have
considered in Tables 1 to 5.

Table 6. General Classification of the Operators

OPERATOR MEAN
TOP

MEAN
2ND

BEST
RUN TOP

BEST
RUN 2ND

dissociated 66.67% 9.09% 40.62% 21.88%

1-point 6.06% 45.45% 15.62% 15.62%

2-points 15.15% 30.31% 9.38% 25.00%

uniform 12.12% 15.15% 34.38% 37.50%

We can see that the dissociated crossover has the best
percentage of occurrences in the top both for the mean
run and for the best run. It shows a particularly good
mean performance, where it occupies the first place two
thirds of the time.

The 1-point crossover, that is a conservative one, seams
to be the worst choice. The 2-point crossover performs
quite well for the mean runs, but shows poor results for
the best runs. The uniform crossover seams good both for
the mean runs and for the best runs. The uniform
crossover, which is more exploratory than the 2-point
crossover, presents less performance on the average than
it, but has more chances for a good best-case
performance.

A second advantage of the dissociated crossover is the
fast fitness evolution. This feature is obvious even when
our operator did not perform better than the others. To
illustrate this statement, Figures 4 to 7 show the
performance evolution during the first 100 generations for
two functions where the dissociated crossover was on top
(F8 and Peak6’ ), and two others where it was not (Peak6
and HC14). All graphics concern the mean runs. This can
be particularly interesting when the problem size is large
and the genetic algorithm has difficulties in increasing the
performance.
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Last, but not least, with this operator the genetic
population can only converge to the individual having
only 0 gene values. Thus, the diversity of the population
is conserved even after an important number of
generations.

4.2 DISADVANTAGES

The last advantage of the dissociated crossover can also
be a possible source of problems. Whenever an individual
containing large intervals of 0 values is a suboptimal
solution and local peak, the GA may fail to find the
optimal solution.

We have encountered this situation for the SAT fitness
landscape where the problems present suboptimal
solutions with 15 to 30 adjacent genes having the 0 value.
These problems are hard for all genetic operators, but
they seam to disadvantage the dissociated operator more
than the others.

The reshaped SAT problems (see Table 3) have up to 6
adjacent genes with the 0 value in the suboptimal peaks
and do not present difficulties for the dissociated
crossover. This also seams to be the threshold after which
continuous 0 intervals, in a suboptimal solution are
difficult for the dissociated crossover.

This inconvenience can be corrected by increasing the
mutation rate or by changing Equation (1) to avoid filling
large intervals with the ‘0’  value. For example, we could
replace in Equation (1) the 0 value for the genes between
crossSite1 and crossSite2 with either a logical operation
between parent1(i) and parent2(i), like ‘and’  or ‘xor’ , or
just a random choice between 0 and 1. The experiments
can also be run with a convergence-avoiding clause, like
the one suggested by Eshelmann (1991).

5. CONCLUSIONS
Through this paper, we have compared the dissociated
crossover with other classical crossover operators. A
theoretical analysis motivates the choice of this operator.
For the experiments, we have used several fitness
functions that test the operators under various conditions.
The results presented in Tables 1 to 5 show that the new
crossover operator performs better than the others in
many cases. From Table 4 we can also see that when the
problem is difficult, there is no wonder solution, and the
differences between the operators are not significant.

The experiments have also shown a disadvantage of the
new operator. Still, the condition under which the
dissociated crossover can deceive does not appear very
often, which explains why most of the results are positive.
The negative feature can be eliminated by various
procedures, and is the main object of our future work.

Our experiments have shown that the best crossover
operator can be different according to the fitness
landscape. This means that for the evolutionary
algorithms, there is no general good solution, and that the
parameters and variations of an algorithm should be
chosen according to the problem’ s needs.
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