
EVOLUTIONARY SIMULATION OF LIFE USING CUDA
Technical Report #TR-20140505-1

Adam Call

Department of Computer and Information Sciences
Indiana University South Bend

CSCI-Y 790: Graduate Independent Study

Faculty Advisor: Dr. Dana Vrajitoru

1. INTRODUCTION
The idea behind this project was to create a simulation

of the evolution of life in CUDA. In this simulation the
creatures are individual entities that can interact with the
world. Each has its own set of state information and DNA
representing it. Through this DNA the creatures evolve via
division and mating. The evolution of the DNA during
reproduction utilizes crossover and mutation but does not
have any sort of fitness function consideration. Each
creature itself chooses when and how to reproduce, thus the
creatures that live longer and/or reproduce faster will tend to
survive better or be more fit. The creatures control their
actions and interactions with the world via a recurrent neural
network. The structure and weights of this network are
encoded into the DNA as well as everything else about the
creature.

The structure of this report is as follows. It starts with an
overview of CUDA and the different facets of it that need to
be considered when programing in CUDA. This is followed
by a detailed description of the evolutionary model used in
the simulation. It continues into the general structure of the
data used to represent the simulation. The implementation
of the simulation follows and covers both the high and low
levels of the code. This section also discusses some of the
design considerations with respect to the specific pieces of
code being described. Lastly, the results of running the
simulation will be discussed and final conclusions will be
made.

2. CUDA DESIGN CONSIDERATIONS
“CUDA™ is a parallel computing platform and

programming model that enables dramatic increases in
computing performance by harnessing the power of the
graphics processing unit (GPU)” [1]. CUDA has the
potential to greatly boost the throughput of an algorithm but
typically necessities a significant redesign of the algorithm
to realize this improvement. The reason behind this is
partially due to the difference between sequential and
parallel algorithms but more so to the very architecture of
the GPU that needs consideration. In this project, only four
facets of the CUDA architecture needed to be considered:
CPU-GPU Memory Transfer, Global-Block Memory
Transfer, Memory Coalescing and Warp Divergence.

The structure of the GPU consists of the shared outer
memory and several inner processing units that each has
their own memory, as seen in Figure 1. Each of these
processing units can process tasks completely independently
of the other units. Internal to each unit, multiple threads can
be processed in parallel. The only limitation in this case is
that each thread has to do the same thing but can do it on
different data. This is referred to as SIMD (Single
Instruction Multiple Data). Typically, the processing units
also operate in a SIMD manner but do not have to. With
more recent versions of CUDA, the GPU can have up to two
different threads running in the CPU at the same time. The
second thread in this case is almost always used to transfer
data to and from the GPU while the main thread is
processing the active kernel.

2.1. CPU-GPU Memory Transfer

CPU-GPU Memory Transfer refers to the time needed to
transfer data between the GPU and CPU. With the
exception of disk access, this is likely to be the lowest
bandwidth pipe in the application. The issue is that the data
must be sent over the PCI-E slot from the CPU to the GPU.
This transfer takes a significant amount of time relative to
the data transfers within the CPU or GPU. In response to
this, data transfers between the CPU and GPU should be
minimized. This project was designed from the beginning
to keep as much of the simulation as possible internal to the
GPU and to pay the majority of the transfer costs upfront
during the simulation’s initialization.

2.2. CUDA Memory Structure

The internal structure of the CUDA GPU is divided into
many distinct parts. Only a logical representation will be
presented here for the sake of understanding design
decisions, as opposed to a more detailed physical
description. This logical representation is illustrated in
Figure 1. In the Outer Layer of the GPU memory, the layer
accessible to the CPU, there are three memory Blocks:
Global, Constant and Texture. Global Memory is the
primary location to store data in the CPU. For this project
nearly all simulation data is stored in Global Memory. In
this report, Global Memory will also be referred to as
Global. Global Memory is by far the largest Block of
memory in the GPU, 2GB in this project’s hardware, and is

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

1

Adam Call

writable from both the CPU and GPU. The price of having
all this space is the limitation of only allowing operations to
be performed at specific indexes. For this project the index
period was 512 bytes. This limitation combined with the
relatively slow transfer rate between Outer and Inner
memory, is ultimately the source of the Global-Block
Memory Transfer design consideration that will be
discussed later.

Constant Memory is much smaller than Global, 64KB in
this project’s hardware, and can only be written from the
CPU. Its advantage is that it can be efficiently accessed at a
per word level, 4 bytes, as opposed to Global’s specific

indexes. The other benefit is that within a Block, to be
described later, only the first access of a constant value
requires an Outer Memory operation. Afterwards the
Constant variable will be accessible at register speeds. One
limitation of Constant Memory is that when defined, it only
has a scope of the source file in which it was defined. Since
this application has numerous CUDA methods (kernels)
declared in individual files, many of the constant variables
had to be defined multiple times for each kernel that needed
them. This is ultimately a limitation of CUDA and simply
had to be worked around. This was not a problem as there

Figure 1: CUDA Memory Model [2]

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

2

Adam Call

was more than enough room in Constant for all needed
copies of the constant variables.

Texture Memory is the last of the Outer Memory that is
externally visible but was not used in this project and will
thus not be described. The Inner structure of the GPU is
first divided into Blocks. A Block represents both a logical
division of the GPU’s Inter Memory and of its processing
power. When a kernel is executed, a copy of the kernel is
given to each Block to run. Each Block has a pool of
Threads that it uses to process the kernel. The CUDA API
makes available several values to distinguish one Block and
Thread from another from within the Block or Thread itself.
Each Block has its own Shared Memory that is only
accessible to the Threads within that Block. In older
versions of CUDA compatible GPUs this was 16KB, for
this project, 48KB ware available. The benefit of Shared
Memory is that it provides much faster access times than
Global, though not quite register speeds. The design
consequence of this is that some sets of data could be used
more efficiently if first transferred in their entirety to Shared
Memory. This was typically done for any values that would
be accessed multiple times within the Block to avoid
retrieving the same value from Global many times. The
other benefits of this method are described later.

The last two sections of Memory are the Registers and
Local Memory. These two sets of memory are only
accessible to specific Threads and are used for any of the
locally scoped variables in the kernels. The difference
between them is that the Registers are located close to the
ALUs (Arithmetic Logic Unit) and are thus the fastest to
access, while the Local Memory is part of the Outer
Memory and slow to access. The reason for this is that the
Local Memory is merely a backup for the registers. When a
kernel has used all its registers, the Local Memory will
instead be used to define any addition registers as needed.
Care should be taken to avoid this, since it effectively
converts the fastest memory access in the GPU into the
slowest. In this report they will also be collectively referred
to as Local since one is merely a backup of the other.

2.3. Global-Block Memory Transfer

As was mentioned previously, the access rates of the
Outer Memory within the GPU are relatively slow
compared to Shared and Local (Registers). In addition,
Global can only be accessed at specific indexes. These
aspects combined lead to the Global-Block Memory
Transfer facet of CUDA that needs to be considered.
Operations on Global memory can only happen on chunks
of memory, 512B. This means any read or write operation
must begin and end on a chunk boundary. While Global
operations are possible off these indexes, additional
operations have to be done in the background to fulfill them.
What happens is that the entire chunk where the operation
begins or ends is transferred in addition to the actual data
requested. In both directions, the cache is used to convert

the full chunks to and from the actual data of the operation.
This leads to both wasted transfers and added processing
time in the cache.

The remedy to this is to use pitching. When an array of
data is declared, it always stars at the beginning of a chunk.
When dealing with larger arrays of data, it is common to
divide them up between the Blocks, for example by the rows
of an array. The problem is that the data given to each
Block most likely does not begin on a chunk boundary,
which leads to longer access times. What pitching does is
pad the end of each section of data with extra memory to
fully fill the chunk. This allows each section to begin at a
boundary and improves access time. In this project this
method is used mainly when arrays of data are needed by
the kernel. It is not used when single values are needed by
the kernel.

The last aspect to consider is the situation when Threads
need to access data in a non-deterministic way. Meaning,
when the data needed is not known until the kernel actually
runs and can change from run to run. In this project
specifically, this mainly happens when the data itself
determines what additional data is needed. This leads into
the last benefit of transferring arrays of data from Global to
Shared. Pre-reading the data needed into Shared allows the
Global operations to begin on a chunk boundary and be
carried out in the least number of operations, as opposed to
accessing each value individually at some unknown location
in the chunk. This method is also used in the reverse case
where Shared is used to collect all the results from the Block
before copying them all back to Global together.

2.4. Memory Coalescing

There are two sides to the task of transferring data
between Global and the Blocks. Global’s side of the
equation was just presented but Block’s side has its own
considerations. These considerations have more to deal
with how the Blocks process their Threads. In a Block the
Threads are processed in Warps of 32 continuous sequential
Threads. Logically speaking, the Threads of a Warp are
executed in parallel. While a kernel is running, the Warps
of the Blocks are processed as they become ready for
processing. The implication of this is that 32 words can be
effectively transferred at the same time. The GPU will
actually try and merge Global operations within a Warp to
utilize this ability. This merging of operations is known as
Memory Coalescing. Without going into too much detail,
the GPU will watch for continuous sequentially numbered
Threads within a Warp requesting operations on continuous
sequential locations in Global. When it sees this, it will
combine the operations into as few Global operations as
possible and feed each value to the appropriate Thread via
the cache. This behavior works the exact some way in
reverse and is typically used to copy results that have been
gathering in Shared back to Global. The effect on design is
mainly in how arrays are transferred between Global and

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

3

Adam Call

Shared. The technique is to use a loop that iterates by the
Thread width (total Threads in a Block). Each Thread
transfers the value in the array equivalent to its Thread ID
up to the number of values to be transferred. This way the
transfer between Global and Shared can be coalesced.

2.5. Warp Divergence

The last aspect of the CUDA architecture to consider is
Warp Divergence. As was mentioned, Warps are groups of
32 continuous sequentially numbered Threads that run in
parallel. What was not mentioned is that the Warp can only
be doing one operation at a time. In other words, every
Thread in a Warp has to be doing the same operation at the
same time, such as an addition or multiplication. On the
other hand, the data being operated on does not need to be
the same and is typically not the same outside of flow
control. This system works great until you reach a flow
control statement (i.e. if, for, while, etc.) The problem with
flow control statements is they can send the individual
Threads down different execution paths. The way this is
handled is the individual paths are processed in sequence
until the end of the section that divided the flow, for
example the ‘}’ in C++. At this point the Threads are
brought back in order and continue to run in parallel. The
branching of these Threads is called Warp Divergence.

The design consequence of Warp Divergence is mostly
to be aware of it and limit the branching of the code. If it is
unavoidable, then it is best to keep the divergent sections of
code short. One thing to clarify is the difference between a
diverged Thread and an inactive Thread. An inactive
Thread is a Thread that either has no work and is waiting for
the other Threads to catch up to it or a Thread that has
finished processing of the kernel. The most common
situation when this happens is when a Thread is not needed
for the current operation. In this case the Thread just sits
inactive until it is needed again. An inactive Thread does
not harm the performance of the other Threads and is a
normal part of kernel execution. In some cases the problem
might lend itself to a Warp level division of labor. In this
case the divergent flows of the kernel each get their own
Warp on which to process. This way the individual Warps
do not diverge while the flows between the Warps do. This
technique is slightly more difficult to implement and in this
project at least, was only practical for one of the data
structures.

3. EVOLUTIONARY MODEL
The creatures in this simulation can best be described as

ants in the sense of the ant colony model [3]. Each creature
has a recurrent neural network that controls its individual
behavior each cycle. These creatures can interact with the
environment but cannot interact with each other beyond
breeding. Further creature to creature interaction was
delegated to future work. This simulation follows an
evolutionary algorithm where the population of the creatures

is not of fixed size and can grow and shrink as creatures die
and reproduce [4] [5]. The creatures themselves are
represented as DNA sequences. These sequences encode all
the parameters defining the creature. With respect to the
recurrent neural network, both the weights and the structure
of the network are encoded [6] [7]. The creatures in this
model actively choose when to breed and can choose
between division or duplication and mating when they do.
When mating, a bounded two point crossover is used on the
DNA segments [8] [9]. In addition to crossover, Hill-
climbing is used in the form of mutation for both operations.
When performing these operations, the DNA segments are
considered to be the smallest divisible units of the DNA
sequence. These indivisible DNA segments are also known
as genes. This means that no operation to the DNA is
allowed to split a DNA segment or produce a partial
segment.

The method of parallelization for this simulation is multi
leveled to match the structure of CUDA. CUDA can divide
the problem into at least three levels of parallelization:
Block, Warp and Thread. For most of the operations in the
simulation only two layers of parallelization can be
achieved. For operations relating directly to the creatures,
such as deciding what to do, the Block level of division is
the individual creatures and the Thread level is the
individual calculations. Warp level division is only used
when the operation can be divided three ways, which rarely
happens. The below sections will go into more detail about
the world and the creatures that live in it.

3.1. World Model

The world is represented as a space containing varying
quantities of energy. This space is defined via three primary
constants. These three values are effectively natural
constants of this world. The first is the dimensionality of
the world. The world can have as few as two spatial
dimensions and as many as the hardware can support. The
next constants are the number of energy types and energy
frequencies which describe the different types and
frequencies of energy available. The energy contained in
the world has both of type and frequency and is referred to
as Radiant energy. This energy symbolizes various
resources available in the world that the creatures depend on
for survival.

The space in the world is defined both in a discrete and a
continuous manner. To clarify, discrete uses zero to max
integers to represent specific places in the world while
continuous uses zero to max reals to represent specific
places in the world. Places in the world are referred to as
Locations when using discrete numbers and Positions when
using continuous numbers. There are fundamentally two
types of interaction with the dimensions of the world,
energy and physics. Physics deals with the movement of
the creatures and uses the continuous representation of the
world. Energy on the other hand must use the discrete

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

4

Adam Call

representation since it is infeasible to model the energy map
in a continuous manner. Every Location in the energy map
thus has a distinct quantity of energy at that specific
Location. Other parts of the model dealing with energy
continue to use the discrete representation.

Energy type is used to represent the difference between
say light, sound and chemical energies. Frequency on the
other hand is analogous to the different frequencies of light
or sound. The energy in the energy map is considered
transient energy or Radiant energy. Radiant energy is the
primary thing the creatures interact with in the world.
Creatures can actively choose to sense different type-
frequencies of energy. In this manner energy types
represent all the senses the creature has, for example sight,
smelling, hearing, etc. The creatures can also actively
choose to absorb and store different energy type-
frequencies. Within the creatures, energy does not have a
frequency associated with it. Frequency is only used when
dealing with the radiant energy. This stored energy is what
the creature uses to perform all its actions and maintain its
neural network.

One of the problems identified early in the design stage
was the issue of how to persist the creature’s impact on the
world since radiant energy is naturally transitory. In other
words, it would reset to zero between cycles. The original
plan was to implement a ground concept to store energy in
the world. Due to time constraints this was not implemented
but a simplified method was used instead. The alternate
method was to use a percent rollover of the radiant energy
between cycles to persist the effects of the creatures. The
effects of the creatures are primarily the absorption of
energy from the world. This adds a disadvantage to
absorbing energy in an inefficient manner as the creatures
could starve from wasting energy.

3.2. Creature Model

Contained within the world is a population of Creatures.
The size of this population is not fixed and can change
overtime as different factors affect birth and death rates.
Due to hardware limitations this population is capped at
some hard limit. The ideal case for this population is to
have it stay relatively stable at some sub max value.

The creatures are primarily a recurrent neural network.
This recurrent neural network controls all behaviors of the
creature via actions that can be defined on each node. These
actions include things like moving and feeding but also
extend to sensing the environment. Via the sensing actions
the creature can see the energy levels of specific type-
frequencies in a region. Most actions also apply to specific
regions that are part of the creature definition.

Regions are specific to a creature and are defined
relative to the creature’s location. They use a signed
discrete representation of the dimensions of the world.
Since the regions move with the creature, they can be
partially or completely outside the valid dimensions of the

world. When this happens the invalid sections of the region
are ignored the region is truncated to fit in the valid world
dimensions.

The fundamental parameters that describe a creature’s
physical behavior are stored energy and momentum. Stored
energy is the resource that creatures use to preform actions
and maintain their neural network. It is also used to
calculate the creature’s mass and radius. Momentum is
fundamentally mass times velocity and is stored instead of
velocity because it is not dependent on mass. In physics
momentum is preserved, meaning the total momentum of a
system will stay the same in the absence of an outside force.
This way the mass (stored energy) of the creature can be
changed without having to recalculate the velocity every
time.

The motion of creatures is fundamentally determined by
dividing their momentum by their mass to derive their
change in position. Changes in their motion are thus
directly related to their momentum and mass. Changes in
mass only have the effect of amplifying or dampening
motion so will not be discussed in detail.

As for changing momentum, there are five different
factors that will affect it. Firstly the creature can choose to
move by converting stored energy into kinetic energy and in
turn into momentum. This choice is an action and is
activated by the neural network. The second and third ways
are via collisions with other creatures and with the
boundaries of the world. Collisions in this system are
modeled as simple directional springs to improve stability
and allow the creatures to overlap. Additionally, collisions
damage the creatures participating in them in a manner that
is relative to the impulse applied. Damage is a reduction in
stored energy. The last two factors are drag and friction
which act to dampen motion.

All creatures in this model also have a DNA
representation. This DNA sequence consists of segments
containing four values each that map to both specific
attributes of specific nodes or regions and to the general
information about the creature. All facets of the creature
can be encoded into the DNA. Thus both the weights and
the architecture of the neural network used to control the
creature are represented in the DNA. For the most part,
segment order in this sequence does not matter since each
segment includes the ID of the component it belongs to.
Where it does matter is when you have two segments setting
the same value. In this case the segment later in the DNA
sequence overwrites the earlier ones. Lastly, the DNA
sequence need not be complete; anything not explicitly
specified in the DNA is set to default values. When
creatures are initialized from an un-encoded form, DNA is
generated for them containing any values that are not equal
to the default values.

Creature death happens when the creature does not have
enough of a specific energy type to support its maintenance
costs at the end of a cycle. Dead creatures are removed
from the world and their location in the data structures is

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

5

Adam Call

marked as empty, meaning it can be reused by a new
creature. The creatures can also die by actively choosing to
die. There can be benefits to a species not being long lived
such as rapid evolution.

In the same manner reproduction happens via actions.
The creatures actively choose to reproduce via division or
mating. The difference is that mating uses both mutation
and crossover while division only uses mutation. Crossover
happens on two crossover points. These crossover points
are percentages of the total DNA segment length of the
parent creature. This allows for DNA segments of differing
lengths to be crossed. Additionally constraints are placed
on these points to ensure that the total crossover percentage
is within a settable range. These percentages also round to
the nearest segment border. Partial segments have no
meaning in the model so are not allowed.

Mutation is performed for division and after crossover
for mating. It is performed a set number of times and has
four types: move, copy, delete, change. For each of these
types a segment is randomly selected from the DNA and for
move and copy a random location is also chosen. For move,
the chosen segment is moved from its current location to the
target location selected. Since a segment later in the DNA
sequence is less likely to be overwritten, move has the effect
of altering how likely the segment’s value is to be used.
Additionally, segments that are located closer to each other
in the DNA sequence are more likely to stay together during
the crossover operation and vice versa. This has the
potential to separate desirable and undesirable segments
more easily during the crossover operation. Copy does
something similar but only moves a copy of the selected
node. This leaves the original segment where it was and
increases the DNA’s length. Since copy effectively moves
the segment, it has the same effects to the creature as move
does. Additionally, copy increases the probability that a
segment will be passed on in a crossover by increasing the
number of copies of the segment present in the DNA.
Delete simply removes the selected node, decreasing the
DNA’s length and causing the default values to be used in
place of the deleted segment. Change randomly selects an
attribute of the segments to exclusively or with a random
value. Exclusive or is chosen since it has a balanced truth
table. This means that, given random bits, it will product
‘0’ half of the time and ‘1’ the other half.

As a final note, this model has no explicit fitness
function. The likelihood of a creature’s DNA being passed
on is directly dependent to how long they live and how
often they breed. Similarly, there is no concept of
generations as the creatures choose when they want to
breed. Lastly, mates are chosen randomly with no
preference given to proximity. This was done for simplicity
sake and could be improved in future work.

4. SIMULATION DATA
The simulation data is largely divided into three sets of

information, the creatures, the world and the running
conditions. The configurable portions of this data are
located in an XML configuration file that is loaded by the
application. At the top level are the running conditions of
the simulation. These consist of the CUDA device to use,
the number of cycles to run, the maximum number of cycles
to wait between logging points and whether to write any
new files generated with only the creature’s DNA or also in
a verbose readable form. The CUDA device refers to which
GPU in the system to use if there is more than one. Number
of cycles is how many cycles to run in total for the
simulation. The max period for logging is also referred to
as cycle batch. The system that runs the cycles will attempt
to run this number of cycles but will stop prematurely if an
actionable event takes place in the simulation. The last
option allows a more readable form of the creatures to be
written when requesting the simulation to write the ending
configuration file. Note: if both the DNA representation
and the verbose representation of a creature are present, the
DNA one will take precedence.

4.1. World Data

Through the world, the global constants of the
simulation are setup. For the dimensional constants, the
world takes the number of dimensions as a parameter as
well as the width of each dimension. In the simulation, the
dimensions go from zero to the given maximum and are
represented as either a 32bit integer or a 32bit floating point
number. To reiterate, the coordinates of something relative
to the spatial dimensions is its Position and is stored as a
float, while the coordinates of something relative to the
energy maps is its Location and is stored as an integer.

The other major property of the simulation is energy and
its varieties. Energy can be defined in the world in a
number of types of which each can exist in a number of
frequencies. When referring to energy with both a type and
a frequency, it is described as an energy type-frequency as
opposed to energy with only a type, which is an energy type.
A reference to only energy typically refers to energy without
a type. Creatures store some amount of each energy type
and consume energy each turn both through their
maintenance costs and their actions. The amount of
consumed energy is without type. The DNA of the creature
determines what percentage of the total is paid with each
energy type.

The world also contains the radiant energy maps or
simply energy maps. These maps of energy are what the
creatures detect when they try to sense the environment
around them. Creatures detect different statistics about
specific energy type-frequencies in regions of these maps.
The implication of this is that the creature could specialize
its sensors to only detect specific energy types or

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

6

Adam Call

frequencies. Creatures can also absorb these energy type-
frequencies from the world around them.

There are actually two radiant energy maps, the main
one containing the actual radiant energy that the creatures
directly interact with and a secondary one to hold the
percentage changes that need to be applied to the main map
during the next update due to creatures absorbing energy.
The reasoning for the second map is explained later in the
“ApplyRegionEnergyDelta” kernel description.

The energy maps have a different structure to their data
then would be expected. Fundamentally they have every
spatial dimension in them plus a full set of energy type-
frequencies at each spatial position. Energy frequency is the
innermost dimension while the first spatial dimension is
considered the outermost dimension. Within the array
representing the multi-dimensional structure, the innermost
dimension would be the one that only requires an offset of
one word to increment its index. The outermost dimensions
would require an offset of the product of all lower
dimensions to increment its index. The complication in this
structure of data is that it is flattened for the sake of
pitching. In the simulation every spatial dimension but the
lowest is folded into the upper dimensions and are
collectively called flattened rows. Each row consists of a
single index of the second innermost spatial dimension plus
all the energy type-frequencies for that row. In other words
each row has a width of the innermost spatial dimension’s
width multiplied by the number of energy types and energy
frequencies. The structure is then pitched on these rows to
align them to the Global memory’s specific indexes.

There are two additional settings related to these energy
maps and those are the ambient energy and the percent
rollover. The percent rollover is the amount of radiant
energy of each energy type-frequency that is carried over
from the previous cycle into the new cycle. This allows for
the changes the creatures make to the environment to have
some lasting effect. Ambient energy, on the other hand, is
the amount of each energy type-frequency to add to the
system each cycle. It is effectively the sun shining down on
the earth. As long as the percent rollover is between but not
equal to zero or one, these will eventually reach an
equilibrium point given no creature interaction.

The last values defined within the world are the system
limits. These are the maximum number of creatures, the
maximum number of nodes per creature, the maximum
number of regions per creature and the maximum side
length of each region. These are internally validated against
the hardware to see if the simulation is runnable.

4.2. Creature Data

The majority of the data in the simulation deals in one
way or another with the creatures. Each creature has three
base pieces of state information about it. The first is its
Position in the environment and intern calculated from this
its Location in the energy maps. The second piece of

information is the creature’s stored energy types. Again this
value is used to derive other values, specifically the
creatures mass and radius. The last is the creature’s status.
This is mainly used for signaling on a creature wide level
whether the creature is dying, reproducing or uninitialized.
With respect to uninitiated creatures, there are several
values that mark a creature as uninitialized: a null status, a
zero radius, having zero nodes and having zero regions.
The last two can happen naturally but the main purpose of
these marks is to skip work that does not need to be done.
A creature evolving with no nodes or regions or a creature
being uninitialized does not matter as long as it is
recognized that there are no items to process. The creatures
have one additional configurable property at the creature
level and that is the percentage of each energy type to use
for paying the maintenance cost. The maintenance cost is
based on the number of nodes and links in a creature and is
expressed in only energy without type. These percentages
divide up the total cost among the different types. This
allows the creature to potentially evolve out of the need for
a specific energy type and actually live on even when it has
negative of that energy type.

Each creature has a set of interconnected nodes that form
a recurrent neural network to control the behavior of the
creature. These nodes each have an action associated with
them. The specifics of these actions are described later in
the “ResolveActions” kernel. Most of the actions preform
their task on a region of the radiant energy map who’s Id is
included in the node definition. The actions also have
dimensional parameters which are typically a direction in
which the action happens. Note: this is only a direction and
not a location (region) for the action to happen. In addition,
the action has a set of energy type-frequency parameters.
The value these parameters encode varies from action to
action but is always something dealing with energy.

Each node also has a charge associated with it that is the
sum of the incoming signals from linked nodes. This charge
is used with the activation function to determine if the node
is active. There are actually several different activation
functions with the choice and configurations of the used
method dependent on a pair of parameters call On Charges.
Like with the maintenance energy at the creature level, each
node also has a set of percentages that controls how much of
the activation cost is paid by each energy type. The
activation energy cost is dependent on a fixed amount for
the node and the number of links leaving it. The definitions
of the incoming links for each node consist of the node the
link is coming from and the scale and offset to apply to the
charge of the linked node. This incoming scaled and offset
node charge is added to the target nodes charge. The nodes
only define their incoming links and not their outgoing ones.

The last items defined for the creature are the regions.
Each creature can have some maximum number of regions
defined for it that are located relative to the creature’s
Location. The regions are defined as a minimum and
maximum offset in each dimension relative to the creature.

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

7

Adam Call

Since the creatures can move around, the actual location of
these regions in the energy maps can change, allowing for
the creature to interact with different portions of the world.
One thing to note about regions is that they can exist outside
of the current world and could thus be partially or
completely invalid. When the regions are processed, the
portions of the regions outside of the world are ignored from
consideration.

5. SIMULATION IMPLEMENTATION
The following sections will go into the details of how

the different pieces of the program operate. In addition,
design considerations and reasons for specific choices will
be mentioned for the specific pieces of code being talked
about.

5.1. EvoSim

EvoSim is the externally visible layer of the simulation.
It handles all the high level interactions with the simulation.
Through it a simulation can be loaded, run and logged. In
this project the interactions with EvoSim are handled by a
simple main function. This function starts by instantiating
an instance of EvoSim. This is a parameter-less constructor
as the configuration of the simulation is stored as XML
data. Loading this XML from a file is the next step of the
simulation, followed by the validation of the loaded file.
The creatures in the simulation can be stored in either their
verbose form or as a DNA sequence. When both are present
the DNA sequence takes priority. When validating the
configuration, the GPU is checked for compatibility with the
simulation and the configuration parameters are checked to
validate that they will not overrun the limitation of the
Shared memory. EvoSim’s Malloc is called next but it will
require a successful validation before running without
returning an error. The last step to setup the simulation is to
call MemcpyHostToDeviceAll to copy all the data about the
simulation to the GPU.

Running the simulation is simply a matter of setting the
values you would like to be logged and calling RunCycles.
The entire configuration about the simulation is in the XML
configuration file. The last function of note is SaveConfig
that allows you to save the current configuration of the
simulation at any point. This is mainly to allow you to
analyze the living creatures at the end of the simulation or
start a new simulation from the same point. The remainder
of the main function is just cleanup operations.

There are a few more functions in EvoSim that warrant
some additional explanation. The first are LoadTest and
RunDebug. This pair of debugging functions were used
before the XML loading was implemented. LoadTest loads
a default configuration of the simulation and RunDebug
runs the simulation with some extra print statements.
RunDebug does not support logging of the simulation
results.

Loading of the XML configuration files starts with
LoadConfigFile. This function handles the general data not
about the world or the creatures. The world and creature
tags are handed off to their respective classes to be decoded
directly into their respective member variables.

The job of RunCycles is three fold. The first purpose is,
of course, to run the cycles of the simulation and the second
to log the data that has been requested to be logged when
SimCore returns from a cycle batch. The maximum size of
a cycle batch can be specified in the XML and is the
maximum number of cycles SimCore will run before
stopping for logging. SimCore will stop prematurely if an
actionable event happens before all cycles are run. The
third purpose, happening in the last step, is to handle the
actionable events.

Actionable events are reproduction and death. These are
handled at this level due to their sequential and highly
complex nature. Another problem is that the handling of
these events can cause memory allocation and deallocation.
The last issue is that the reproduction algorithm needs
access to the DNA representation of the creature which only
exists in the high level representation of the simulation. The
first step of handling the actionable events is to update the
variables in the high level representation from the low level
representation. When this is done, creatures are checked for
a status of death and deallocated if need be. The
deallocation code handles marking the creatures and their
regions and nodes as deallocated so that the kernels can skip
them.

If the reproduction flag was set or this method was
called due to a full batch of cycles being run, the
reproduction code is processed. One of the problems
encountered when actually running the simulation was
sterility. Since the creatures can choose to reproduce they
are able to evolve to a point of being serial. To counter this,
forced reproduction is done with the original fertile creature
to keep the population from going sterile. Following this is
a pair of loops to check every node of every creature that
has a status of reproduce.

There are two reproduction events, Divide and Mate.
The difference is that Divide only mutates the original
creature while Mate preforms a DNA crossover with a
randomly selected creature or the base creature in the case
of sterility. The properties of the actions that generated the
event actually control some aspects of the reproduction.
Firstly, the dimensional parameters of the node designate
the relative position where the new creature should be
placed. The energy parameters of the node designate the
percentage of energy that should be given to the child.
Some percentage of this transferred energy is also lost as a
cost of reproduction. After this, the original creature is no
longer needed so its updated energy can be written back to
the low level representation of the simulation.

Evolution is handled two ways, mutation and crossover.
Both Mate and Divide have mutation but only Mate does
any crossover of DNA between creatures. Crossover is

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

8

Adam Call

handled first so that both methods can use the same
mutation code. For any creature that mating applies to,
crossover starts by randomly selecting a second parent from
the other creatures. The crossover is handled by a pair of
percentages. Two different random numbers are chosen
between zero and one (inequality is enforced). These values
are used to split the DNA of the two creatures at percentages
of their lengths. This was done to remedy the problem of
varying length DNA. Before splitting, these values are
checked to make sure the amount of DNA crossover
between the two creatures is within a set window, 0.25 to
0.75 for this project.

The DNA is represented as a linked list of segments.
Each segment contains 4 values which are used to varying
degrees. Parameter type is the first and is an enumeration of
all the different configurable creature parameters. Next is
the segment info which is used as an index or ID of the
element within the creature, (node, region, etc.). Sub
segment info is any further categorization of the parameter,
for instance dimension, energy type, etc. The last is the
actual value which can be read as an unsigned long, long or
float. When reading DNA values, a modulus is preformed
against the limits of that parameter to put it into a
meaningful range.

The crossover of the DNA sequence is handled by three
iterator loops. The first copies the first creature’s DNA
from the zeroth segment to the one designated by the lower
of the two percentages. The next loop copies the segments
from the second creature from the lower percentage to the
higher percentage. The last loop finishes off by copying
again from the first creature at the high percentage till the
end. In addition, if the lower and upper percentages have
been reversed, the creatures are also reversed when the
percentages are swapped back into order. This algorithm
allows for a wide variety of different crossovers to happen.

The second method of evolution is mutation. The
number of mutations to perform is designated by a constant.
For each mutation, a random node is selected and one of
four mutations is performed on that node. The first is
simply to randomly move the node elsewhere in the list.
This does not change the node in any way and merely
changes where it is located in the DNA. The next method is
to copy the current node to some other location in the code.
The next and simplest mutation is to just delete the node.
The final mutation is to randomly choose one of the values
in the segment to randomly change. This modification is
done by performing an exclusive or on the value chosen
with a random value. The exclusive or was chosen because
it does not favor 0 or 1. Three out of four of these
operations require randomly changing the positioning of
segments in the DNA. A linked list was chosen to represent
the DNA specifically because of these mutation operations.
The penalty is that the individual segments must be indexed
too. A utility function was created for this purpose and
simply returns the iterator into a linked list some number of
steps in.

With this, the DNA for the new creature has been
created and can be decoded by the new creature. This
handles fixing critical problems in the creature due to any
problems in the DNA. Specifically, it keeps track of
hanging links and region references. When it finds a
hanging link it creates an object to hold the other end of the
link even if the link is the only non-default piece of
information about the object. It also handles the scaling of
values read from the DNA into the proper ranges. After all
creatures have been checked for reproduction, the data about
the creatures is updated in the lower level code and control
transfers back to the GPU.

5.2. SimCore

The purpose of SimCore is ultimately to handle all
interaction with the GPU. Its first responsibility is that of a
memory manager. The high level representation of the
simulation contained within EvoSim would be very
inefficient if used in the GPU. To improve the performance
of the kernels, the data must be structured into such a way
that it makes it more efficient to transfer between the
different sections of memory in the GPU. When using
Object Oriented methods, the data is structured into an
Array of Structures form [10]. Structures in this phrase are
meant in the general sense and not in the literal sense. What
this means is that data is arranged into an array where each
index of the array has many values. While this data
structure is acceptable in a sequential system, it makes
Memory Coalescence impossible. Only data that is stored
sequentially can be coalesced for transfer. Also, each kernel
will only need a subset of the data. This leaves one of two
choices. Either transfer unneeded data or jump around in
memory only taking the pieces of each structure that are
needed.

The alternative method is Structure of Arrays. Again,
structure is not meant in the literal sense. With this strategy,
each creature represents an index or a set of indexes in an
array. These individual arrays only contain data about one
of the properties. Some other structure, SimCore in this
case, contains these arrays. The benefit is that now the data
for each parameter is continuous and can be coalesced for
transfer within the GPU. Thus SimCore needs to contain a
low level, Structure of Arrays, representation of the
Simulation data to be transferred to the GPU.

Several utility classes have been created to handle
allocation and deallocation of memory for both the GPU and
CPU simultaneously. The simplest is DeviceArray, which
is just a single array of some type. The class defines several
Malloc choices. There are really two choices to make with
respect to which Malloc function to use: first, does the array
need to be pitched and second, does an initial value need to
be set. Pitching an array is when the rows of a two
dimension matrix are offset to correspond to the Global
Memory indexes, typicality by 512 bytes. The advantage is
improved transfer times of individual rows at the cost of

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

9

Adam Call

wasted memory. The class also defines a free method that
will clean up the memory on both the CPU and GPU.
Lastly, this class exposes methods to copy data between the
GPU and CPU arrays.

The next class is DeviceJaggedArray that is simply an
array of arrays. More specifically, it is an array of
DeviceArrays. It defines all the same functions as
DeviceArray with the addition of per item versions of each
behavior. The last class is the DeviceMultiArray which is
only really used for the radiant energy maps. What is
special about it is that it allows for a multidimensional array
to be defined and then pitched on any of its dimensions.
Other than that, DeviceMultiArray defines much of the
same functionality as the other two classes.

These three classes are used by SimCore to define all
arrays of data contained within the GPU. The allocation and
initialization of these arrays are handled by SimCore’s
Malloc and MallocCreature functions. Malloc handles the
allocation and initialization of all non-creature specific
arrays. This includes the arrays about the environment, the
top level of the jagged arrays and the non-jagged creature
arrays. The non-jagged creature arrays are of fixed size
based on the values given to the simulation at construction
so can be allocation without any relation to the individual
creatures. The top levels of the jagged arrays are the same
way, only depending on the maximum number of creatures.

MallocCreature handles the allocation and initialization
of the individual creatures but also has to deal with some
conversion of data during the initialization. The special
cases in this method are the creature’s nodes and regions. In
the case of the nodes, each node must be allocated and
initialized individually. While doing this, the maximum
number of input links must also be found. This max links
per node value is used as the height of the pitched links
matrix. With the array allocated, an internal function is
called to convert the given linked list form of the linked
nodes into a compressed form. The specifics of this
compressed form are described later.

The regions must also be converted to the lower level
representations. The high level representation of the regions
is a list of the left and right offsets relative to the owning
creature, which defines the boundaries of the region in each
dimension. Regions within the GPU only really deal with
Location as opposed to Position. To more easily process a
region in the GPU, the boundaries are converted into a list
of relative offsets to rows that need to be checked in the
radiant energy map. The first step is to find out how many
rows are needed total so that the memory can be allocated.
The second step is to loop through the dimensions,
recording every relative offset row needed. The innermost
dimensions range is stored separately since it is the same for
all rows in a given region.

The last method of note in SimCore is RunCycles, which
as the name implies, runs cycles of the simulation.
Specifically it will attempt to run the number of cycles it is
told to. The method will also terminate prematurely if an

actionable event, (reproduction and death), happens before
the total number of cycles is run. The method has three by-
reference parameters to return the actual number of cycles
run and which event was found. The kernels run in the
following order: CalcRadiantEnergy, CalcRegionValue,
CalcNodeCharge, CalcNodeActive, ResolveActions,
ApplyRegionEnergyDelta, ResolveCollision,
ResolveMovement and CheckReproductionAndDeath.
CalcRadiantEnergy needs to be first so that the radiant
energy map can be initialized before it is used in the first
cycle of a simulation. CalcRegionValue follows this to
calculate the new region values from the updated radiant
energy. CalcNodeCharge and CalcNodeActive handle the
processing of the creature’s neural network. The task of
calculating the node charge and checking for activation was
divided to reduce shared memory usage. ResolveActions
handles the processing of all the actions caused by activated
nodes. ApplyRegionEnergyDelta’s job is to apply the
energy deltas from each region to the secondary radiant
energy map of percentage changes. These changes in
energy are due to the actions in the previous kernel.
ResolveCollision handles the detection and resultant
impulses of all collisions between creatures but does not
actually apply them. ResolveMovement collects the
impulses from collisions and actions and does the physics
computations to resolve the creatures’ new positions and
momentums. In the end CheckReproductionAndDeath
handles the deduction of the node and link maintenance
energy from the creatures and the detection of reproduction
and death events.

5.3. Kernels

In CUDA, a kernel is a function that is run by the blocks
within the GPU. Fundamentally, a kernel is the “Single
Instruction” in SIMD that the GPU runs in parallel. It is
defined similarly to any function with parameters but no
return value. These parameters are either values or pointers
to locations in the GPU’s memory. By design, nearly all of
the actual calculations for the simulation happen in the
kernels. This was done to maximize the opportunities for
parallelization of work and minimize the overhead
associated with moving data between the CPU and GPU.
The only task that was deemed impractical to implement in
the GPU was the handling of reproduction and death. The
two main reasons were that reproduction required the high
level representation of the creature and both reproduction
and death caused memory allocation and deallocation.

5.3.1. General form of the kernel

With the more recent versions of CUDA, the support for
kernel linking was added. This functionality adds “.cuh”
header files in addition to the “.cu” source code files. This
functionality allows for kernels to be divided up into smaller
files as opposed to existing monolithically in the same file
as would have to be done previously. The down side of this

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

10

Adam Call

is related to calling the kernels and the constant memory
variables. A method was not found to directly call the
kernels from outside of the CUDA files they are defined in.
The solution was to simply add a C++ function in the same
file to call the kernel. With respect to the constant memory
variables, the CUDA documentation [11] defines that the
scope for the “__constant__” tag used to define the constant
memory variables, to be only the file in which the variable
is defined. This unfortunately necessitated the redundant
declaration of needed constant memory variables in every
kernel “.cu” file that needed it.

Each kernel has six functions defined for it based of the
root of the kernel name. The kernels use the root name with
“Kernel” post fixed. The C++ wrapper uses this root name
directly and has an additional three parameters beyond what
the kernel requires. These parameters are the Grid size,
Block size and size of the dynamic Shared memory Block
needed by the kernel. The last three functions are all post
fixed with “SharedMemoryNeeded” and prefixed with
either “Calculate”, “Constant”, of “Total”. “Calculate”
returns the variable byte size of shared memory needed
based on given parameters. “Constant” returns the non-
variable component of the shared memory needed and
“Total” simply returns the total of the two. The shared
memory size passed into the wrapper function is actually
only the variable component of shared memory as the kernel
defines its own constant shared memory.

The kernel naming conventions follow a common
pattern. They start with the declarations of all needed
variables. The variables in a kernel have one of 3 prefixes
or no prefix and use camel case. The parameters passed into
the kernel have no prefix and are either pointers to Global
memory or values. The other 3 prefixes are used to
designate where the variable exists in GPU memory. They
are ‘g’ for Global, ‘s’ for shared and ‘l’ for local. The prefix
consists of one of these letters followed by an underscore.
The Global variables are pointers into Global memory.
They are used to sub index the Global memory pointers that
are passed in as parameters. The Shared variables are either
pointers into the dynamic Shared memory Block or non-
dynamic Shared values defined within the kernel itself. The
Local variables represent the registers and the backup Local
memory for when there are too many registers. They are
used as inter-kernel processing variables. Following are
examples of this naming convention for a parameter, global
pointer, shared pointer and local variable in that order:
nodeCharge, g_nodeCharge, s_nodeCharge, l_nodeCharge.

The reset of the kernel can be dived into to three broad
categories: setup, processing and update. The main purpose
of the setup sections is to initialize the Shared memory.
This can mean both coping data from Global and setting
default values. Values copied from Global to Shared are
typical done via a multi-Threaded loop. Simply put, the
sequential Threads each copy one value in order before
wrapping around to copy more if need be. This improves
memory transfer coalescence. Typically, local values are

also initialized in this section but need not be. The reason
for this is that Shared memory usually contains arrays of
data while Local memory usually contains single values. A
setup section frequently ends with a sync to make sure all
the data has been transferred before continuing. A kernel
can have several setup sections for each division layer of the
work. The most common places are directly preceding the
Block and Thread loops.

The processing sections vary a lot by the different tasks
they perform but contain some common elements.
Frequently a loop starts with a conditional check to see if
the current item should be skipped. There are many cases
where an item is invalid and should not be processed. Each
kernel typically has several nested processing loops. These
are typically based on the Blocks and Threads but can also
divide the problem by Warps for some of the more complex
item structures. Further description of each kernel can be
found later in this report.

The last section is the update section. The purpose of the
update sections if to write values back to Global.
Frequently, Shared memory is used by the processing loops
to store the results locally so that they could be copied back
to Global in an efficient manner. This efficient manner is
again a small Thread loop that assigns subsets of the values
to each Thread. Just like the setup section, there can be
several update sections. The update sections typically
mirror the setup sections and appear directly after a
processing loop. Frequently an update section begins with a
sync to make sure all data is ready to be transferred.

5.3.2. CalcRadiantEnergy

As was stated, the environment the creatures live in is
represented as a multidimensional energy map. The purpose
for the CalcRadiantEnergy kernel is to update the values for
the radiant energy map. In the current implementation there
are three contributions to radiant energy. The first is a
settable value of how much energy should roll over from
cycle to cycle. The next is how much additional/ambient
energy is being added to the system each cycle. The last is
how much energy the creatures absorbed from the radiant
energy.

Since this kernel deals with the radiant energy map, the
work load for the Blocks is divided by the flattened rows of
the energy map. Once again flattened rows are all
dimensions above the first reduced to one very big
dimension. The first thing done is to copy the ambient
energy being added to the system from Global to Shared.
From here the kernel splits into two cases. The difference is
whether there is a percent rollover of radiant energy in the
simulation. If there is not then several steps can be skipped.
In this initial implementation only the case including
percent rollover is used. The original idea was to have land
in the simulation. Pieces of land would consume spaces and
also store and release energy. Percent rollover was a
simpler way to get the radiant energy persistence that land

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

11

Adam Call

would have given. This is important because it allows
creatures to have a lasting effect on the environment. The
other source is the energy the creatures have absorbed. An
idea for future work is to have the creatures emit energy
based on their current energy levels. The idea was they
would have some control over the frequencies of energy but
not over the quantity. Thus, a whole stealth aspect could be
born from the combination of sensors and creature
emissions in different frequencies.

For the percent rollover case, the first thing done is to
copy the old radiant energy and the percent rollover values
from Global to Shared. In the main Thread loop each
Thread handles a subset of the total energy types and
frequencies per row. In other words, the rows in the energy
map have the number of energy types multiplied by the
number of energy frequencies multiplied by the number of
columns of floats in them. In this calculation the energy
absorbed by the creatures is removed before the percent
rollover is applied. Next, the incident ambient energy is
added. This new value is then written to Shared. In the
non-percent rollover case, the new radiant energy is directly
equal to the incident ambient energy. Lastly, the new
radiant energies are copied back to Global in Thread batch
fashion.

5.3.3. CalcRegionValue

Regions in the simulation are bounded spaces in the
radiant energy map relative to the owning creature. As the
creature moves, the region moves with it. This also means
that a region can be partially or completely outside of
known space. The CalcRegionValue kernel handles the
calculation of four statistics about each energy type-
frequency in each region. These four values are minimum,
maximum, total and count. Total is the summation of all
values of a specific energy type-frequency in the region
while count is simply a tally of how many valid spaces were
used in the calculations.

Seeing as this kernel calculates statistics about regions, it
makes sense that it divides the total number of regions to
process among the different Blocks. As a result of the
genetic evolution of the creatures, a region may be defined
but ultimately be empty. The first step in the Block loop is
to verify that the region being considered has any rows to
check at all. The Block loop continues from here like most
kernels with the coping of data from Global. Specifically,
the list of relative offsets into the flattened radiant energy
matrix is read for this region. The last step before starting
the calculation is to initialize the local variables for the
calculated values and initialize shared memory. Total and
count are set to zero while minimum and maximum are set
to the positive and negative of the maximum float value
respectively. The last step of the setup is to have Warp zero
initialize the shared memory with the default values.

Unlike most kernels, this kernel actually has an
additional layer of division of work. Normally the work is

divided by Blocks and then by Threads. In this kernel the
work is divided by Blocks then by Warps and finally by
Threads. The nature of the problem is what drives this. At
the top level the regions are divided among the Blocks.
Below that the flattened rows are divided among the Warps,
each Warp handling a row at a time. Lastly, the Threads in
the Warps handle one energy type-frequencies each. The
difficulty with this method is the variable nature of the
energy type-frequencies.

Since the number of energy type-frequencies is variable,
simple methods would not work well. To explain, for every
column space in a row there exists a full set of energy type-
frequencies. The ideal case is when the number of energy
type-frequencies just so happens to be the Warp width, 32.
In this case each Thread handles an index in each row and
nothing special has to be done. Obviously this is very
unlikely to happen. There are two non-ideal cases, to small
and too large. In the too small case the number of energy
type-frequencies is less than the Warp width. A way to fix
this is to just have each Warp process multiple columns at a
time. Again this is unlikely to perfectly fill the Warp. The
way around this is to just round down, meaning only put as
many columns in the Warp as will completely fit. This may
leave some wasted processing but it prevents Warp
Divergence. In the kernel, the constant
“WidthOfEnergySetsPerWarp” contains the width of the
energy type-frequencies sets that can completely fit in the
Warp.

The other issue is when the number of energy type-
frequencies is greater than the Warp width. This basically
means that each Warp cannot fully process a single column
in a flatten row. The method used to resolve this was to
create a virtual Warp width. The idea is to use as many
Warps as is needed to fully process a column, meaning just
multiply the Warp width by some positive nonzero integer
to get a virtual Warp width that is sufficient.
“WarpSizeNeededPerEnergySet” is the resulting virtual
Warp width. This method is typically used in conjunction
with the “too small” case given previously as doubling the
Warp width will likely be more than is needed.

This kernel intern has several extra pieces of information
related to the division by Warps and Energy type-
frequencies. Warp width is the total number of virtual
Warps in the kernel and Warp index is the index of each
Thread relative to the start of their Warp. The last special
value is energy index. This is the energy type-frequency
that each Thread will consider. Each Thread can only
handle one energy type-frequencies at a time but each
energy type-frequency is likely handled by multiple
Threads. Only handling one at a time is to keep the
different energy type-frequencies separate.

The virtual Warp width also affects the information
about the Warp. Warp ID is the ID of the Warp to which
the Thread belongs. When using the virtual Warps, all
Warps in the same virtual Warp share the same Warp ID.

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

12

Adam Call

The first step after the post initialization sync is to
calculate the first and last valid column in this region. This
value is relative to the creature’s location and is bounded by
the limits of the radiant energy map. Following this is two
checks merged into one. This first is to check that the min
is less than the max. If this is not true it means that there are
no valid columns and the entire region can be skipped. The
next check is if the current Thread has a valid Warp index.
Since it is unlikely the virtual Warp will be completely
filled, there will be Threads at the end that sit idle.
Following this check is the Warp loop that assigns a subset
of the flattened rows to each Warp. Now the row index can
be retrieved and validated. Again, since the creature can
move, there can be relative rows that are outside the bounds
of the radiant energy map. These rows are just skipped and
processing continues with the next row.

The innermost loop is what appears to be a Thread loop
but is not a typical Thread loop. The difference is that this
loop increments by the width of the energy type-frequencies
processed by each virtual Warp, as opposed to the Thread
width. The implication of this is that the inactive Threads
would have actually been pointing to the data of the next
cycle of the loop. As the Warps finished with their allotted
set of rows, they atomically set their values into shared.
Doing this required the creation of two additional methods
based of the standard atomic operations [11]. Atomic Add
was already available from CUDA, but using the template
on their site, an additional two methods were created to do
an Atomic minimum and maximum. Finally at the end, the
values are copied back to Global before the next region is
processed.

5.3.4. CalcNodeCharge

The processing of the Neural Networks for each creature
was divided into two kernels for the sake of Shared memory
capacity. The first is the CalcNodeCharge kernel that
calculates the new node charge for each node relative to the
incoming links to it. Being about the creatures, this kernel
again divides the creatures among the different Blocks to be
processed. Before any calculations are done in this kernel,
each Block first checks that the creature it is processing has
any nodes. A node-less creature can come from evolution
but is also one of the marks of an uninitialized creature. In
the initialization step, the old node charges and activations
for the creature are copied from Global to Shared. Like
with other kernels that process nodes, each Thread handles a
subset of the creature’s nodes.

For each node, the first step is to verify that the node
even has links. Each creature has an array of structures
containing the information about the links for each node.
The structure of this list has been designed to improve
performance but in turn is slightly complicated. The list
starts with a single entry for every node even if the node has
no incoming links. Additional links after the first are stored
in a packed collated form after the set of first links. This
means that all the second links for nodes that have second
links appear in order and without gaps after the list of first
links and before any third links. The third links follow and
the pattern repeats until all links have been encoded. This
structure was chosen to improve memory coalescence when
retrieving the data from Global. Several tests were done
with variations of different storage patterns. Each set of
links being in order, sequential and pitched yielded the best
performance. In this arrangement missing links are skipped
and the next appropriate link on that level is instead written
to that location. The pitching means that each level of links
starts on a Global memory index. This intern means that
there is wasted Global memory in this structure. This was
deemed acceptable for the performance increase.

Starting with the first link nodes, the kernel checks that
the linked node ID is less than the total number of nodes in
the creature. This check might appear to be a simple
safeguard but actually serves an important purpose.
Because of the encoding structure every nodes must have a
first link even if it has no links. This fake first link is
marked as invalid by setting its linked node to hex
0xFFFFFFFF. Assuming the first link is valid; the
associated node is next checked for activation. If active, its
scaled and offset charge is added to the local tally of the
node charge.

The information about the links consists of four pieces
of information. The first three, (linked node, scale offset),
were just used. The last is the byte offset to the next node
within the link information array. Byte offset must be
stored because the array is pitched at the beginning of each
link level. This means that the number of bytes to the next
location might not be a multiple of the structure size. In the
kernel, the pointer into this structure is also kept as a byte
pointer and cast to the link information structure for this
reason. Each thread will loop over this array, offsetting its
pointer by the stored byte offset, until if finds a zero byte
offset. This zero byte offset is used to mark a link as the last
link. Each linked node found this way is checked for
activation and added to the node charge tally if active. The
last task for the Thread is to write the updated node charges
back to Global.

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

13

Adam Call

5.3.5. CalcNodeActive

The second step in processing the neural network is to
take the calculated charges and determine if the nodes are
active. This is handled by the CalcNodeActive kernel. This
kernel does not have any initialization before the Block
Thread which like in the first step, assigns a subset of the
creatures to each Block. Again, a check is made to make
sure the creature has any nodes to process before
continuing. The values copied from Global are the energy
levels of each node for the current creature and the energy
cost of each node to activate.

After a sync, the Thread loop assigns a subset of the
nodes to each Thread in a similar manner to the first step.
For each node individually, the activation costs are checked
to make sure the node is even able to activate. This check is
actually not completely accurate. Later in the kernel the
activation cost of the activated nodes will be deducted. The
deduction itself is atomic but is not synchronized with this
early check. The consequence is that some nodes might
activate that should not be able to activate. This was
deemed an acceptable consequence since the cost to activate
will still be subtracted. The only possible consequence is
that a creature kills itself activating a node it should not be
able to. This death is not a problem in the broader view of
the simulation.

The main reason to pre-check for the nodes’ ability to
activate is to be able to skip the activation functions for any
nodes that do not need them processed. The reason this is
such a concern is due to the activation functions. Each node
has two On Charges defined for it. Based on the values and
relative values of these two On Charges, different activation
functions are used. This leads to a lot of unavoidable
Thread divergence. Luckily, the divergence is limited to
only a short section and only has six distinct paths. So
assuming the node can activate, what follows is a set of six
if-else statements that choose the different activation
functions. These different cases are listed in Table 1.

These six activation functions allow for a variety of
behavior and even include band filters. The next step is to
check if the node is active and subtract the activation cost if
it is. Lastly, regardless of whether the node could activate
or not, the new activation state is written back to Global
before going on to the next node. The last step before
moving on to the next creature is to write the new creature

energy back to Global with the node activation costs
subtracted from it.

5.3.6. ResolveActions

The ResolveActions kernel is the most varied and
branching of the kernels. This is because this kernel handles
the processing of all the actions. The concern with this
kernel is Warp divergence due to multiple nodes being
active. The counter to this is the assumption that for a
Warp, the number of active nodes will be minimal so the
Warp divergence of the kernel will be minimal. Ultimately,
Warp divergence for this kernel is considered an
unavoidable consequence of having multiple different
actions.

Like other kernels dealing with node processing, this
kernel assigns a subset of the creatures to each Block and a
subset of that creature’s nodes to each Thread. Again, the
Block loop starts with checking if the creature has any
nodes to process in the first place. Following this is the
initialization step for that creature. Since this kernel deals
with all actions, it has to copy a lot of different data from
Global. Specifically it needs: creature energy, region
values, action energy scale and action magnitude vector.
Action energy scale is the energy type-frequency parameters
of an action while action magnitude vector are the
dimensional parameters of the action. The actual meaning
of the parameters varies for each action. The last step of
initialization is to zero out the shared memory holding the
energy delta percentage per region and the kinetic energy
impulse being applied to the creature.

The Thread loop comes next after the post initialization
sync. Again each Thread in the Thread loop handles a
subset of the nodes. After checking if the node is active, the
flow of the kernel is split by a switch statement on the
action type. This is the point of Warp divergence.
Unfortunately, any active nodes within the same Warp are
very likely to traverse this region of the code in a sequential
manner.

The first set of actions are the sensing actions and they
all behave in a very similar manner. For each energy type-
frequency they add a scaled value to the node charge. What
this value is depends on the action type. The scale used is
the value stored in the action’s energy parameters. The
values comes from either the creature’s own energy in the
case of “SenseSelf” or a region for all the other cases. For

Table 1: Activation Functions

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

14

Adam Call

“SenseSelf” specifically, only energy type and not energy
frequency is considered as the creatures only store
frequency-less energy types. The other six sensing actions
calculate the value they need from the region values:
minimum, maximum, total, count. As a reminder, total is
the sum of all spaces in the region of a specific type-
frequency and count is the number of locations in the
region. The six actions calculate their value to be used in
the following ways: “SenseAverage” total / count,
“SenseAbsoluteMax” maximum, “SenseAbsoluteMin”
minimum, “SenseRelativeMax” maximum - total / count,
“SenseRelativeMin” minimum - total / count,
“SenseMaxMinDelta” maximum - minimum.

The final two actions are Absorb and Move. Absorb is
used to absorb energy from the radiant energy map within
the specified region. Within this action each Thread has to
handle the processing of each energy type-frequency by
itself. In this action the energy parameters are the
percentage of energy to try to absorb for a particular energy
type-frequency. Only the energy type-frequencies with
significant absorption amounts are considered by this action.
Specifically, this means greater than some set float value
epsilon. Two things must be done for each of these energy
type-frequencies. First, the percentage absorbed from the
region must be atomically added to the total percentage
absorb for that region. This is done locally in shared to
minimize the cost of the atomic operation.

The second step is to add the absorbed energy to the
creature. Since Absorb is region based, the “total” region
value can be used to calculate the amount absorbed. A
potential conflict with this method is that two creatures
could be trying to absorb energy from two overlapping
regions. This is why the percentage is stored for updating
the radiant energy map. This percentage has the potential of
getting to over 100% and driving the radiant energy
negative. This is actually not a bad thing and will just be
reflected in the region values for any effected region in the
next cycle.

The last thing to consider with absorption is that it is not
100% efficient. In this simulation, the slower you absorb
energy the more efficiently you can absorb it. The idea is
that a creature can try and absorb 100% of the energy but
will only get 50% of the energy. The remaining 50% is lost.
The consequence is now they have completely depleted the
storage of energy in that region. The efficiency was based
on the idea that you have diminishing returns the more
energy you try to absorb. The equation for the amount of
energy absorbed is total * scale * (100% - (0.5 * scale)).
This equation behaves in a way where the percentage of
energy you lose is half the percentage you gathered. This
loss percentage is applied to the energy absorbed and not the
total energy. For instance if you were trying to gather 100%
you would loss 50% of the 100% you gather. A better
example would be trying to gather 50%. In this case you
lose 25% of the 50% you gathered or 12.5% of the total
energy. This also has the implication that if you try and

gather 200% you will lose all the energy you gathered while
setting a very negative value in the radiant energy map.
Even further past 200% and you are actually losing energy
when you try to absorb. The last step of this action is to
atomically add the absorbed energy to the creature energy
stored in Shared.

The last action is Move. What Move does is transfer
creature energy into kinetic energy. For this action the
energy parameters contain the quantity of energy of each
type to transfer and the dimensional parameters contain the
unit vector of which direction to move. The first step is to
remove the energy to be transferred from the creature. This
action must be done atomically and only if there is sufficient
energy. Because of this, a specialized version of the atomic
operations was done in place. It was not made into a
function since it is not used anywhere else and has very
special behavior. The main difference between this atomic
subtraction and others is that the Thread will skip the
operation if the creature has insufficient energy. The last
step is to apply the total transferred energy to the individual
dimensions based on the given unit vector in the actions
dimensional parameters. This step is skipped for trivial
amounts of transferred energy.

After the action for the node has been processed, the
only cleanup work is copying the new node charge back to
Global. The sense actions add their sensed values to the
already activated node. While this does not affect the
activation of the node in this cycle, it will affect the strength
of the signal to linked nodes in the next cycle. The
processing of the creature as a whole finishes by updating
the creature energy, the region energy delta percentages and
the creature kinetic energy. The last step is to calculate the
creature’s radius and mass. These values are used by
several kernels later in the cycle but are calculated here.
Stored energy it used to calculate both the mass and radius
of the creature. Additionally, the number of dimensions
effects how the radius is calculated as it is based on the
spheroid volume needed to contain the creature’s energy at
some set density.

5.3.7. ApplyRegionEnergyDelta

Updating the radiant energy map after energy has been
absorbed by a creature is actually a very difficult task to do
in parallel. The problem is this task requires different types
of work divisions at different steps. Specifically, it requires
a division by creature and node to determine what
percentage is being absorbed per region. This absorption
rate per region then needs to be applied to the radiant energy
map, which requires a division by region. The problem with
this is that the change in energy is represented as a
percentage of the initial value. If the changes were applied
sequentially and two regions overlapped, then the absorbed
energy from the radiant energy map would be less as one of
the two would see a lower initial value. The solution that
was chosen after much consideration was to create a copy of

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

15

Adam Call

the radiant energy map that holds the total percentage
change to be applied to each region. This percentage
change is the same value that was used in the
CalcRadiantEnergy kernel.

For this problem the ResolveActions kernel handles the
generation of the absorption percentage region and the
CalcRadiantEnergy kernel will handle applying the
percentage changes to the radiant energy map. This kernel
handles the conventions of the region percentage energy
change to the percentage energy changed map. Like
CalcRegionValue this is a kernel that processes regions.
Again it starts by assigning a subset of the regions to each
Block. If the region has any rows to consider, it then
proceeds to copy the region energy delta percentages from
Global to Shared. To save some work, the read values are
pre-checked for non-zero values. If all the percentage
change values are zero then there is nothing that needs to be
done for this region and it can be skipped.

Assuming that there are percentage energy deltas to
process, the kernel starts the region handling in a similar
manner to CalcRegionValue. Again, the first step is to copy
the relative offsets to the needed rows for the region from
Global. Next, check if the current Thread’s energy type-
frequency has a delta energy percentage associated with it.
Just like the region case, skip any energy type-frequencies
that do not need to be processed. Following this is again the
calculation of the minimum and maximum value columns
and the check to see if there are any valid columns to
consider. The unneeded Threads are again skipping like
before. Next, check if the row is valid and if it is, then
atomically add the percentage energy delta to the Global
energy map for radiant energy delta percentage. This action
is again a necessary inefficiency. Atomic operations with
Shared are costly to begin with. When they are made with
Global they become something to be avoided.
Unfortunately, a better method of dealing with overlapping
region updates was not able to be found so the added cost
was just taken as unavoidable. Since the new values are
written as part of the inner loop, this kernel has no final
update section.

5.3.8. ResolveCollision

The ResolveCollision kernel deals with the detection and
physics of collisions between creatures. Ultimately its only
purpose is to calculate the total change in momentum due to
collisions to be later used by the ResolveMovement kernel.
Before even defining any of the variables, a check needs to
be made that there are more than one creature. A creature
cannot collide with itself so any work in this kernel when
there are less than two creatures is pointless. Before the
Block loop, creature positions and radii are copied from
Global to Local. This is done since these values will be
accessed numerous times by many Threads throughout the
execution. As can be expected, the main Block loop for this
kernel has each Block processing a subset of the creatures.

Since the radius was already copied from Global it can be
used to check for uninitialized creatures. A zero radius is
one of the tags for an uninitialized creature.

One of the difficulties of this kernel turned out to be
figuring out how to evenly divide up the work among the
different Blocks. The issue is that in order to check for
collisions, one needs to calculate the distance between every
pair of creatures. There were two ways considered initially.
First, have every creature check every other creature for
collisions. This method is the simplest but introduces
wasted computations. With it the distance between each
creature ends up being calculated twice each cycle. The
other initial idea was to have each creature only check for
collisions against creatures with IDs higher than itself. The
problem with this method is that it off balances the load of
the calculations to the lower ID creatures. Since the task is
not completed until all calculations are done, this leaves the
Blocks related to the higher ID creatures idle. Ultimately, a
good solution was found via doing several experiments in
Excel with 2D tables.

The solution was to have each creature check some
number of the next creatures following it in IDs. The IDs to
check would wrap around at the end of the list. The number
of following creatures was different depending on whether
the creature was in the lower or upper half of the IDs. For
the lower half, the number checked was half the total
number of creatures rounded up to the next integer. For the
upper half, the value was instead rounded down. This split
allowed every possible unique combination of creatures to
be considered only once and for the work to be divided
nearly evenly among the Blocks.

The Thread loop for this kernel uses the subset of the
creatures figured out in the previous step. Firstly, each
Thread finds the square magnitude of the distance between
that Block’s creature and the creature the Thread is
checking. If this is less than the total of the two creatures
radii squared, the creatures are considered to be in collision.
After taking the square root of the squared distance found
early, the magnitude of the change in moment is found.
Originally this calculation was far more complex.

The initial plan was to not allow the creatures to overlap.
This means that if two creatures were found to be
overlapping, then they would be rewound to the exact
moment of collision. The changes in momentum due to a
partially elastic collision would be calculated at this time
and then the creatures would be fast forwarded to where
they should have been after the collision. The problem with
this method is, while it can work in a sequential system, it is
very difficult in a parallel system. Ultimately, the problem
lies in having to move the creatures to resolve the collisions.
Every time a creature moves, it has the potential to create
new collisions. To solve this system with no overlap would
require a complex system of equations or a numeric method
to converge in on a solution. The problem is that both of
these are intensely time consuming and extremely difficult
to implement in parallel. These methods also have the

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

16

Adam Call

added risk of having no solution or never converging. Due
to complexity and both high and uncertain cost, it was
decided to utilize a less accurate but more reliable method.

The method chosen was to use a simple spring force in
the direction of the vector between the creatures. Back in
the collision kernel, when this is calculated, it is also pre-
divided by the magnitude of the vector between the
colliding creatures. This is done so that later on the raw
distance between the creatures can be used to find the
components in the individual dimensions as opposed to
having to calculate a unit vector. Lastly, this delta
momentum is atomically added and subtracted from the two
creature’s tally of momentum changes due to collisions.

When handling the collision, a special case must also be
considered. This special case is when the two creatures are
nearly or exactly at the same position. Having a total this
close to zero causes rounding errors to be magnified and
generally destabilizes the calculations. The solution is to
use the total of the two radii as the overlap and the square
root of the number of dimensions as the vector magnitude.
This effectively places the vector between the two creatures
in the positive direction for every dimension. This value is
then added and subtracted from the creature’s tally of
momentum changes due to collisions.

5.3.9. ResolveMovement

The Resolve Movement kernel is the primary physics
processor of the simulation. Its primary purpose is to
calculate the new creature positions and momentums. The
Block division for this kernel is over the set of the creatures.
Before the Block loop, the size of each dimension is loaded
into shared to be used later when checking for wall
collisions. Dimension sizes are constant so they should only
be loaded once before the Block loop. The first thing
checked is if the creature has a positive nonzero radius. A
zero radius is one of the ways creatures are marked as
uninitialized. Following this is the loading of the old
creature velocity and current creature energy. These will be
needed several times so they are worth preloading.

After the setup stage, several values will need to be
calculated that unfortunately must be calculated sequentially
by Thread zero. Specifically, the total stored energy and
velocity magnitude must be calculated. This is a reduction
operation performed over the number of energy types and
the number of dimensions respectively. The size of both of
these reductions will tend to be small as the hardware is
unlikely to be able to handle larger values. For this reason,
more parallel techniques were not used due to their
overhead. Lastly, for nontrivial velocity magnitude, the
forces opposing velocity are calculated. Specifically, the
change in momentum due to friction and drag is calculated.
This value is also preemptively divided by the velocity
magnitude. This value is originally a vector magnitude and
thus must be multiplied by the unit vector of velocity to get
the individual contributions in each dimension. By

preemptively dividing it by the velocity magnitude, an extra
operation over each dimension is avoided later.

With the sequential tasks completed, the primary Thread
loop can run. This Thread loop divides the work up over the
individual dimensions in the simulation. The change in
momentum due to velocity opposing forces is applied first.
Special care has to be taken when subtracting this value,
because it cannot be allowed to change the sign of the
momentum. Momentum is set to zero in the cases where the
sign would have changed. Next, the added kinetic energy
from the Move action is added. Special care again has to be
taken here to preserve the signs of the vectors through the
square and square root operations.

Collisions with the walls of the environment are handled
next. This calculation was originally being done with more
scientifically correct equations. Ultimately these equations
proved to be too rigid to successfully use at the needed time
scales. The alternate, albeit less scientifically correct, was
to use a simple spring constant and allow the creature to
penetrate the wall. The original method did not allow
penetration. This ultimately was what caused the method to
fail as resolving one collision could cause others and so on.
This turned the problem into a system of equations that was
far more complicated than the simple physics needed in this
simulation.

Finally, the new momentum can be calculated along
with the damage sustained from any collisions with other
creatures or the walls. For damage, a base defense was
defined that subtracts from any damage taken down to a
minimum of zero. In later revisions, defense will be a
whole system that can be actively controlled through
actions. The last values to be calculated are the new
velocity and the new position. Following this, the new
values are copied back to Global or Shared Memory and the
impulses from other kernels are cleared.

Now out of the Thread loop, the total damage the
creature sustained must be tallied by Thread zero. If there
was any damage sustained, the taken damage is divided
among the creature’s different energy types relative to the
quantity of each energy type. Finally, the new row and
column location of the creature in the global radiant energy
map must be calculated for the new creature position.

5.3.10. CheckReproductionAndDeath

This kernel ultimately acts as an event manager. Its
primary purpose is to signal the CPU whenever a death or
reproduction event happens. Its secondary but ultimately
more frequent task is to deduct the maintenance energy from
each creature every cycle and check if that has caused the
creature to die. Again, the Blocks in this kernel each handle
a subset of the total creatures. The first task in the Block
loop is to check that the creature has been initialized. A
creature status of NULL is used in this case as another flag
marking uninitialized creatures that should be skipped. The
zero Thread then initializes the shared memory Booleans for

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

17

Adam Call

death and reproduction. These values are only ever set true
from this point forward so any potential write conflicts from
Threads will not cause any problems. Simply put, this
means atomic operations are not needed on these shared
variables.

Following this is the first Thread loop of the kernel. In
this loop each Thread handles an energy type, checking if
the current creature has sufficient energy to pay the
maintenance cost. If it does, the cost is deducted and stored
back to Global. Otherwise, the creature is marked as dead
in Shared. After syncing the Threads, any creatures that
have not died are further checked for reproductions or
voluntary death. This time the Thread loop is over the
creature’s nodes and begins by checking that the creature
has not chosen to die. For any active nodes, the death and
reproduction tags are set if the node’s action is of the
corresponding type. Lastly, Thread zero updates the
creature’s status in Global.

6. EXPERIMENTAL RESULTS
While the simulation works, it ultimately did not do

quite what it had been designed to do. The evolution of the
creatures turned out to be too much for the hardware to
handle. Initially, the assumption had been made that the
frequency of reproduction and death would be infrequent.
This proved to be wrong. In the actual simulation, an
actionable event happened nearly every cycle once the
creatures became numerous. These events transfer control
back to the CPU for the processing of reproduction and
death events. This processing is sequential and also
involves memory allocation and deallocation in both the
CPU and GPU. This block of code ended up being the
bottle neck of the simulation.

There are several ways this bottle neck could be
mitigated in future development. Firstly, reproduction
could somehow be made more costly to the creatures. This
should reduce the frequency of the reproduction code. To
lessen the memory management, all possibly needed
memory could be pre-allocated in fixed arrays. This would
not be too much of a problem to do as the simulation
already pre-checks the memory limits for the given
simulation against the GPU. Lowering the maximum
number of creatures or nodes per creature would also help
but at the cost of further limiting what the simulation can
do. The last option, which is the hardest and very
impractical, is to somehow move the reproduction
operations inside the GPU. This method would necessitate
the constant memory allocation method mentioned
previously. The main problem is that the DNA
representation of the creatures would have to be stored and
processed into the low level representation completely
within the GPU. This system would likely consume a
significant portion of the Global memory.

Even with the problems that limited the simulation, it
still produced some interesting results. The early runs were

mostly focused in finding an initial state that would run for
the full duration of the simulation. The first simulations
nearly always resulted in extinction. In other words, the
environment had not been made conducive to life. This was
solved by tweaking the ambient energy to give them more
food. This eventually led to too much food and the costs of
nodes and links were increased to balance it.

The next source of simulation failure was collision
death. This was caused by the constraints associated with
motion being set such that motion was too easy. This result
showed itself in a cascade like manner. The simulation
would run normally until it reached a critical number of
creatures. Afterwards one collision would cascade into
others and at the end nearly all creatures would be dead.
The solution to this was to make movement harder and
collisions not as harsh.

At this points the world had been tuned enough to keep
the creatures alive so evolution had time to work. The first
noticeable evolution was actuality sterility. Since the initial
creature was designed to be the bear minimum to survive, it
was susceptible to mutations rendering its children sterile.
This problem was recognized from the drastic decrease in
cycle time and the nearly constant creature population. The
solution to this was to artificially inject reproduction back
into the population. If a full batch of cycles was executed
without a reproduction event happening, a reproduce would
be forced between some random creature and the initial
creature. This proved to be very effective at preventing the
early simulation sterility problem.

The second evolution of note actually allowed the
creatures to become immortal via exploiting a bug in the
simulation. The exact mechanism of how they managed to
do it was not found but what the creatures had evolved to do
was have an energy of NaN. Energy in the creatures is
stored as a floating point number which have several special
values. One of these special values is Not a Number (NaN).
The problem with NaN is that any comparison operation
against a NaN will always return false. The bug was in the
logic for detecting a dead creature. The check was testing if
the creature had insufficient energy to pay the maintenance
cost. If this was true the creature was marked dead. The
problem is that with NaN, this comparison could never be
true so even though the creature was dead it could not die.
Even worse, this change would be passed on to its children.
The solution was to reverse the comparison, so that it was
instead checked if there was enough energy to pay the
maintenance cost. If this was false then the creature would
be marked as dead. This solution allowed any creatures that
had developed a NaN energy to be removed from the
population.

7. CONCLUSION
In the end, the simulation works, just not as well as

expected. At the beginning, the assumption was made that
reproduction would be infrequent. This unfortunately ended

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

18

Adam Call

up being incorrect. The result was that the sequential
reproduction algorithm consumed the majority of the
processing time. This bottle neck robbed any processing
efficiency gained from using CUDA as the GPU sat idle.
Even with this bottle neck the simulation still managed to
show interesting results. The most notable being the
creatures evolving to find a bug in the system that allowed
them to become immortal. Future work for this simulation
would mainly involve solving the reproduction bottle neck.
This bottle neck made very high cycle count runs
impractical, which limited the system’s time in which to
evolve. Ultimately the simulation did show creatures
evolving in the limited cycles it could practically be run for.
With better hardware and a better reproduce method, this
simulation has the potential to do much more.

8. REFERENCES

[1] NVIDIA, "What is CUDA," [Online]. Available:
https://developer.nvidia.com/what-cuda. [Accessed
2013].

[2] 3D Game Engine Programming, "CUDA Memory
Model," [Online]. Available:
http://3dgep.com/?p=2012. [Accessed 2013].

[3] M. Dorigoa and C. Blum, "Ant colony optimization
theory: A survey," Theoretical Computer Science, vol.
344, no. 2–3, p. 243–278, 2005.

[4] A. C. S. Raoa, D. Somayajulub, H. Bankaa and R.
Chaturvedia, "Outlier Detection in Microarray Data
Using Hybrid Evolutionary Algorithm," Procedia
Technology, vol. 6, p. 291–298, 2012.

[5] C. Blum and V. Schmid, "Solving the 2D Bin Packing
Problem by Means of a Hybrid Evolutionary
Algorithm," Procedia Computer Science, vol. 18, p.
899–908, 2013.

[6] A. Blanco, M. Delgado and M. C. Pegalajar, "A genetic
algorithm to obtain the optimal recurrent neural
network," International Journal of Approximate
Reasoning, vol. 23, no. 1, p. 67–83, 2000.

[7] S.-K. Oha and W. Pedrycz, "The design of self-
organizing neural networks based on PNs and FPNs
with the aid of genetic optimization and extended
GMDH method," International Journal of Approximate
Reasoning, vol. 43, no. 1, p. 26–58, 2006.

[8] L. M. Schmitt, "Theory of genetic algorithms,"
Theoretical Computer Science, vol. 259, no. 1–2, p. 1–
61, 2001.

[9] L. M. Schmitt, C. L. Nehaniv and R. H. Fujii, "Linear
analysis of genetic algorithms," Theoretical Computer
Science, vol. 200, no. 1–2, p. 101–134, 1998.

[10] J. Siegel, J. Ributzka and X. Li, "Memory Layout
Optimization Techniques for Large Data Structures on
CUDA," [Online]. Available:
http://www.eecis.udel.edu/~mpellegr/eleg662-09s/.
[Accessed 2013].

[11] NVIDIA, "CUDA C Programming Guide," [Online].
Available: http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html. [Accessed 2013].

Indiana University South Bend
Department of Computer and Information Sciences May 5, 2014

19

	1. Introduction
	2. CUDA Design Considerations
	2.1. CPU-GPU Memory Transfer
	2.2. CUDA Memory Structure
	2.3. Global-Block Memory Transfer
	2.4. Memory Coalescing
	2.5. Warp Divergence

	3. Evolutionary Model
	3.1. World Model
	3.2. Creature Model

	4. Simulation Data
	4.1. World Data
	4.2. Creature Data

	5. Simulation Implementation
	5.1. EvoSim
	5.2. SimCore
	5.3. Kernels
	5.3.1. General form of the kernel
	5.3.2. CalcRadiantEnergy
	5.3.3. CalcRegionValue
	5.3.4. CalcNodeCharge
	5.3.5. CalcNodeActive
	5.3.6. ResolveActions
	5.3.7. ApplyRegionEnergyDelta
	5.3.8. ResolveCollision
	5.3.9. ResolveMovement
	5.3.10. CheckReproductionAndDeath

	6. Experimental Results
	7. Conclusion
	8. References

