

1

Retro Roman Zombie Apocalypse:
A Real-time Multiplayer Web Application for Saving

the Colosseum from the Undead

Technical Report #TR-20140416-1

Robert Ribeiro

Department of Computer Science

Indiana University

South Bend, Indiana

Graduate Independent Study

CSCI-Y 790

Faculty Advisor: Dr. Dana Vrajitoru

May 3, 2013

I. Introduction

 Retro Roman Zombie Apocalypse is a

real-time multiplayer web application that has

been developed with a unique, distributed

game model through the use of cutting edge

libraries, tools, and concepts. It has been the

product of an effort to learn more about the

platforms that are driving the direction of the

software industry. It is no secret that the web

is one of the fastest growing sectors of the

software industry. However, what may be

surprising is the role that game development

is playing in that growth area. According to

data from IBISWorld, social gaming is the

fastest growing sector overall for 2013 [1,2].

While this has been developing, increased

efforts in platform development have

produced interesting and high powered tools

for web development. One of the most

popular and fastest growing of these is

Node.js [3]. This, combined with HTML5 and

a number of other frameworks and libraries,

has allowed for the production of a game that

performs well in real-time on minimal server

hardware with a unique data model. This

paper will explore the evolution of the project

concept and the requirements established for

its development. It will also explain the

various tools and libraries used to make this

idea into a real product. Finally, it will cover

2

the details of the development process and

plans for future work.

II. Motivation and Theme

 This project has always been intended

to be a game, and Node.js was always the

intended target. However, the original

proposal was far different from the current

incarnation. The idea began as a text-based

multi-user dungeon game [4] that could be

played over Twitter. After the limitations of the

service prevented that from proceeding, the

idea was transitioned to a turn-based game of

a similar style that could be played from a

web page. As the exploration of JavaScript

and Node.js continued, two libraries were

discovered that changed the course of the

design. First, Socket.IO provided the

opportunity to have real-time communication

with the server and through the server to

other clients. This changed the direction to

allow the game to be played in real-time but

still text based. EaselJS was the second

design impacting library. It enabled 2D

animation with reasonable effort in a familiar

syntax. This opened the door for a side

perspective “Beat ‘em up” melee game in the

spirit of games like Double Dragon [5]. The

remaining design was a combination of

penchants for pixel art, ancient Rome, and

the undead.

III. Requirements and Game Model

 Having established a theme and

gameplay style, some form of data model

designs needed to be established in advance.

One of the key issues for deployment was the

expense of acquiring time on a server

capable of running a game of this nature.

Linode [6], a well-known virtual server

provider charges $20 per month for their

entry level server instances. Because these

costs, the decision was made to utilize an

offer from Amazon to have access to low-

powered EC2 micro instance (currently

limited to 613 MB of RAM and one CPU core)

[7], which could fill the roll of a Node.js

server, for free for one year. This meant that

one of the requirements was to make the

server as light as possible in order to run on

one of these lightweight virtual servers.

 This need for an ultralight server

process was the leading influence on the

game’s data model. Most multiplayer games

have a central host or server which manages

the state of the game and the communication

between clients. Due to the limitations of

Socket.IO, pure peer-to-peer communications

are not possible in most browsers. At the time

of the writing of this document, the only

production stable browser with that capability,

available through WebRTC instead of

Socket.IO, is Google Chrome [8]. This meant

that the server still needed to facilitate all

communications. However, storing the game

state for a multitude of games in memory was

seen as a significant risk given that only 613

3

MB of memory would be available for the

entire system. This meant the development of

a new, unique model for multiplayer game

state management.

 One option that presented itself was

the idea of having one of the players serve as

the host. However, this was undesirable for

two reasons. First, this is typically used when

it is possible to form peer-to-peer

connections. In addition, there appeared to

be significant issues with trying to reliably

pick a new host and transfer control of the

game state upon spontaneous disconnection

of the host. Instead, a distributed state model

was proposed. Each player would be capable

of maintaining a portion of the game model

and sending it to the other players. This

means that each player generates their own

zombies and periodically sends a message to

all of the other players updating their own

position, direction, and other state as well as

the position, direction and other state of all of

the zombies under their ownership. Damage

to enemies would then be shipped back to

the owners for them to maintain their portion

of the game state. What each player actually

sees as they play the game is the composite

of their own model and all of the partial

models received from the other players. This

model allows players to drop in and out

without causing renegotiation of host

configuration, while maintaining the other

advantages of storing no game state on the

central communication server.

 Such a model does have a penalty for

the server in the form of network transmission

complexity for the central server. On a regular

basis, n clients will send a message to the

server which is then rebroadcast to n-1

clients. This gives the situation where the

number of messages sent/received by the

server for a single round of message

distributions has complexity O(n2). Over the

course of the game, however, m messages

are sent by each player, which gives an

overall complexity of O(n2m). Because of the

potential for complexity to explode and the

need to keep performance reasonable for

each client, the number of players was set to

four, capping the player count contribution to

complexity on a per game basis. Given n

players playing the game, the number of

messages sent/received by the server over

the course of the game drops to 4nm, which

brings the complexity down to O(nm). With

enough players or enough messages, even

this could pose a threat to a low powered

virtual server. Seeing that it would not be

desirable to have to cap the total number of

players in all games, a requirement was set

to attempt to minimize the number of

messages sent without compromising game

performance and smoothness.

 Since JavaScript is the language that

powers both both Node.js and most client-

side browser scripting, it should not come as

a surprise that the decision was made to use

only JavaScript for all of the programming.

4

This presented an additional level of difficulty

as the developer has no prior experience in

JavaScript. On the topic of JavaScript, one of

the principle libraries that powers many

websites is one called jQuery. It allows

developers to manipulate the Document

Object Model (DOM), which the W3C, a

governing body for web standards, defines as

“The Document Object Model is a platform-

and language-neutral interface that will allow

programs and scripts to dynamically access

and update the content, structure and style of

documents. The document can be further

processed and the results of that processing

can be incorporated back into the presented

page” [9]. In addition it provides methods for

the simplification of the process of making

asynchronous requests for data from a

server. As an added challenge, it was

decided that jQuery should not be used

directly by this project, but rather, other

methods of interacting with the DOM and

server should be found and used.

 Finally, as was mentioned earlier in

this section, the number of players for the

game was capped at four. However, all

interesting and scalable games have some

means of allowing for more than one game at

a time to allow for more players. For this

reason, a final requirement that the game

support multiple, simultaneous game rooms

was established. This was decided to mean

that not only would it need to be possible to

run concurrent games, but also users would

have to be able to enter and exit rooms on

their own. Thus, the basic requirements were

laid out: the game would use a distributed

state model to facilitate running the main

server on an Amazon EC2 micro instance

while avoiding jQuery and allowing for multi-

room support.

IV. Libraries and Tools

 A large part of this undertaking was a

matter of finding the right tools for producing

such a product. This, of course, includes the

libraries and frameworks supporting the

application, but it also involves development

environments, project management

platforms, source control, and user analytics.

This section is meant to cover what value

each tool provided in the development

process and why it was chosen.

 Node.js [10] is a network application

server platform built on Google’s V8

JavaScript engine. It specializes in non-

blocking I/O and scalability, making is very

useful for real-time applications. At the same

time, it sits on top of a language that is

accessible to a wide audience, given

JavaScript’s long history on the client side of

the web. Node.js has been growing by leaps

and bounds since its inception in 2009. NPM,

the package manager for Node, has over

29,000 packages and almost 10 million

package downloads per week at the time of

the writing of this document [11]. It was

realized that Node had unseated Ruby as the

5

en vogue web application platform by

following the Hacker News feed [12] prior to

the beginning of this project. With Node

having reached this important of a status and

offering such efficiency for server side

processing, it was the natural choice for a

game like this.

 While Node.js provided a great

platform to build on, it provides no structure

for doing so, which is why Express was also

selected for this project. Express is an MVC

framework for building web applications on

Node.js [13]. This makes it analogous to the

purpose that Rails serves for Ruby

programmers. MVC is a pattern for organizing

modern applications. MVC stands for Model-

View-Controller [14]. It allows for the

separation of the concerns of the

presentation to the user (the view) from the

backend representation of the data (the

model). In the middle, the controller acts

coordinates taking in user input, processing

data changes with the model, and reflecting

those changes back to the view. It helps keep

code cleaner, and is a foundational pattern

for modern software and web development.

Express made it possible to easily define

directories for housing script files and images.

In addition, it bundles jade, a powerful view

engine, and LESS, an engine for more

flexible and sensible CSS. It also offers many

other features, such as the ability to define

routes to individual controllers. This means

that a developer can easily dictate what

controller is triggered when a user visits,

MyWebStore.com/products/ vs.

MyWebStore/myAccount/. With the need to

separate the viewable web page creation

from the complex logic for a game server,

Express was another must-have.

 One thing that Express does not offer,

however, is real-time communication. In order

to have a real-time multiplayer game, there

has to be a way to transmit data between

clients on a very regular basis. This is where

Socket.IO fits into the picture. Socket.IO is a

JavaScript library that allows for easy to use

real-time communications that works on a

variety of browsers [15]. It was mainly

designed around the WebSocket, an HTML5

specification allowing full-duplex

communications using a TCP connection

[16]. Socket.IO is usable on both the client

and server, allowing for JavaScript objects to

be sent back and forth with the same syntax

on both sides and without any serialization

efforts. Another advantage is that for less

compliant browsers it has the ability to fall

back Flash Socket, AJAX, and other legacy

methods of communication. These

capabilities made it essential for inclusion in

this project.

 The final piece that actually cemented

the decision to use Express and Socket.IO

was the discovery of Express.io. Express.io is

the marriage of Express and Socket.IO into a

single framework. It provides a simpler setup

on the server side, which was helpful due to

6

the large number of options and minimal

documentation presented by Express. In

addition, it provides a single syntax for

declaring regular routes and real-time

communication routes. This made it possible

to write more understandable server server

code. While Express.io was not essential to

the equation, its ability to lower the barrier to

entry was a welcome find.

 Having covered the major parts

driving the server components, it is worth

exploring the components of the user

interface next. The first of two important

libraries here is EaselJS. There are 2

methods of dealing with HTML5 graphics,

and they are analogous to the old debate

between raster and vector graphics. SVG

allows for vector graphics in the browser,

while the HTML5 canvas element allows for

raster style web animation. EaselJS interacts

with the canvas element with an API similar

to the ActionScript API for Flash by Adobe

[18], which is both easier to use and allows

for more complex functionality, such as

bitmap animations, texture atlases, and depth

manipulation. These features are what

enabled the project to go from text based to

graphics based without incurring the

overhead of building a graphics engine from

scratch, making it another essential

component of the game.

 The other front end component is one

that was added later in the project. Knockout

is a library built on the MVVM pattern that

allows for automatic DOM manipulations

based on a binding model [19]. MVVM, has

some similarities to MVC. The first two letters

still mean the same thing: Model and View.

However, in place of the controller, the VM

stands for “view model”. The view model acts

as an intermediate between the view and the

model in a more event oriented style.

Knockout creates a binding between the view

and the view model. Then, when the view

model is changed, the changes are

automatically reflected in the user’s view.

Similarly, user interactions with the view

trigger events on the view model to interact

with other pieces of the application’s back

end. This was an important compliment to

EaselJS, because EaselJS was only

concerned with the canvas element.

Knockout allows for the updating of text

fields, such as score and health, as well as

switching in and out view elements. This is

what allows the game to run without ever

reloading the page. Data received from game

logic or from the server is pushed into the

view model, causing the display to be

updated without any need to refresh. This

kind of automaticity and flexibility to

manipulate the DOM, combined with

Socket.IO’s communication capabilities,

allowed for the fulfillment of the “no jQuery”

requirement and with less complexity.

 Another late entry to the list of

libraries is Lo-Dash. As the game developed,

an inheritance hierarchy was established,

7

with both Player and Zombie being children of

Character. However, it was useful to store all

of the players and zombies in a single array

of characters. However, it was often

necessary to get a single player or zombie

out of this array, knowing only the value of an

id or other property of the target object. Lo-

Dash provides a list of functions for querying

and manipulating arrays with much higher

efficiency than even certain native JavaScript

functions [20]. It actually has its origins as a

drop in replacement for another library,

underscore.js. It sacrifices compatibility with

older browsers in favor of slimness and

performance. Given that HTML5 was a

requirement for this project to have access to

the canvas element for graphics, there was

no need to require much backwards

compatibility. Thus, Lo-Dash was chosen to

speed up the development of sections where

array manipulations were important.

 The final library is a small one, but it

served an important function in guaranteeing

data correctness across clients and within the

server. Node-uuid is a library with one

purpose: creating universally unique ids

(UUIDs) that statistically have a near zero

chance of producing collisions. This was

important to ensure that no two zombies had

the same id, particularly since they would be

simultaneously generated by multiple clients.

In addition, this library was used server side

to solve the problem of how to identify

individual game rooms and prevent collisions

with those ids. It was not necessary for player

ids, as those ended up being the same as the

actual players’ Socket.IO socket ids.

 Beyond these libraries, a few other

modern tools were employed to manage and

develop the project in line with modern

development standards. Trello [23] was

chosen to assist with project management.

Many modern agile projects focus on proper

division of requirements into manageable

bite-sized tasks. Having an online board to

track these little pieces makes it possible to

drop in a new idea that may be another week

down the road with ease. In addition, it leaves

a history of what has already been done, so

getting back up to speed on what progress

has been made is easy.

 As for development environments,

WebStorm by JetBrains [24] was the

environment of choice. The developer had

previous experience with JetBrains’ products

which have the advantage of autocompletion,

code analysis, and refactoring tools, such as

scope-sensitive variable renaming. In

addition, their most recent releases have

excellent support for Node.js, Express, jade,

and LESS, all of which are already part of this

project.

 Finally, the last, but still critical part of

any modern development effort is source

control. While many people will debate their

favorite source control platform, the last few

years have shown that git has come ahead

as a clear winner in the popularity contest.

8

Launched in 2008, Github had overtaken both

Google Code and SourceForge by 2011 [25].

Thus, any project that is up to current

standards would be expected to use both git

and Github for source control, which is

exactly what was done for this project.

V. Development

 With the tools explained, it is now

worth understanding the development

process and a few of the challenges. As the

development process started, there were two

approaches to be considered: vertical slicing

and horizontal slicing. Vertical slicing is the

practice of implementing small bits of

functionality across all impacted layers before

moving on to the next piece of the project. On

the other hand, horizontal slicing involves

building complete layers and then building the

interfaces between them. Given the fact that

horizontal slicing is generally frowned upon

and the fact that the distributed game model

was so central to the game, a distinct effort

was made to develop the project in vertical

slices.

 During the planning process, three

major stages were established. The first was

to create a working multiplayer prototype.

Second was to create an actual working

single multiplayer game. Finally, the third

stage was to wire in the ability to have

multiple game rooms running simultaneously.

The multiplayer prototype started with just

figuring out how to display a graphic on the

canvas element, then how to move it. That

led to moving it on another client’s screen,

which then turned into each client having

individual control of separate entities on the

screen. This, combined with better timing

provided the basis for sending movement

between clients and keeping their games in

sync. While these steps were taking place,

much of the basics of the server were laid

out. During this first stage, it became

apparent that a good motion model would be

necessary for the game to run smoothly

across a network without constant updates.

This led players sending each other not only

position information but also direction vectors,

so that the character could continue to be

moved in the same direction at a slightly

slowed pace. This allowed the character

sprite to already be about 90% of the way to

the next update position most of the time,

reducing the perception of lag and jitter. This

also gave way to the idea of “heartbeat”

updates. If no change in direction vector is

made, sufficient smoothness could actually

be achieved by only sending an update every

500 milliseconds. This contributed to the goal

of reducing the number of messages sent

significantly. In addition, restrictions were

made so that all data to be sent to other

players generated during one tick of the

game clock were sent as a single message

through the server to the other clients. This

section of the project code was largely

dependent Express, Socket.IO, and EaselJS

9

to get the basics running. Node-uuid was also

used as a player id before the socket id was

discovered to be available and useful.

 With a working multiplayer prototype

formed, the next stage, creating a single

multiplayer game, started with the movement

to a more object-oriented model. Previously,

player data was just an anonymous

JavaScript object that was interpreted on both

ends by convention and character class

concerns leaked into the main game logic.

With the character specific logic pulled out,

player and enemy animations were drawn

and packed into a single texture atlas, which

was then animated with EaselJS. During this

stage, numerous issues and bugs were found

and overcome. At a number of points,

methods were implemented to ensure that

animations ran smoothly and as expected,

instead of terminating without completion. An

algorithm for sorting the characters by depth

on the stage was devised as well. Enemies

started as a single sprite added to the

canvas, and were then expanded to be able

to move on their own, target the closest

player, attack, and die. In addition, the

original multiplayer prototype had been

focused on sending information out to other

players. With the addition of attacks and

damage, information now had to be shipped

back to the player that “owned” the zombie to

maintain synchronicity of the distributed game

state. Also, in order to manage the issue of

concurrency among updates being sent

between players, dead characters were

tracked upon death to avoid being

accidentally “revived” to the stage. It was

about this time that the concept of player

health and points came into play and the first

Knockout view model code was added. In

addition, Lo-Dash played a number of

important roles during this phase for finding

various elements and sub-collections in the

character array.

 The final stage was to expand this

single game into multiple game rooms. At this

point the view itself got much more complex

as more Knockout was used to build the room

construct. In addition, Lo-Dash became an

important server side element, as working

with an array of rooms, each containing an

array of players belonging to the room,

became crucial to the multi-room model.

During this phase, the most critical problem to

be solved was player disconnection. Unlike

all of the other real-time routes used in this

project, the disconnect real-time event does

not take a data message that can be used to

identify the sender. In order to solve this

issue, the socket used to start a game had to

be trapped in a JavaScript closure [26] for

reference later during the disconnect event.

Other parts of this stage included sending the

room list and being able to refresh it,

switching some of the major JavaScript

libraries to download from Content Delivery

Networks (CDN) instead of adding traffic to

the game server itself. Finally, the site

10

structure was completed, including CSS and

layout of the various elements, as well as

citing all of the frameworks and libraries on

the web page. With all of the work completed,

the game was deployed to an Amazon EC2

micro instance running Ubuntu, and setup to

receive traffic from our privately registered

domain name. This completed the

development process for this project.

VI. Future Improvements

 While we are very satisfied with the

design and performance of the final product,

it is our belief that no software is ever truly

finished. With that in mind, there are a

number of future proposals that allow this to

continue to be a work in progress beyond the

life of this graduate independent study.

Currently, the game supports a fairly flat

difficulty model. It would be preferable to

allow the difficulty to scale up over time,

increasing the frequency of enemy spawns,

the frequency and range of their attacks, and

the total health with which they spawn. While

the lag compensation model is currently

sufficient, a more variable model, one based

on the actual differences in the timing of

messages received and the distance of the

jump in sprite position caused by the updates,

would likely smooth out some of the

remaining jitters in the gameplay. Of course,

in order to make this ready for a full public

release, an additional level of polish would be

preferred, including a title screen, proper

loading protocols, and actual death

animations. Finally, it would be desirable to

back the site with a database to allow not

only a blog and other site features, but also

the ability to allow for player accounts, high

score tracking, and other multiplayer features.

VII. Closing

 Retro Roman Zombie Apocalypse

was a unique experience among the typical

coursework of a graduate level Computer

Science program. It permitted the full

development of an idea into a fully deployable

product. In addition, it promoted the

exploration of new libraries and tools, as well

as honing the skills necessary to produce

quality software. Most importantly it fostered

the ability to make architectural and

algorithmic design choices not normally

available to a student developer.

11

Web References

[1] http://www.forbes.com/sites/caroltice/2013/02/07/what-business-should-you-start-fast-
growing-sectors-for-2013/
[2] http://www.ibisworld.com/media/2013/04/16/top-10-fastest-growing-industries/
[3] http://mashable.com/2011/03/09/node-js/
[4] http://en.wikipedia.org/wiki/MUD
[5] http://en.wikipedia.org/wiki/Double_Dragon
[6] http://www.linode.com/
[7] http://aws.amazon.com/ec2/
[8] http://www.webrtc.org/
[9] http://www.w3.org/DOM/
[10] http://nodejs.org/
[11] https://npmjs.org/
[12] https://news.ycombinator.com/
[13] http://expressjs.com/
[14] http://www.codinghorror.com/blog/2008/05/understanding-model-view-controller.html
[15] http://socket.io/
[16] http://www.websocket.org/
[17] https://github.com/techpines/express.io
[18] http://www.createjs.com/#!/EaselJS
[19] http://knockoutjs.com/index.html
[20] http://lodash.com/
[21] https://github.com/broofa/node-uuid
[22] http://en.wikipedia.org/wiki/Universally_unique_identifier
[23] https://trello.com/
[24] http://www.jetbrains.com/webstorm/
[25] http://readwrite.com/2011/06/02/github-has-passed-sourceforge
[26] https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Closures

