
Page 1 of 10

Review of Database Intrusion Detection Methodologies
using Attribute Dependence

Technical Report #TR-20130606-1

Adam Call
Department of Computer and Information Sciences

Indiana University South Bend

B561: ADVANCED DATABASE CONCEPTS

March 17, 2013

Page 2 of 10

Review of Database Intrusion Detection Methodologies
using Attribute Dependence

Adam Call
Indiana University South Bend
1700 West Mishawaka Avenue

South Bend, IN 46615

awcall@umail.iu.edu

ABSTRACT
Databases in the world today are highly exposed. To protect them
more advance security systems are needed to deal with the variety
of both internal and external threats. In this paper will summarize
the types of threats that a database may experience. In addition it
will review several different methods of implementing an
Attribute Dependence Model based Intrusion Detection System.
Ultimately this paper was written to present a plan for
implementing one of the basic Attribute Dependence Method.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity, and
protection.

General Terms
Design, Security, Theory.

Keywords
Intrusion Detection System, Attribute Dependence Model,
Database Security Threats.

1. INTRODUCTION
With the advent of the information age, databases have become
highly exposed. The advantages of having your data accessible
from anywhere in the world means that you now have that many
more places for an attack to come from. This makes security, in
this highly connected world, critically important.

There are many different types of security threats and each has its
own challenges on how to deal with them. They range for the
Denial of Service attack trying to cripple the database to the
Legitimate Privilege Abuse of an employee. This paper will
describe these different types of threats in more detail later. Not
every database security method can handle all the different types
of threats.

The security of a database can be largely divided into two layers.
This first line of defense is prevention. This is what people
typically think of when it comes to security. It focuses on
preventing intruders from gaining access to the system. This
includes passwords, encryption and even the locks on the doors.
The main vulnerability of this system is legitimate privilege abuse
or the so called “inside job”. If the intruder has already made it
into the system then all the prevention in the world will not help.

The second layer is a new concept called intrusion detection.
Intrusion Detection Systems [2] are designed to detect, hinder and,
if possible, eliminate intrusions. In modern systems the Intrusion

Detection System is integrated directly into the security of the
database engine as seen in Figure 1 [3]. Originally the Intrusion
Detection Systems were standalone applications that essentially
wrapped the databases in an extra layer of security. In these
systems all transactions were sent to the Intrusion Detection
System. It then decided whether or not to send them to the
database. The results of the transaction would be sent to the
Intrusion Detection System and then relayed on to the original
requestor. This arrangement allowed Intrusion Detection
Systems to be added to older database engines, since it accessed
the database in the same manner a user would. The downside of
this being additional overhead and a disconnect between the
database security system and the database engine. This system
can be seen in Figure 2. What is not shown is the result that
travels back from the DBMS to the User. The modern, integrated,
approach reduces some of this additional overhead and allows for
further optimization, seeing as the Intrusion Detection System can
be tailored to the architecture of the specific database engine.

Figure 1. Integrated Intrusion Detection System. [3]

Most Intrusion Detection Systems are based on one of or a
combination of two models, misuse detection and anomaly
detection [5]. Misuse detection is based on rules. When
configuring the system a set of rules are created that are used to
trigger detection events. Each rule has a set of conditions it watch
to be true, for example 10 failed password attempts if 5 minutes.
Depending on the system the reaction to a triggered event could
be as simple as adding an entry to a log or in the previous
example, locking the account for some set period of time. The
benefit of this system is that the false positive fate is very low. As
long as the rules are well defined to not cause false positives, any
detection is most likely valid. The reason this is important is

Page 3 of 10

because during normal operation of a database the number of
valid transactions is far greater than the number of invalid ones.
Too many false positive make it hard to know when an intrusion
happened or not.

The problem with this system is it is static. It only knows how to
react to intrusions that have a rule defined to detect them. A new
type of intrusion could potentially go undetected until a later time.
This type of system would also require regular updates to its rules
to compensate for new types of intrusions.

Anomaly detection is a slightly more complicated system
compared to the simple rule based misuse detection model. This
complexity is due to it being profile based instead of rule based.
By using profiles of valid user behavior, it can dynamically
respond to new types of intrusions. A profile is a definition of
normal behavior [2]. What is contained in this definition varies
and is a focus of a lot of the research into this method of Intrusion
Detection System. In the basic system the information contained
is simply what actions [select, insert, update] are allowed on what
attributes. These profiles can be defined for the system as a whole,
on a security level or on an individual user basis.

The anomaly detection method goes through two modes of
operation. This first is the learning phase. In the learning phase it
analyzes what it is told are valid transactions. This is typically
done via the transaction logs (audit trail). With the profile of
valid behavior built, the system can them move on to the detection
phase. When in this state, it is checking incoming transaction
requests and comparing them to the valid behavior. Any
transactions that fall outside the norm trigger a detection event.

The main disadvantage to the basic system is that it suffers from a
fairly high false positive rate. False Positives are when the
Intrusion Detection System says a transaction is an intrusion but it
is actually valid. A lot of the research is being done into this
method to find ways to correct this. This typically involves
changing what information is included in the profiles.

This paper will review several methods for improving upon the
basic Intrusion Detection System using variations of the Attribute
Dependence Method. It will describe how these methods attempt
to reduce the false positive rate or improve the detection rate. In
addition, it will present an implementation plan for the basic
Attribute Dependence Method.

The rest of this paper is organized as follows. Section 2 reviews
previous research on Database security, with a focus on Intrusion
Detection System research. A list and description of the types of
security threats a database needs to protect against is in Section 3.
Section 4 explains the different methods for improving upon the
Intrusion Detection System. After the Conclusion in Section 5,
Section 6 is the implementation plan for the chosen Intrusion
Detection System method.

2. LITERATURE REVIEW
Database security has been an area of research since the early
days of commercial databases. Later, the advent of the internet
drove research into intrusion detection to protect the databases
that were becoming more and more exposed. Basharat, Azamand
Muzaffar [1] explain database security in a general sense and go
into the different threats facing a database exposed to a network.
They go into detail on how encryption is used as a security

Figure 2. Architecture of Early Intrusion Detection System. [2]

Page 4 of 10

measure.

Raoand and Patel [2] propose a method to implement an Intrusion
Detection System on a Database. Their implementation has an
Intrusion Detection System filtering incoming transactions for
validity. They validate against what operations are valid for what
attributes for what user. The problem with this method and the
focus of a lot of the Intrusion Detection System research is False
Positives.

The Attribute Dependency Model was created to lessen the false
positive rate. Rezk, Aliand Barakat [3] show how this method
might be implemented. They use data mining of audit logs to
determine what attributes show dependency. They also propose
integrating the Intrusion Detection System into the Database
Engine to allow it to work with the database’s security instead of
in front of it.

Building on the Attribute Dependence Method, Rezk, Ali, El-
Mikkawy and Barakat [4] propose an enhanced data dependency
model. In their implementation, transactions are compared to the
profiles of valid transactions. These profiles contain only the
dependencies that have been found to be valid on that type of
transaction.

Srivastava, Sural and Majumdar show the advantages of using a
weighted Attribute Dependence Method. They explain that by
weighting the attributes of the database you can effectively lower
the threshold of validity for dependency on the sensitive data
without having to lower it on all the data. This allows for more
dependencies on sensitive data while minimizing the increase in
false positives a lowering of the threshold causes.

3. OVERVIEW OF SECURITY RISKS
AND TYPES OF INTRUSIONS

There are many different types of threats to a database that has to
be exposed to the internet. Follow is a list of many of these types
of threats. This list was taken from a journal written by Basharat,
Azam, and Muzaffar [1].

3.1 Excessive Privilege Abuse
All users are granted some privileges in order to use the system.
Privileges are defined as excessive when they are not needed to do
the users job. These extra privileges can lead to the misuse of the
system. This misuse can take on many forms. From the sharing
or modification of sensitive data to even the modification of other
users privileges (Privilege Elevation). The user could even go so
far as to prevent use of the system altogether (Denial of Service).

3.2 Legitimate Privilege Abuse
In a similar fashion to Excessive Privilege Abuse, Legitimate
Privilege Abuse is the misuse of privileges a user does need in
order to do their job. These users are typically high level users,
using their privileges to do illegal or unethical things. In other
words this is what you would call an inside job and is one of the
harder threats to protect against. Traditional preventive security
system does not help when the intruder is already in the system.

3.3 Privilege Elevation
When an intruder, ether internal or external, gains access to the
system one of the dangers is privilege elevation. This is the

granting of privileges to users who should not have them. The
intruder could even create new users to grant privileges to. The
granting of privileges need not even be from within the system. It
could be caused by a flaw in the database functions or protocols.
It could also come from the SQL statements [SQL injection].

3.4 Database Platform Vulnerabilities
A system is only as solid as its foundation. When it comes to
security, a Database is only as secure as its underlying systems.
Vulnerabilities in the operating system can allow intruders to
bypass the database security measures. These vulnerabilities need
not even be in the software. The security on the database will not
stop someone from steeling the hardware itself, if is it not
properly secured.

3.5 SQL Injection
This involves injecting SQL commands into text strings that are
sent to the database, for example including a closing string
identifier (i.e. ”) with addition SQL commands after. The
database reads the inserted closing string identifier and thinks the
string is done. It then proceeds to process the rest of the string as
if it were an SQL statement. If this is not checked for the intruder
could gain access to unintended parts of the database or even
create a new user account for them to gain further access to the
system (Privilege Elevation).

3.6 Weak Audit Trail
An audit trail is an automated record of all transactions on the
database. The value of the audit trail is twofold. First it allows
you to analyze the activity on the database and possibly detect
intrusions after the fact. This can help you protect against that
sort of intrusion in the future. The second benefit is it can help
you recover from an intrusion when it happens. All process
transaction will be logged regardless of if they are intrusion. This
means you might be able to examine the audit log to see what the
intruder saw or modified.

3.7 Denial of Service
Denial of Service attack, commonly referred to as a DOS attack,
is any action meant to prevent legitimate users from using the
service. This can take many forms, from flooding the network
with garbage communication to attempting to crash the server. If
the intruder can gain access to the system, they could even corrupt
the authentication systems to prevent anyone from logging in.

3.8 Database Communication Protocol
Vulnerabilities

The vulnerabilities in the communication protocols used to
communicate can lead to intrusion into the database. Over time
flaws have been found in all database retailers’ communication
protocols. This could allow the intruder to gather information
from the data stream or even gain access to the database.

3.9 Weak Authentication
A week authentication strategy makes it easier for others to obtain
login credentials. The following would fall into an authentication
strategy. How often does the system require a password to be
changed. How many passwords back does it keep track so that

Page 5 of 10

the user cannot swap between a few passwords. How strong is the
password, meaning how long, does it require both upper and
lower case characters or numbers or symbols. All these make it
harder for passwords to be discovered.

3.10 Backup Data Exposure
Typically people would think of backups as a good thing but they
in themselves are a security risk. A backup is typically a copy of
the database on some sort of portable physical media [tapes,
DVDs, etc.]. Being portable the backs are even more at risk than
the hardware itself, to theft or destruction.

4. INTRUSION DETECTION METHODS
To protect against all of the threats a database might experience,
both a preventative and reactive security system is needed. When
the security system fails to prevent an intrusion, a reactive system
like an Intrusion Detection System is needed to detect the
intrusion. Following is a description of several methods for
improving upon the basic Intrusion Detection System.

4.1 Terminology
The three Attribute Dependence Models all use similar
terminology, which require some explanation [3].

4.1.1 Sequence
A sequence is a primitive representation of a transaction.
Primitive operations are reads and writes on specific attributes. A
sequence is an order list of primitive operations. A primitive
operation will be represented as o(a) where ‘o’ is either ‘r’ or ‘w’
for read and write respectively and ‘a’ is the attribute of the record
being acted upon. A sequence will be represented as <o(a1),
o(a2), …, o(an)> where ‘ak’ is the kth attribute in the sequence
with 1≤ k ≤ n.

The support of a sequence is defined as the percentage of
transactions that have the sequence as a subsequence. A
subsequence is a sequence that can be created by removing but
not rearranging any number of its primitive operations.

A transaction will be denoted as Ti: o(a1), o(a2), …, o(an),
Commit where ‘i’ is the ID of the transaction Ti.

4.1.2 Rule
A rule is a sequence defined for a specific attribute. A rule will be
denoted as R(a) for an attribute ‘a’ and has the form <o(b1), o(b2),
…, o(bn), O(a), o(c1), o(c2), …, o(cm)> where ‘bk’ and ‘cj’ are
attributes with 0≤ k ≤ n and 0≤ j ≤ m and ‘n’ and ‘m’ are some
non-negative integer. In other words the sequence must contain
an operation on ‘a’ that is defined as the primary operation and
can contain any number of operations before and after the primary
operation. Let the atomic rule of an attribute be the smallest
possible rule. This sequence would only containing a single
operation on itself, AR(a) = <O(a)>. Read sequences, pre-write
sequences and post-write sequences can also be considered rules
as they are more limited versions on the general rule.

4.1.3 Read Sequence
A read sequence of an attribute ‘a’ is defined as a sequence of
attributes that must be read in a specific order before the read or
write of ‘a’. This sequence is denoted as RS(a) and has the form

<r(a1), r(a2), …, r(an), O(a)>. The support of a read sequence is
the same as for a normal sequence. In other words if any number
of operations can be inserted into the read sequence to create the
target sequence it is said that the target sequence supports the read
sequence.

4.1.4 Pre-write Sequence
A pre-write sequence of an attribute ‘a’ is defined as a sequence
of attributes that must be written in a specific order before the
read or write of ‘a’. This sequence is denoted as pre-WS(a) and
has the form <w(a1), w(a2), …, w(an), O(a)>. The support of a
pre-write sequence is the same as for a normal sequence.

4.1.5 Post-write Sequence
A post-write sequence of an attribute ‘a’ is defined as a sequence
of attributes that must be written in a specific order after the read
or write of ‘a’. This sequence is denoted as post-WS(a) and has
the form <O(a), w(a1), w(a2), …, w(an)>. The support of a post-
write sequence is the same as for a normal sequence.

4.1.6 Confidence
The confidence of a rule is defined as the fraction of the support
of the sequence and the support of its atomic rule over the full set
of sequences. The equation for confidence would be as follows.

Confidence = Support(<o(b1), o(b2), …, o(bn), O(a), o(c1), o(c2),
…, o(cm)>)/ Support(<O(a)>)

4.2 Attribute Dependence Model
Attribute dependence [3, 4] was one of the first methods
implemented to try to create a better profile. Two attributes are
said to be dependant if an operation on one attribute requires an
operation on the other attribute. The attribute dependence model
uses this concept to detect if a sequence is invalid.

The Attribute Dependence Model is an anomaly detection method
as opposed to a misuse detection method. Like most anomaly
detection methods, it requires an initial learning phase to build its
profiles. These profiles contain dependency rules as defined for
each user or user-group. The generation of these rules involves
three steps: (1) Frequent sequence mining, (2) Potential
dependency rule generation (these are read sequences, pre-write
sequences and post-write sequences) and (3) Dependency rule
validation.

4.2.1 Frequent Sequence Mining
Frequent sequence mining is the process of finding all sequences
in an audit log that meet some minimum user defined threshold of
frequency. These sequences include all possible subsequences of
each transaction, not just the complete transaction sequences.

These transactions are analyzed on a per user basis. Meaning the
audit log of transactions is divided up by user and analyzed
individually for frequent sequences. Table 1 shows an example of
this.

Page 6 of 10

4.2.2 Potential Dependency Rule Generation
After mining out the frequent patterns, the potential rules can be
generated. Each of these rules will be either a read sequence, pre-
write sequence or a post-write sequence. The procedures for

extracting these are fairly simple. For each operation O(a) in the
frequent sequences perform the following:

1) Add a read sequence <r(a1), r(a2), …, r(an), O(a)> to the
dependency rules for attribute ‘a’, where {r(a1), r(a2), …, r(an)}

Table 1. Example Frequent Sequences. [4]

Table 2. Example Dependency Rules[4]

Page 7 of 10

is the set of all read operations in the sequence before O(a).

2) Add a pre-write sequence <w(a1), w(a2), …,w(an), O(a)> to
the dependency rules for attribute ‘a’ where {w(a1), w(a2), …,
w(an)} is the set of all write operations in the sequence before
O(a).

3) Add a post-write sequence <O(a), w(a1), w(a2), …, w(an)> to
the dependency rules for attribute ‘a’ where {w(a1), w(a2), …,
w(an)} is the set of all write operations in the sequence after O(a).

4.2.3 Dependency Rule Validation
The last step is to validate the potential read, pre-write and post-
write rules against the original set of sequences generated from
the audit log. This is done by finding the confidence of each rule
on the original sequence set. Any rules that do not obtain some
minimum confidence level will be removed from the dependency
rules for that attribute. The rules that are validated will be used
during the detection phase to validate the transactions. Table 2
shows the results of validating the rules generated from Table 1.

4.2.4 Detection Phase
The detection phase is used during normal operations to detect
when a transaction in malicious. It does this by comparing each
transaction against the profile for the user that owns the
transaction. To validate the transaction each operation in the
transaction has to be checked against the dependency rules for
that operation’s attribute. This is done by simply testing to see if
the sequence supports the given rule. The methods used during
the learning phase are reused here for the conversion of the
transaction to a sequence and the check for support of each rule.
If the transaction fails any of the dependency rules it is considered
malicious and a detection event is raised.

4.2.5 Attribute Dependence Problems
There are three problems with this method. This first is with the
frequent sequence mining. This will only allow frequent
sequences to be considered for dependencies. The problem is
when you have infrequent transactions on sensitive data. This
sensitive data will not have rules generated for it and thus are
effectively unprotected by the Intrusion Detection System.

The second problem is with the dependency rule validation.
Consider when there are multiple types of transactions that use a
piece of sensitive data that are each frequent enough to be
considered. The problem is if these transactions are dissimilar,
the dependency rules generated from them might not have enough
confidence to be used.

The third problem is when ever you have a rule that does not have
100% confidence. This means there are some valid transactions
when this dependency rule is not supported. Meaning, whenever
one of those exception transactions is issued, it will be marked as
malicious when it is actually valid. Thus while this method
reduces the number of False Positives it still does not eliminate
them.

To show this behavior consider the transaction T2: r(1), r(5), w(1),
r(4), r(5), w(4) as seen in Table 1. While this is a normal
transaction it conflicts with two of the dependency rules for user 1,
r(1) -> r(6) and w(4) -> r(7), r(6). This means it will failed those
tests and thus be marked as a malicious transaction, causing a
false positive. Conversely, let us consider the transaction T: r(2),
w(2), r(4), r(7), w(1), r(6), w(5), r(1), w(4). This transaction
passes all relevant dependency rules but is actually a malicious
transaction.

4.3 The Enhanced Data Dependency Model
Building off attribute dependence, the enhanced data dependency
model [3, 4] is a method to significantly reduce the false positive
rate. The main difference with this method is the inclusion of
transaction information in the profiles. The additional
information stored is the number of operations plus the read and
write attribute sets. This information is gathered after the frequent
sequence mining (Section 4.2.10). In the case of the example,
assume that a write with its proceeding reads is one operation.
The results of this extra information can be seen in Table 3.

The detection phase also changes slightly (Figure 3). First the list
of transactions is searched for a transaction with the correct
number of operations. If none are found then the transaction is
marked as malicious. This list of transactions is then searched for
a transaction with a similar read write set. A read write set is only
what columns are read and written regardless of how much data is
actually used in the transaction. If one is not found the transaction
is marked as malicious. Otherwise the transaction is compared
against the dependency rules for the transactions that passed the
first two steps. If any of these transactions passes then the
transaction is valid otherwise it is malicious.

Figure 3. Enhanced Data Dependency Model Detection

Sequence. [4]

Page 8 of 10

This method addresses the second and third problems described in
Section 4.2.5. By keeping the dependencies on a per transaction
level, the issue of dissimilar transactions on the same data driving

each other’s confidence rate down goes away. This eliminates the
second problem all together. In a similar sense, the separation of
the transactions allows the confidence rates of the individual rule

Table 3. Example Transaction Information. [4]

Table 4. Example Dependency Rules by Transaction. [4]

Page 9 of 10

to go higher. The higher the confidence rate on a rule the less
likely it is to cause a false positive. While the false positives will
not be completely eliminated they will be significantly reduced.

Using Table 4, the previous example can be reexamined. Looking
again as T2: r(1), r(5), w(1), r(4), r(5), w(4) as seen in Table 1, it
can be seen that there are no longer any conflicts with its two
dependency rules w(1) -> r(1),r(5), w(4) -> r(4),r(5) as shown in
Table 4. Now let use consider again the transaction T: r(2), w(2),
r(4), r(7), w(1), r(6), w(5), r(1), w(4). This transaction has 4
operations and thus could possibly be matched with T3 or T4. Its
read set is {2,4,7,6,1} and its write set is {2,1,5,4}. While it’s
read set matches 4 its write set does not. Thus this transaction
would be marked as malicious due to not having a compatible
read write set.

4.4 Weighted Sequence Method
Further improving on the attribute dependency model is the
weighted sequence method [5]. This method adds sensitivity
weightings to attributes in an attempt to solve the first problem
listed in Section 4.2.5. In an unweighted Attribute Dependence
Method, the transactions are chosen only by how frequently they
appear in the audit logs. In a weighted Attribute Dependence
Method, each transaction is given a weight equal to the most
sensitive attribute in the sequence. An addition weight is also
added if a sensitive value is written. This weight multiplies the
frequency of the transaction before it is compared to the threshold
value. This has the effect of making transactions on sensitive data
more likely to be considered for dependency rule generation.
Figure 4 shows this slightly modified learning phase.

Figure 4. Components of the Weighted Data Dependency Rule

Generation. [5]
The advantage of this system is transactions on weighted
attributes effectively have a lower threshold of frequency to be
considered than those of less sensitive data. This allows more
dependences to be generated for the sensitive data without
lowering the threshold of frequency of the whole system.
Lowering the threshold allows more sequences to be considered
and thus introducing more chances for false positives. In other

words, this method puts more security on the sensitive data and
less on the insensitive data.

5. CONCLUSION
Protecting against all threats is not possible with a tradition
preventative security system. Using an Intrusion Detection
System will help fill in the holes where the preventative security
fails but can introduce the problem of False Positives. In this
study it was shown that using an Attribute Dependence Model can
mitigate the Intrusion Detection System Anomaly Detection
Model’s inherent problem of False Positives. The Enhanced Data
Dependency Model further mitigates the false positive problem
with minimal addition overhead. Lastly the Weight Sequence
Method seeks to improve the detection rate on critical data
without increasing the false positive rate on the less sensitive data.

Seeing as all three methods employ the Attribute Dependence
Model, only implementing it is sufficient for an initial
implementation. The basic method gives plenty of security with
an actable False Positive Rate for an initial implementation.
Working from the systems created for the Attribute Dependence
Method, the more advanced methods can be more easily
implemented at a later point in time.

6. IMPLEMENTATION PLAN
To implement an Attribute Dependence Method Intrusion
Detection System in MiniDB will require the creation of several
additional systems to support it. The learning phase will need an
audit log from which to learn from. The audit log will have to
also contain transactional information of some kind. This will
require the implementation of at least a rudimentary transaction
system. The audit log will also have to contain user information,
thus necessitating the implementation of a login of some sort.
With these systems to supporting the learning phase, the Intrusion
Detection System can be created.

The top layer of the system will be a new security class to contain
all these new systems. This security class will handle the user
login and audit log generation, in addition to the learning and
detection phases of the Intrusion Detection System. Finally on
top of all that a text based user interface will have to be created to
allow for user interaction. Since the purpose of this effort is to
implement an Intrusion Detection System, the support systems
will be rudimentary and only do a minimum of what is needed to
support the Intrusion Detection System.

The first system that will be implemented in the security class will
be the Login system. This will be accomplished with a table of
integer login ids and string passwords. The interface at the top
level will allow for the creation but not the deletion of users. This
is so that the audit logs remain valid with respect to the user base.
The system will require login before any transaction can occur.
This login system will not be very secure though. This is because
database containing the user IDs and passwords is an unencrypted
plain text file. Future work on this system could be to implement
a real login system and not just a placeholder.

The next system to implement is the concept of transactions. This
will be done is a rather simplistic way. After someone has logged
in they will be able to make the choice to open a transaction.
After this they will be allowed to issue supported relation
commands. A choose in the supported commands will be to
commit. Note this system merely marks what transaction a
command belongs to and offers no support for concurrency or

Page 10 of 10

recovery. The commit in fact does not actually commit. It only
ends the transaction. The commands previous will be committed
as they are received. This is acceptable for this revision since the
only features needed to support the Intrusion Detection System is
the grouping of commands by transaction. Further work on this
system would be to implement support of concurrency and
recovery.

The last support system will be the Audit log. This log will
contain all the information about the transactions. There will be
two types of entries into the Audit log. The first is entries about
transactions. These are mainly about when the transaction starts
and stops and who owns it. The other entry is about the
individual actions performed on the database. These entries will
contain the type of action (project, insert, delete or update) and on
which attributes these effected. Figuring out which attributes will
require some work though. For insert and delete it is simply all
attributes are written. A project’s parameters explicitly tell what
attributes should be considered read. If the project is being done
on a results relation, the operation that generated it will be used to
determine the attributes. Update will be the hardest and will
require a change to the lower level code to compare to the new
record to the original. These differences will be the attributes that
are written. This audit entry will also contain the relation names
and any parameters associated with the commands.

For the Intrusion Detection System a function for analyzing
transactions that will be used in both the learning and detection
phases will need to be created. This function will reduce the
transaction to a read write sequence. A data structure for
expressing a read write sequence and a data structure for
conveying rules will also be needed. Before either of these a way
to uniquely identify attributes must be created. To do an addition
column will be added to the metadata stored for every field. This
column will contain a unique integer across the whole database.
These integers will just be added incrementally and will not make
any adjustments is a filed is deleted. They will also carry forward
through selects and projects. The read write sequence then
becomes a linked list of nodes each containing an attributes
unique identifier and either a ‘r’ or a ‘w’. The expression of the
rules will be a structure containing the attribute identifier the rule
is for and a linked list of the sequences node the rule states should
be present. The rules that apply to each attribute will be linked
together and index to a single array by their unique identifier.

The detection phase will have several steps. The first will be to
generate the read write sequences from the Audit log. Next is the
generation of all the possible read, pre-write and post-write rules

from the sequences. Multiple such potential rules will likely be
generated from each sequence. These will then be evaluated over
all sequences for validity. Those above a certain validity
threshold are added to the detection rules. The detection phase is
a lot simpler. It first reduces the transaction to a read write
sequence. This sequence is then compared against all rules that
apply to each of its attributes. If the sequence fails a certain
percentage of applicable rules it is considered to be an intrusion
and an alarm is raised.

Lastly a text based user interface and test program will have to be
created. The interface will support user creation and login in. It
will also allow the user to initialize the learning phase. Once
logged in, it will support transactions and manipulation of the data.
It will also alert the user when they try to commit is their
transaction was considered and intrusion. Parallel to this will be
an API implementation of the user interface to allow the test
program to automatically exercise the system.

7. REFERENCES
[1] Basharat, I., Azam, F., and Muzaffar, A. W. Database

Security and Encryption: A Survey Study. International
Journal of Computer Applications, 47 (12). 28-34.Ding, W.
and Marchionini, G. 1997 A Study on Video Browsing
Strategies. Technical Report. University of Maryland at
College Park.

[2] Rao, U. P., and Patel, D. R. Design and Implementation of
Database Intrusion Detection System for Security in
Database. International Journal of Computer Applications,
35 (9). 32-40.Tavel, P. 2007 Modeling and Simulation
Design. AK Peters Ltd.

[3] Rezk, A., Ali, H., and Barakat, S. I.Database Security
Protection based on a New Mechanism. International Journal
of Computer Applications, 49 (19). 32-38.Forman, G. 2003.
An extensive empirical study of feature selection metrics for
text classification. J. Mach. Learn. Res. 3 [Mar. 2003], 1289-
1305.

[4] Rezk, A., Ali, H., El-Mikkawy, M., and Barakat,
S.MINIMIZE THE FALSE POSITIVE RATE IN A
DATABASE INTRUSION DETECTION SYSTEM.
International Journal of Computer Science & Information
Technology, 3 (5). 29-38.

[5] Srivastava, A., Sural, S., and Majumdar, A.K.Database
Intrusion Detection using Weighted Sequence
Mining.Journal of Computers, 1 (4). 8-17.

	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords

	1. introduction
	2. Literature review
	3. Overview of Security Risks and Types of Intrusions
	3.1 Excessive Privilege Abuse
	3.2 Legitimate Privilege Abuse
	3.3 Privilege Elevation
	3.4 Database Platform Vulnerabilities
	3.5 SQL Injection
	3.6 Weak Audit Trail
	3.7 Denial of Service
	3.8 Database Communication Protocol Vulnerabilities
	3.9 Weak Authentication
	3.10 Backup Data Exposure

	4. Intrusion Detection Methods
	4.1 Terminology
	4.1.1 Sequence
	4.1.2 Rule
	4.1.3 Read Sequence
	4.1.4 Pre-write Sequence
	4.1.5 Post-write Sequence
	4.1.6 Confidence

	4.2 Attribute Dependence Model
	4.2.1 Frequent Sequence Mining
	4.2.2 /Potential Dependency Rule Generation
	4.2.3 Dependency Rule Validation
	4.2.4 Detection Phase
	4.2.5 Attribute Dependence Problems

	4.3 The Enhanced Data Dependency Model
	4.4 Weighted Sequence Method

	5. Conclusion
	6. Implementation Plan
	7. REFERENCES

