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Abstract— Despite the fact that sensor networks could often be
deployed over three-dimensional (3D) terrains, most approaches
on sensor localizations are designed and evaluated considering
only two-dimensional (2D) applications. On the other hand, being
the foundation of the most previous localization solutions, reliable
and sufficient neighborhood-measurements are often hard to
achieve for sensor nodes deployed in complex 3D terrains, which
makes it difficult to extend those solutions into 3D applications.
In the paper, we introduce a robust 3D localization solution called
Landscape-3D, in which we treat the localization problem from
a novel perspective by taking it as a functional dual of target
tracking. Besides several nice features, such as high scalability,
high accuracy, zero sensor-to-sensor communication overhead,
low computation overhead, etc., one of the most important
advantages of Landscape-3D is that it works totally independent
of node densities and network topologies, which makes it robust to
complex 3D environments. Our simulation model involves various
3D scenarios. Experimental results demonstrate that Landscape-
3D is a robust localization approach for sensor networks deployed
in complex 3D terrains.

I. INTRODUCTION

It is believed that wireless sensor networks (WSNs) will
extend our sensory capability to every corner of the world.
Future WSNs may consist of hundreds to thousands of sensor
nodes communicating over a wireless channel, performing
distributed sensing and collaborative data processing tasks for
a variety of vital military and civilian applications. Examples
of those applications may include battlefield surveillance,
intrusion detection, forest fire detection, smart environment,
and others. For most of these applications, it is important for
the sensor nodes to be aware of their own locations. Sensed
data are often more meaningful when they are associated with
spatial coordinates. Location-aware sensors may also help to
highly enhance the efficiency of routing protocols [16], [22] by
reducing costly message flooding. However, installing a global
positioning system (GPS) receiver on each sensor node may
not be a practical solution for most applications, because of
the size, the battery, and the cost constraints of sensor nodes.

As a fundamental problem in sensor networks, the self-
localization of sensor nodes has recently attracted massive
attentions from both academia and industry. The constraints
of sensor nodes, such as limited computation power, limited
battery capacity, requirements of small size and low cost,
have made the sensor’s location discovery a very challenging
research issue. A good solution for this problem has to be

distributed, light-weight, energy-efficient, and low-cost [4].
Despite of many research proposals on sensor localiza-

tion problem [1], [2], [6], [8], [12], [9], [11], [18], [19],
most of them are designed and evaluated considering only
2-dimensional (2D) applications where sensor networks are
deployed over flat terrains. In real applications, however,
sensor networks could often be deployed over 3-dimensional
(3D) terrains. For example, a surveillance network deployed in
a mountainous battlefield, a sensor network floating in the air
for pollution monitoring, or a structural monitoring network
mounted on a bridge. These 3D applications bring more than
just one extra dimension to the localization problem. In a
sensor network deployed over complex 3D terrains, network
topologies could be much more complex than 2D cases, which
requires sensor localization schemes to be more robust to
network irregularities.

Besides the fact that there is no localization result reported
for 3D sensor networks so far, most current approaches are
difficult to be extended to three dimensions. Among the
numerous proposals for sensor localization, most of them are
based on neighborhood-measurements [6], [11], [12], [20],
[21], [19], in which the location of a sensor node is estimated
utilizing measured distances or angles from its neighbor nodes.
In neighborhood-measurement based localization methods, a
sensor node is able to calculate its own position only if it has
sufficient neighbors. As pointed out in [5], they begin to per-
form acceptably only when the node densities are well beyond
the density required for network connectivity. In networks over
complex 3D terrains, because of non-uniform node densities,
irregular topologies, and obstructions, it is often too optimistic
to assume every sensor node being able to achieve sufficient
neighborhood-measurements.

Motivated by this observation, in this work, we introduce
a robust 3D sensor localization scheme called Landscape-
3D, which solves the localization problem from a differ-
ent perspective than existing approaches by taking it as a
functional dual of target tracking. Traditional target tracking
solutions utilize one or more static location-aware sensors to
track and predict the position (and/or speed) of a moving
target. In Landscape-3D, by introducing a mobile location-
assistant (LA, could be aircraft, balloon, robot, vehicle, etc.),
we let each location-unaware sensor discover its position by
passively observing the moving, location-aware LA (with the

2391-4244-0419-3/06/$20.00 ©2006 IEEE



TABLE I

COMPARISON OF LANDSCAPE-3D AND NEIGHBORHOOD-MEASUREMENT-BASED LOCALIZATION METHODS.

Neighborhood-measurement-based localization methods Landscape-3D
Accuracy Depends on algorithms as well as node densities, from low

to high. A high accuracy is usually at the cost of high
computation cost.

High.

Scalability Depends on algorithms, from low (centralized) to high (dis-
tributed).

High, each node discovers its location with
its own measurements and calculations.

Computation overhead Depends on algorithms as well as node densities, from low to
high.

Low.

Communication overhead High to very high. Low, introduces ZERO sensor-to-sensor
communications.

Robustness to node densities Weak, accuracy highly depends on node densities. Strong, does not rely on node densities.
Robustness to network topology Weak, not work well for irregular topologies. Strong, works well for all topologies.
Robustness to range errors Depends on algorithms, from weak to strong. Strong.
Ranging Techniques RSS or ToA (Time of Arrival) or (TDoA) or AoA (Angle of

Arrival).
RSS.

Implementation cost Depends on ranging techniques used, from low to high. Low, no need of special equipment for
sensor nodes, and the cost of a single LA
is amortized on each sensor node.

Ability to Support 3D Applications Weak, no results reported yet. Strong.

GPS or pre-defined moving path). We resolve this functional
dual problem by modeling and utilizing an Unscented Kalman
Filter (UKF) [14] based algorithm. One scenario frequently
mentioned in the literature is that sensor nodes are deployed
by an aircraft. Landscape-3D fits well with (but not limited to)
this kind of sensor applications. We can simply let the aircraft
cruise several rounds above the sensor filed in 3D terrains,
broadcasting beacons periodically while flying. Each beacon
contains the aircraft’s current location. Sensors collect the
beacons, measure the distance between itself and the LA based
on the received signal strength (RSS), and individually ”track”
its own position through the proposed UKF-based algorithm.

Landscape-3D is a novel extension of the Landscape scheme
presented in our previous work [25], [26]. By introducing a
new 3D network model and three dimensional LA moving
trajectories, Landscape-3D successfully extends the ability
of landscape to support 3D applications while it does not
involve significant changes on the core UKF-based algorithm.
Thus, Landscape-3D introduces a small amount (less than
10%) extra computation overhead. It also inherits almost
all the advantages of Landscape. Table I summarizes the
features of Landscape-3D using neighborhood-measurement
methods as the reference 1. In the rest of this work, however,
instead of demonstrating all these features, we focus our
attention on the support of 3D sensor localizations. In our
experiments, we have constructed several 3D scenarios to
simulate complex terrains. The beacon loss situation has also
been considered in simulations. In a stringent environment,
some beacons may not be reachable to all sensor nodes;
each sensor may individually observe a different incomplete
beacon set depending on many factors, such as obstructions,
time-varying link qualities, hostile radio-jamming attacks, etc.

1The effectiveness and advantages of Landscape were demonstrated in our
previous work [25], [26] through a comprehensive evaluation study using a
state-of-art neighborhood-measurement sensor localization method – MDS-
MAP [20], [21] – as the reference.

We address this issue by including two circumstances in our
simulation studies: randomly uniformly dropped beacons, and
randomly bursty dropped beacons. Our simulations reveal that
Landscape-3D is a robust localization approach for sensor
networks deployed over complex terrains. It works reasonably
well even if significant part of beacons are unreachable to
sensor nodes. To the best of our knowledge, this is the first
effort reporting localization results for 3D cases.

The rest of this paper is organized as follows: A short review
of related work is presented in the next section. Section III
presents the 3-dimensional network model. We describe the
Landscape-3D localization system in section IV. Experimental
results of our proposed system against complex terrains are
presented and discussed in section V. Finally, concluding
remarks are given in section VI.

II. RELATED WORK

Sensor localization has attracted significant research efforts
in recent years, and various approaches have been proposed
[2], [6], [9], [11], [12], [18], [19]. The majority of them assume
that a small fraction of the nodes (called anchors or beacons)
have a priori knowledge of their locations. Most of them are
based on neighborhood-measurements and follow a common
process for location discovery: The first phase is to make the
estimation of distances or angles to anchors or other neigh-
boring nodes, which is often called ranging. The second phase
is to estimate positions based on the ranging measurements.
Some proposals have an optional third phase, which is to refine
the position estimations utilizing the local [19], [21] or global
information [20]. There are different ways to categorize the
existing approaches by the techniques used in those phases.
Please refer to [26] for a rather complete survey of existing
methods which classifies the existing methods according to the
raging techniques (ToA/TDoA, AoA, and RSS). In this paper,
we only present a brief review of most related work. A short
description on MDS-MAP related algorithms [21] is given in
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the following subsection. Then, we take a glance at Bayesian
techniques for robot location estimations.

A. Multidimensional Scaling for Localization

Multidimensional scaling (MDS) has recently been success-
fully used to resolve sensor localization problem [12], [20],
[21]. MDS can be seen as a set of data analysis techniques
that display the structure of distance-like data as a geometrical
picture. One main advantage in using MDS is that it can al-
ways generate relatively high accurate position estimation even
based on limited and error-prone distance information. Shang
et al. first proposed MDS-MAP to use MDS in sensor location
problem in [20]. MDS-MAP is a centralized algorithm, which
consists of three steps:

1) Compute shortest paths between all pairs of nodes in
the sensor field. The shortest path distances are used to
construct the distance matrix for MDS.

2) Apply classical MDS to the distance matrix, retaining
the first 2 (or 3) largest eigenvalues and eigenvectors to
construct a 2D (or 3D) relative map.

3) Given sufficient anchors (3 or more for 2D, 4 or more
for 3D), transform the relative map to an absolute map
based on the absolute positions of anchors.

MDS-MAP(P) [21] is an improved version of MDS-MAP.
In MDS-MAP(P), individual nodes compute their own local
maps using their local information (the range of the local map
may contain one-hop or two-hops neighbors) and then the
local maps are merged to form a global map. If an optional
refinement process is used for each local map before merging,
the algorithm is called MDS-MAP(P,R).

As the state-of-the-art neighborhood-measurement based
approach, MDS-MAP(P,R) has demonstrated impressive per-
formance. However, as we will demonstrate in Section V,
this method is quite sensitive to node densities and network
topologies, thus it is difficult to extend this method into a
solution for applications deployed over complex 3D terrains.

B. Bayesian Techniques for Robot Localization

Bayesian techniques have been widely investigated in the
context of robot localization [10]. Recently, grid based Markov
localization [3], particle filter (a.k.a. sequential Monte Carlo)
[7], real-time particle filters [15] have been proposed and
shown to be successful for robot location estimation. Those
Bayesian techniques generally require intensive computation
power. There are substantial differences between robot lo-
calization and sensor node positioning. First, while robot
localization locates a robot in a predefined map, localization
in sensor networks works in a free space or unmapped terrain.
Second, while a robot can acquire accurate range, bearing and
orientation measurements to landmarks simultaneously with
relatively expensive equipment, small sensor nodes cannot.
Third, a robot has much more computation power than a sensor
node, and is able to execute complicated location algorithms.

Inspired by the techniques used for robot localization, Hu
and Evans [11] first proposed to use sequential Monte Carlo
(SMC) method for mobile sensor node localization. Their

approach is called MCL (Monte Carlo Localization). Our
work is different from theirs in several aspects. (1) MCL
requires a certain percentage of mobile anchors to work well,
and it is designed for mobile sensor nodes. Landscape-3D
needs only one mobile LA, and, it is mainly for static sensor
networks. (2) MCL utilizes only proximity measurement, with
the location estimation coarse-grained and bounded. In con-
trast, Landscape-3D exploits range measurement and it is able
to acquire high accuracy. (3) With SMC requiring intensive
computation power, upgrading MCL for range measurements
might be impractical, because that would highly increase the
computation cost of MCL.

III. NETWORK MODEL

We assume that the sensors are deployed randomly over a
3-dimensional monitored area. As an example, Figure 1 shows
a sensor network deployed over a monitored mountain area.
Each sensor node has limited resources (CPU, battery, etc),
and, is equipped with an omni-directional antenna. A location
assistant (LA) could be an airplane, a mobile robot, a vehicle,
a balloon, etc. which is a choice up to the network designers.
However, we do have the following minimal requirements on
the LA:

• The LA has moving ability, being able to move around
the sensor field.

• The LA is aware of its own location while it is moving,
either through a GPS or a pre-defined moving path.

• The LA is able to broadcast beacons to sensor nodes;
each beacon contains the LA’s current location and the
transmitting power used to transmit the beacon. In the
rest of the paper, the term beacon’s location is used
to reference the location of the LA when a beacon is
broadcasted.

The LA is free to leave after beacons are broadcasted. During
the process, each sensor passively listens to the beacons,
estimating the distance between itself and the beacon based
on the measured RSS of the beacons. The localization process
introduces no sensor-to-sensor communication overhead. The
communication ability of sensor nodes to the LA is not
assumed.

IV. LANDSCAPE-3D LOCALIZATION METHODOLOGY,
MODEL AND ALGORITHM

A. Landscape-3D Localization Model

The key idea of Landscape-3D is to treat the sensor local-
ization as a functional dual to the target tracking problems.
In target tracking, one (or more) location-aware sensor node
estimates the position (and optionally, velocity and accelera-
tion) of a moving target based on the measurable distances or
angle of arrives (AOAs). As a functional dual, each location-
unaware sensor node utilizes the measured RSS to estimate
its own position aided by the location-aware LA. From this
novel perspective, the Landscape-3D system exploits varying
positions of the LA and the corresponding sensor-to-LA dis-
tances to dynamically determine the positions of sensor nodes.
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LA

Area monitored by the sensor network

Sensor nodes
Beacons broadcasted through RF signals

Fig. 1. An example sensor network deployed over 3D terrains.

Input: observation pairs

(location of beacon 1, distance1),
(location of beacon 2, distance2),

…
Output: position estimation,

(estimation1),
(estimation2),

…

: Sensor node

: The LA moving trajectory

: Beacons broadcasted by the LA

: Distance between a beacon and the sensor node

Fig. 2. Landscape-3D methodology illustrated in 2-dimensions.

The sensor position is determined by solving the associated
state evolvement and observation dynamics of the positions of
the LA and the measured distances. Figure 2 illustrates the
Landscape-3D localization methodology in a 2D manner.

For the localization problem described above, we define the
state variable as the 3D position of a specific sensor node. The
state of the ith sensor node at the nth iteration is:

xi(n) = {xi1(n), xi2(n), xi3(n)}. (1)

And we have the following dynamic state and observation
equations:

xi(n) = f(xi(n − 1)) + wi(n),
yi(n) = g(xi(n)) + vi(n),

(2)

where f(·) and g(·) are state evolvement and observation
functions respectively. f(·) may be linear or nonlinear de-
pending on application scenarios, while g(·) is usually highly
nonlinear. wi(n) and vi(n) are state and observation noise
sequences.

Here let us consider the static sensor localization, where
positions of the sensors remain unchanged after deployment.
That is, the state dynamics f(·) governing the sensor positions

are simply the identity functions:

xi(n + 1) = xi(n) + wi(n), (3)

where wi(n) models the small position perturbation due to the
wind or other environmental effects. Note that our algorithm
can be extended to mobile sensors by incorporating time-
varying state dynamics, which is one of our future research
lines.

The state dynamics on the LA are controlled or programmed
in advance, and can be delivered to sensor nodes. Equipped
with accurate GPS, the LA knows its current location. The
current position can be transmitted through RF signal to the
sensors. The following observation model is used:

yi(n) =
√

(∆xi1(n))2 + (∆xi2(n))2 + (∆xi3(n))2 + vi(n).
(4)

Here ∆xi1(n) = xb
1(n)− xi1(n), ∆xi2(n) = xb

2(n)− xi2(n),
∆xi3(n) = xb

3(n) − xi3(n); and (xb
1(n), xb

2(n), xb
3(n)) is the

current 3D position of the LA, measured using GPS or con-
trolled by the pre-defined path. vi(n) models the observation
error, which usually comes from the RF distance estimations
or the perturbations to the LA positions. We assume wi(n)
and vi(n) are zero-mean uncorrelated noise processes.

B. Dynamic State Estimation Via Unscented Kalman Filter

The Landscape-3D localization scheme aims at improving
the sensor localization by iteratively updating the position
estimates with the current observations. For the system model
defined in the previous section, on-line state estimation has
to be performed. Kalman filters and their variants have been
designed for this purpose, but their actual performance de-
pends heavily on the evolvement and observation equations,
as well as the nature of the noise sequences. Due to the
nonlinearity of the observation equation, which is the rooted-
sum-of-squares of position difference, standard Kalman filter
(KF) is not suitable to our localization model. Neither is the
extended Kalman filter (EKF), the first-order approximation
to the nonlinear system that is often plagued by the empirical
linearization. For the nonlinear observation function g(·),
the unscented transformation (UT) [13], [17] is an elegant
approach to providing higher-order approximations. It can
accurately compute the statistical mean and variance up to
the third-order of Taylor series expansion of g(·) for Gaus-
sian noise sequences, or the second-order for arbitrary noise
distributions. Higher-order approximation can also be captured
with extended algorithms [14]. At the same time, UT uses the
same order of calculations as linearization. The above analysis
has driven us to utilize unscented Kalman filter (UKF) [13] in
our Landscape-3D scheme.

The basic idea of UT is to represent the state distribution
by a minimal set of carefully chosen sample points (sigma
points). The UKF embeds the UT into the Kalman Filter’s
recursive prediction and update structure. The detailed theo-
retical background of UT and UKF can be found in our online
technical report [26]. We skip the details here, however, due
to the space limitation.
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Fig. 3. Landscape-3D’s UKF-based localization algorithm.

C. UKF-based Algorithm

Figure 3 outlines the UKF-based localization algorithm. As
shown in the picture, the algorithm has an optional calibra-
tion procedure, which could be done before sensor nodes
are deployed. The purpose of the calibration is to improve
the accuracy of RSS-based distance measurements [23]. The
core of the algorithm is the iteration of state prediction and
updating, which could be done either on-line or off-line. When
the iterations are done off-line, each sensor node first collects
all the observation-pairs (each of which contains a beacon’s
position and its distance from the sensor node), then executes
the UKF loops to update its location estimation exploiting the
constraints increasing added by each observation-pair. The off-
line version of the algorithm does not have a time constraint 2

on each iteration of state prediction/updating, thus it is more
suitable for sensor nodes that have lower computation power.
However, Each sensor node needs to have several kilo-bytes
memory 3 to temporarily store the observation-pairs, which is
a reasonable requirement for most sensor applications.

Since each sensor individually calculates its own location,
the computation complexity of Landscape-3D is independent
of the network size. In another words, the computation over-
head is ©(n) (n is the number of sensors in the network) in
terms of the whole network or ©(1) in terms of each sensor.
Unlike neighborhood-measurement based location methods,

2The on-line version requires the iteration for one beacon be finished before
the next beacon comes.

3As shown in the later section, for the example scenarios, 240 beacons
are enough for Landscape-3D to work well. If we use 6 bytes to represent a
beacon’s location (3D), 2 bytes to represent the distance from the beacon to
a sensor node, the observation-pair for each beacon will consume 8 memory
bytes to store. for 240 beacons, we need totally 1920 bytes.

where sensors usually communicate with each other massively
(for ranging measurements, and for exchanging location esti-
mations to refine the results), Landscape-3D introduces zero
sensor-to-sensor communications. The communication from
sensor nodes to the LA is not needed as well. Consider-
ing communications usually are more energy-consuming than
computations, this is an important advantage of Landscape-3D.

V. EXPERIMENTAL RESULTS

In our experiments, we run Landscape-3D on various 3D
terrain models in Matlab. Since previous approaches only
report results for 2-dimensional localizations, it is hard to
compare the performance of Landscape-3D with them for
3D cases. As a way around, besides the complex 3D terrain
models, we also include some results for flat (2D) terrain
models that have irregular topologies. For the 2D terrain mod-
els, we compare the performance of Landscape-3D with the
most well-known neighborhood-measurement based approach
– MDS-MAP. For comparison purpose, both algorithms are
interfaced to the localization simulation toolkit designed as a
part of the Berkeley’s Calamari project [24].

Table II summarizes the metrics and parameters used in our
simulations. We assume distance measurements have Gaussian
noise [20], [21]. A random noise is added to the true distance
as following:

d̂ = d ∗ (1 + randn(1) ∗ range error), (5)

where d is the true distance, d̂ is the measured distance,
range error is a value between [0,1], and randn(1) is a
standard normal random variable.

A. Flat Terrains with Irregular Topologies

In this experiment, we use MDS-MAP as the reference
to evaluate the performance of Landscape-3D for a sensor
network deployed over a flat terrain. We use a square sensor
field (1000 by 1000) with (0,0), (0, 1000), (1000, 1000), and
(1000, 0) as its four corners. To construct an irregular network
topology, we assume there is a lake in the middle of the sensor
field. The lake is in round shape and has a radius of 400
with (500, 500) as its center. 200 sensor nodes are randomly
deployed over the sensor field around the lake. We let an
airplane be the LA. For this scenario, the LA hovers over
the sensor field on a 2D plane parallel to the sensor field. The
height of the airplane is a constant value, for which we used
100 feet. The LA periodically broadcasts beacon samples to
sensor nodes. In this scenario, the location of the LA at time
step n (n ≥ 1) is simply:

xb
1(n) = c1 + RLA cos(2π/samples per round ∗ (n − 1)),

xb
2(n) = c2 + RLA sin(2π/samples per round ∗ (n − 1)), (6)

xb
3(n) = c3,

where c1, c2, and c3 are 500, 500, and 100 respectively, and
RLA is 700. We assume that the LA broadcasts same number
(samples per round) of beacon samples in each round. For
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TABLE II

METRICS AND PARAMETERS USED IN EVALUATIONS.

Metrics and Parameters Definition/Explanation

Metrics Accuracy (position error) The accuracy of sensor positioning is presented as the average distance between estimated
positions to the true positions.

Computation Overhead For comparison purpose, we report the CPU time consumed (per sensor node) by position
algorithms in our simulations. All simulations are conducted on a DELL precision 670
workstation (Intel Xeon 3.0GHz CPU, 2 GB DDR-2 memory).

Parameters

Range Error The error introduced in distance estimation based on RSS. It has a value between [0.1] in
our model for noisy RSS-based distance measurement described in equation (5).

Total Samples The total number of beacons broadcasted by the LA.
Samples Per Round In all the simulations reported in this paper, we have used simple LA moving trajectories, in

which the LA simply hovers around the sensor field and broadcasts equal number of beacons
per round.

Connectivity The number of one-hop-neighbors of a sensor node. In simulations, the average connectivity of
a network could be changed by varying the sensor radio range. Landscape-3D is independent
of this parameter.
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Fig. 4. Comparison of Landscape-3D and MDS-MAP for Flat terrain with irregular topology

TABLE III

COMPARISON OF LANDSCAPE-3D AND MDS-MAP(P,R) FOR A FLAT TERRAIN WITH IRREGULAR TOPOLOGY.

Algorithm Parameters Results
sensor radio range connectivity range error position error CPU time per node

One trail MDS-MAP(P,R) 200 25.712 10% 106.764 0.544 sec.
Landscape-3D N/A N/A 10% 11.216 0.143 sec.

Another trail
MDS-MAP(P,R) 250 33.130 10% 58.097 1.249 sec.
Landscape-3D N/A N/A 10% 11.712 0.141 sec.

The average of MDS-MAP(P,R) 200 26.016 10% 115.357 0.568 sec.
another 1000 trails Landscape-3D N/A N/A 10% 11.092 0.143 sec.

the simulations reported here, we use 240 total beacon samples
with 15 samples per round.

For the simulation of MDS-MAP, we have used MDS-
MAP(P,R), which is the distributed version of MDS-MAP
with a refinement procedure. The performance of MDS-MAP
algorithm depends on the network connectivity. Generally, the
higher the connectivity, the higher the accuracy and compu-
tation cost. In simulations, the connectivity could be changed
by varying the sensor’s radio range (Since sensor nodes are
randomly deployed, even with the same sensor radio range, the
connectivity could be slightly different in different trials.). In
the experiments for MDS-MAP(P,R), 5% nodes are assumed
as anchor nodes (with known locations).

We demonstrate the localization results of Landscape-3D
and MDS(P,R) of one trail in Figure 4, in which (a) shows
the original map of the sensors, (b) shows the result of MDS-

MAP(P,R), and (c) shows the result of Landscape-3D. In the
figures, small circle represent the original location of sensor
nodes, while small arrows point to the estimated positions.
As clearly shown in the figures, MDS-MAP(P,R) does not
work well for the case although the average connectivity of
the network is as high as 25.7. More details of the comparison
is given in Table III, in which trail one is the trail reported in
Figure 4, trail two is another trail with a higher connectivity.
To eliminate the effect of occasionality, the average of another
1000 trails (sensors are randomly re-deployed for each trail) is
also reported in the table. Landscape-3D yields much higher
accuracy with less computation overhead.

B. Complex Terrains with Complete Beacon Set

In this experiment, we evaluate Landscape-3D against vari-
ous complex 3D terrains. Similar to the previous experiment,
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Fig. 6. The result of Landscape-3D for complex terrain 2 – Mountain
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Fig. 7. The result of Landscape-3D for complex terrain 3 – Mountains and valleys

200 sensor nodes are randomly deployed over a 1000 by
1000 sensor field. The sensor field used in this experiment,
however, is not a flat terrain. Three scenarios are constructed to
emulate a terrain with a valley, a terrain with a mountain, and
a terrain with mountains and valleys respectively. To provide
references in the third dimension, we let the LA vary its
height when it hovers around the sensor field. Again, a simple
trajectory is employed. During the first half of the procedure
(of broadcasting beacons), the LA spirals upwards. During the
second half of the procedure, it spirals downwards. We use
the same LA trajectory for all three scenarios (terrains). The
location of the LA at time step n (n ≥ 1) could be described
using the same equation as (6), except the formula for xb

3(n)
is changed as the follow:

xb
3(n) =

8<
:

c3 if n = 1;
xb

3(n − 1) + 10 if 1 < n ≤ total samples/2;
xb

3(n − 1) − 10 if n > total samples/2.

In this experiment, we assume every sensor node is able to
receive the complete beacon set. Figures 5, 6, and 7 demon-
strate the result of Landscape-3D under three scenarios with
different range errors. As shown in the figures, Landscape-3D
works pretty well for all the three scenarios. Not surprisingly,
we can see that the position error increases with the range
error.

C. Complex Terrains with Incomplete Beacon Set

Assuming every sensor node be able to receive all the
beacons may be too optimistic. In real applications, each
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Fig. 8. The result of Landscape-3D with incomplete beacon set (with 20% range error)

sensor may individually observe a different incomplete beacon
set because of obstructions, time-varying link qualities, or
hostile radio-jamming attacks, etc. In this experiment, we
investigate the performance of Landscape-3D against two
situations of beacon loss: (a) beacons are randomly uniformly
dropped; (b) beacons are randomly bursty dropped. Figure
8 demonstrates the result of the experiment, in which 20%
range error is assumed. For bursty beacon drop, we set
the bursty size to be a random number between 1 and 10.
In Figure 8, (a) illustrates the result for a trail with 60%
beacons bursty-dropped, (b) compares the accuracy for the two
beacon-dropping situations under different drop rates, and (c)
compares their computation costs under different drop rates.
As we can see, although beacon loss does affect the accuracy
of Landscape-3D, the effect is not disastrous. On the contrary,
when range error is as high as 20%, Landscape-3D is still
able to give acceptable result even when 60% beacons are lost.
As shown in the figure, bursty-dropped beacons have slightly
heavier effect than uniformly-dropped beacons. Figure 8 also
clearly shows that the computation cost is linearly proportional
to the number of beacons used. This provides great flexibility
to sensor nodes: when the energy is low, a sensor node could
intentionally drop some beacons to save the power.

VI. CONCLUSIONS

In this paper, we have investigated a robust sensor localiza-
tion scheme called Landscape-3D. Besides several advantages
over existing sensor positioning approaches, such as high
accuracy, high scalability, low computation cost and communi-
cation cost, one nice feature of Landscape-3D is that it works
totally independent of node densities and network topologies.
Landscape-3D also demonstrates strong robustness to beacon
loss. Our simulation studies reveal that Landscape-3D is an ef-
fective location-finding approach for sensor networks deployed
over complex 3D terrains.
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