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ABSTRACT
There have been a variety of methods for producing evo-
lutionary art using Genetic Programming and other genetic
algorithms. While some have included an underlying im-
age, many of these systems produce aesthetically pleasing
abstract images without overt structure. By using a phys-
iologically inspired pulse-coupled neural network to find
salient regions in an underlying image, and by subsequently
introducing a motif function into the genetic programming
system, we are able to augment the paradigm to introduce
thematic image regions.
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1 Introduction

Artists have used visual expression since recorded history.
Ranging from early painting on cavern walls to computer
animated motion pictures, humans use visual art to com-
municate information and emotion. Traditionally artistic
expression has been through overtly intentional design with
the artist mastering the mechanics of the currently available
media and directing the conceptual expression within the
physical constraints it imposed. This is true for the painter
with the constraints of the paintbrush and canvas, and for
the computer animator designing models for the screen.

Recent advances in science have lead to an interest
in the psychology, sociology, and neural basis of artistic
appreciation[1, 2]. Understanding the underlying neuro-
logical mechanisms will, hopefully, lead to a broader un-
derstanding of art and aesthetics. One aspect of these stud-
ies is considering, and in this case applying, insights from
low-level neural investigations. Specifically, creating phys-
iologically inspired saliency maps to introduce a visual mo-
tif into genetic art through a pulse-coupled neural network.

Finally, recent work in evolutionary computing has al-
lowed artists to engage in a more passive form of artistic ex-
pression, allowing the artist gage the aesthetic merit of au-
tomatically evolved artforms. Examples include the work
of Sims[3], Jones and Agah[4], Rooke[5], and Wiens and
Ross[6]. More recently, studies have introduced method-
ology allowing the evolutionary system to self-assess the
aesthetic appeal of the resulting images[7, 8].

While these systems often feature abstract images and

textures, they have also included evolutionary seeding from
input images[3, 8]. In this work we augment this evolution-
ary framework to selectively incorporate image features in
a motif function for a genetic programming system. We
implement this system in three basic steps:

1. Create a “salience image” from the output of a pulse-
coupled neural network.

2. Based on the resulting salience image, define one or
more functions to be made available to an interactive
genetic programming system.

3. Execute the resulting system, using observer feedback
as a fitness function.

2 Salient Image Regions

The detection of salient region and border pixels is an im-
portant step in many computer graphics, vision, and im-
age processing applications including those in evolution-
ary computing[9]. Many approaches to isolating these re-
gions have been described. Often they include low level
image processing such as noise reduction followed by
edge detection operators such as the popular Soble and
Canny edge detectors[10]. Post-processing is then ap-
plied to extract model information from the edges and re-
gions identified during the low level processing. Typically
this post-processing incorporates a priori information about
the expected forms in the image. Post-processing mod-
els include active shapes and contours, mathematical mor-
phology, fractal analysis, edge and shape, and temporal
models[11, 10].

3 The PCNN

Recently there has been some interest in more biologi-
cally inspired models in applied computer vision. One
such model is the pulse-coupled neural network. The
Pulse-Coupled Neural Network (PCNN) attempts to model
neuron interactions in time. Based upon Eckhorn’s work
modeling neural interaction on the visual cortex of the
cat[12, 13] and, more recently, primates, the PCNN forms
a high order network in which spikes through time form a
succession of binary outputs. When such a model is stimu-
lated by the values of an input image the network produces
a sequence of binary images reflecting the propagation of

478-034 31

rodney




PSfrag replacements

+1

Θ∑

∑

Fi j

Li j

Yi j

Ui j

Y (t)

Y (t −1)

Step Function

Linking

FeedingInput

Figure 1. PCNN Schematic

local activity. Attractive aspects of the PCNN for genetic
art include relative immunity to translation, scale, and rota-
tion in the image[14]. Figure 1 is a schematic diagram of a
single PCNN neuron. It is divided into three primary func-
tions: feeding, linking, and pulse generation. This PCNN
neuron is modeled as follows[15, 16]:

Fi j(t) = e−αF δtFi j(t −1)+Si j +VF ∑
kl

Wi jklYkl(t −1)

Li j(t) = e−αLδtLi j(t −1)+VL ∑
kl

Mi jklYkl(t −1)

Ui j(t) = Fi j(t)(1+βLi j(t))

Yi j(t) =

{

1 if Ui j(t) > Θi j(t)
0 Otherwise

Θi j(t) = e−αΘ∆tΘi j(t −1)+VΘYi j(t)

Where F is the feeding component, L the linking com-
ponent, U the neuron internal activity, Y the neuron output,
and Θ the dynamic threshold. M and W encode weights
from the individual inputs along with a receptive field for
the feeding and linking functions respectively, and β is the
linking strength. These equations are applied in sequence
at each iteration of the simulation.

In image processing, an individual neuron receives in-
put to it’s feeding function from a single, scaled, gray level
pixel in the original image along with a receptive field con-
sisting of a weighted neighborhood. This results in one ar-
tificial neuron being directly stimulated by a corresponding
pixel and its neighbors from the input image, preserving
geometric structure of the image.

Assuming that the threshold is initially set to zero,
any activity at the input will cause a corresponding output

from the pulse generation. This, in turn, raises the thresh-
old suppressing subsequent output. As the threshold de-
cays neurons with activity exceeding the threshold pulse,
reestablishing a high threshold for them, but also raising
the probability that adjacent neurons will be fire at the next
iteration as a result of the linking feedback to the recep-
tive field. In this sense each artificial neuron can be seen
as initiating an autowave of activity which propagates until
colliding with another wavefront.

Figure 2 illustrates the action of the PCNN when stim-
ulated by the image of the Mona Lisa as shown in Figure
1. For this, and all subsequent images, alpha was empiri-
cally fixed at 10.0, 1.0, and 15.0 for the feeding, linking,
and threshold computations respectively, and beta was 0.7.

Initially, at iteration one, every non-zero pixel causes
the PCNN to fire driving the threshold high. Over time the
threshold decays until neurons connected to those pixels
providing the highest stimulation fire, in this case at iter-
ation seventeen. This, in turn, stimulates the surrounding
pixels causing them to fire if they are close to their respec-
tive thresholds.

The composite salience map is created by present-
ing an image to the inputs of the PCNN and iterating the
PCNN. Each time a unit fires, after the initial spike at it-
eration 1, the time that it fired (i.e. the iteration number)
is recorded in an array at the corresponding pixel location.
The network continues iterating until there have been ten
time steps in which one or more neurons fired. The re-
sulting map is an image with increasing pixel values as the
wave of activity propagates.

Figure 3 displays a contrast enhanced salience image
consisting of ten firing times. The number of firings was
chosen empirically after examining the PCNN wave prop-
agation.
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(a) Iteration 01 (b) Iteration 17 (c) Iteration 18

(d) Iteration 19 (e) Iteration 20 (f) Iteration 21

Figure 2. PCNN Iterations Mona Lisa.Note that all pixels initially fire in iteration one.

Figure 3. Salience Map

4 Artistic Applications

To incorporate the salience maps into our images we intro-
duce a function into a Genetic Programming system pat-
terned after that of Sims[3]. Since this is such a popular
approach to genetic art we will only summarize it here.
Fundamentally, this system generates a population of func-
tions with parameters that may include the current location

being evaluated. The functions are executed for each de-
sired pixel in the output image, and the returned values are
assembled into images and displayed. The fitness of the
functions are then evaluated, in this case interactively by
a human operator based on the perceived aesthetic proper-
ties of the resulting images, and those selected become raw
material for a new generation of functions.

While there are a variety of ways to apply the salience
map, we provided a new function, which we call motif.
Motif is a function of the composite saliency map at the
current location and one data value passed by the current
Genetic Program individual. While several possibilities
were explored, the following resulted in a good compro-
mise between structure and diversity:

Motif(x,y,d) =

{

d2 if d ≤ SM(x,y)
d Otherwise

Where SM(x,y) is the salience map value at location
x,y, and d is provided by the currently running genetic pro-
gram. Additional primitive operations available to the ge-
netic programming system include basic arithmetic opera-
tors, sin, cos, log, exp, square, sqrt, if, and a random num-
ber generator.

To illustrate the result we selected the four images
shown in Figure 4. Figure 4a is the well known Mona Lisa,
Figure 4b is a photograph of the Golden Record included
on the Voyager spacecraft1, Figure 4c is Mount Rushmore2.

1Courtesy NASA/JPL-Caltech
2Courtesy U.S. National Park Service

33



(a) Mona Lisa (b) Voyager Record

(c) Mt. Rushmore

Figure 4. Sample Images

With the exception of the Mount Rushmore image, which
was contrast enhanced, these images have not been prepro-
cessed.

Figure 5 demonstrates a variety of images evolved
with the Mona Lisa as a motif and Figure 6 shows the
blending of a random element and the Mona Lisa motif. We
call the images in Figure 6 “petroglyph” since each is rem-
iniscent of an ancient petroglyph. In addition to the motif
imagery, the system can and does generate purely abstract
images as illustrated in Figure 7.

The results from the Mount Rushmore image are
shown in Figure 8 and range from nearly photographic to
an imprint in random noise. Finally, the Voyager Golden
Record is shown in Figure 9.

5 Observations and Future Work

While we chose to fix the PCNN parameters to illustrate its
effectiveness over a variety of photographic images, opti-
mal parameter selection is an open question and bears fur-
ther study. The PCNN is also sensitive to noise and the
results from the Mona Lisa in particular could be improved
by preprocessing the image through a lowpass filter. This
was not done in the interest of showing its applicability to
a range of imagery. The only preprocessing was to contrast
enhance the Mount Rushmore image since the original was
a very low contrast image.

Since the primary objective for this work was struc-
tural we focused on monochromatic images. Color can,
however, be introduced by a variety of methods includ-
ing considering each band independently or processing CIE
luminance images formed from the three primary color
bands.

While the application presented here is interesting, it
is only an example of one potential application of the re-
sulting salience maps. It is likely that other applications,
such as the swarm based, non-photorealistic rendering de-
scribed by Semet et.al[9] could find this as an alternate
salience detector. We also speculate that there may be
enough residual information in these PCNN detected maps
to estimate the universal metric based aesthetic fitness as
described by Svangard and Nordin. We look forward to
investigating these possibilities in the future.

6 Conclusion

We have applied the pulse-coupled neural network as a
physiologically inspired salience detector, and have illus-
trated it use as a motif generator for genetic art. We believe
that it has other application potential and hope to continue
exploring that potential in the future.
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Figure 5. Mona Lisa

(a) (b) (c)

Figure 6. Mona Lisa “Petroglyph”

(a) (b) (c)

Figure 7. Abstract Results
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