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ABSTRACT 
In a manufacturing environment it is often necessary to 
perform a manual inventory of finished goods and raw 
materials.  These raw materials might be wood, plastic or 
metal and often represent a large investment of capital to 
procure and store.  While the economic value of an 
accurate inventory is high, the process of obtaining a good 
count is tedious and fraught with human error.  As a 
precursor to counting an inventory of tubular steel bar 
stock from digital images, we present a hybrid algorithm 
inspired by ant colony and particle swarm technology.  
This algorithm defines an environmental habitat for 
interacting particles to competitively cluster into 
segmented colonies.  By forming colonies at bar stock end 
profile locations the algorithm provides potentially 
countable high-level information. 
  
KEY WORDS 
Computational intelligence, swarm intelligence, computer 
vision and manufacturing.  
 

 
1.  Introduction 
 
In a manufacturing environment it is often necessary to 
perform a manual inventory of finished goods and raw 
materials.  These raw materials might be wood, plastic or 
metal and often represent a large investment of capital to 
procure and store.  While the economic value of an 
accurate inventory is high, the process of obtaining a good 
count is tedious and fraught with human error.  It would 
be beneficial to have an automated system that could 
assist a human operator in determining inventory on hand.   
 
One raw material used for this study is metal bar stock, 
specifically small diameter steel tubes as displayed in 
Figure 1. Like most raw materials this tubular stock is 
usually stored in homogenous stacks or bundles.  Digital 
images taken of the tube stack end profiles usually 
contain edges defined at areas of large local grey scale 
changes.  Additionally in the industrial environments 
studied, the homogeneous bar stock to be counted is 
almost always clustered in a single continuous region of 
fairly symmetrical objects that may be isolated from 

background and other foreground objects.  By processing 
digital images of the tube ends we seek to identify 
individual tubes as a precursor to inventory assessment. 
 

 
Figure 1 – Profile end of small diameter tube stock 

 
As with most image processing problems, the task of 
accurately counting discrete bars from images acquired in 
an industrial environment is complex.  A practical 
solution must handle a wide variety of bar stock shapes 
and sizes, inconsistent image quality and changes in 
camera angle.  Given these challenges we feel that this 
task may be well suited to help assess the real world 
potential of swarm approaches to image processing.  
 
Swarm processing is popular in computational 
intelligence, where a desired global behaviour is allowed 
to emerge from the local interaction of agents each 
utilizing much simpler individual behaviour.  This 
processing model has been successfully applied to 
optimization problems.  The two most common types of 
swarm processing models are the Ant Colony 
Optimization (ACO) and the Particle Swarm Optimization 
(PSO) algorithms.  In recent literature, both of these 
algorithms have been adapted for image processing.   
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For example, Ramos and Almeida [1] use digital images 
as the habitat of an artificial ant colony.  They used the 
simple ant model described by Chialvo and Millonas [2] 
to define the movement of ants within a digital habitat.  A 
grey scale digital image was used to represent the initial 
pheromone concentrations for the ant’s environment.  As 
the ants moved throughout the digital habitat, they 
changed the pheromone concentrations in their 
environment.  The resulting global patterns of movement 
that emerged correlated with edge locations in the source 
images, showing that even simple ant colony systems can 
be used to effectively extract edge features from digital 
images. 
 
Zhuang and Mastorakis [3] present an alternative ant 
colony model for image processing.  In their approach a 
perceptual graph of the connections between pixels was 
constructed.  Specifically, as the ants explored their 
environment, they updated the connections on the 
perceptual graph based on the cost of the path they 
followed.  By using appropriate path cost functions their 
model proved capable of extracting both image edge 
features and segmenting similar image regions. 
 
Omran, Salman and Engelbrecht [4] apply a PSO 
algorithm on the problems of image segmentation and 
classification.  This approach uses the PSO algorithm to 
search for an optimal clustering of pixels.  Their results 
showed that the PSO algorithm can be applied effectively 
at the problem of image segmentation. 
  
Finally, Li [5] presents a particle swarm model where 
local neighbourhoods of particles are formed by allowing 
species to differentiate from the initial homogenous set of 
swarm particles.  These individual species are able to 
independently search for separate local minima within the 
problems space.  While not originally applied to image 
processing, this model seems useful for the problem of 
isolating symmetrical discrete regions within the image 
space. 
 
The next section of this paper presents a swarm approach 
to image processing composed of a hybrid of these basic 
swarm models, followed by the results of applying this 
algorithm to the problem of counting small diameter bar 
stock. 
 
 
2.  Algorithm Description  
 
As previously discussed, research using swarm techniques 
for digital image processing has shown that the distributed 
processing model utilized in the ACO and PSO 
algorithms can perform low level tasks such as edge 
detection or region segmentation.  While extracting these 
features is fundamentally important to high level image 
processing, often they do not significantly simplify the 
problem of counting symmetric objects in an image.  This 

encouraged the development of a new swarm based 
algorithm specifically designed to handle the problem of 
segmenting stacked symmetric objects.  The final 
algorithm utilizes many of the principles found in the 
ACO and PSO algorithms but combines their strengths as 
needed by this specific problem domain. 
 
Our approach to segmenting and counting the stacked 
objects uses the following steps: 
 

1. Create an environment map to represent the 
source image of objects to be counted 

2. Seed the image as represented by its environment 
map with a population of randomly placed 
particles. 

3. Allow the particles to interact with each other 
and their environment in such a way that they 
form segmented colonies. 

4. Utilize the survivability of particles in a colony 
to represent the fitness of the colony’s size and 
position. 

5. After a stabilization criteria is met, the number of 
colonies remaining approximates the number of 
target objects in the source image. 

  
The four main components of this algorithm are a global 
habitat, an environment map, a distribution of particles 
and their associated colonies.  The remainder of this 
section will discuss each of these components in greater 
detail. 
 
2.1 Habitat  
 
The habitat consists of an environment map, particle 
colonies and the particles themselves.  The habitat 
performs the fitness evaluations of the colonies and 
handles house keeping issues such as collecting dead 
particles and controlling colony reproduction. 
 
2.2 Environment Map 
 
The environment map provides individual particles with a 
perception of their surroundings.  Similar to the digital 
habitats described in [2], an environment map is produced 
from a source image by calculating a gradient vector and 
an intensity value for each pixel location.  
  
During image pre-processing a region of the source image 
containing objects to be counted is cropped, scaled and 
converted to grey scale.  Because of its well defined 
edges, tubular stock does not require additional image 
processing.  After pre-processing the target image, the 
following procedure is used to create an environment 
map: 
 

1. Gradient vectors are calculated for each pixel in 
the image by applying a 3x3 Sobel convolution 
over the image. 
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2. The intensity at each pixel location is calculated 
as the length of the gradient vector at that 
position. 

3. Gradient vectors are then normalized to unit 
length and rotated such that closed regions in the 
source image produce an interior region where 
the gradient vectors point inward and an exterior 
region where the gradient vectors point outward. 

4. The intensity values at every pixel location are 
normalized by dividing by the largest intensity 
found.  This represents the energy level at that 
location in the environment map. 

5. After normalizing intensity values, any gradient 
vector whose corresponding intensity is below a 
given threshold is set to be zero. 

 
After the initial development of the environment map, the 
image pixel values are no longer processed directly.  Only 
the local interaction of autonomous particles and their 
segmentation into colonies are used to determine the 
position and size of the target objects in the source image.  
Also, unlike the traditional Ant Colony Optimization 
where autonomous agents communicate with each other 
by changing their local environment, in this algorithm the 
agents (particles) have no mechanism to change the 
contents of the environment map and therefore cannot 
communicate with each other using stigmergy.   
 
2.3 Particles 
 
As with other swarm algorithms, the algorithm presented 
here is primarily based on the behavior of individual 
particles and their interaction with surrounding particles 
within a local context.  While it is active, each particle 
exists at a position constrained by the limits of the 
environment map.  In each generation, a particle performs 
three tasks. 
 

1. Each particle moves based on its local 
environment, the location of its colony and its 
current state. 

2. Particles continuously interact with surrounding 
particles to form colonies or change their own 
state. 

3. A particle updates its own state based on its 
position, surrounding particles and the local 
environment 

 
The performance of these basic behaviors determines the 
particles interaction with its environment and surrounding 
particles.  Next we describe the individual particle’s 
behavior rules in more detail. 
 
2.3.1 Particle Movement 
 
A particle’s movement at any time is stochastically 
determined from four main components: a force 
component calculated from the environment map, an 
inertial component representing its momentum, a social 

component directing the particle to move toward or away 
from its colony and a random component to encourage 
local exploration. 
 
In each generation, the direction of movement for the ith 
particle is calculated using the following equation: 
 
 vi (t+1) = vf  (t) cf  rf  (t) + vi (t) cm rm (t) + vs (t) cs rs (t) +  

   vr (t) cr rr (t) 
 

where   rf, rm, rs, and rr are randomly generated from the 
interval [0,1],  
cf, cm, cs, and cr are stochastic scaling constants, 

and 
vf (t), vi (t), vs (t) and  vr(t) are velocity terms from 
the previous time step. 
 

The force component, vf (t) cf rf (t), represents the local 
environment’s impact on the particles movement.  The 
velocity term, vf (t), is the normalized gradient vector 
stored in the environment map at the current location.  A 
scaling term, cf, chosen heuristically is based on the scale 
and composition of the environment map so that this term 
dominates the movement equation as a particle 
approaches bounded regions.  Because the gradient 
vectors always point inward for closed curves, a particle 
approaching a boundary will be repelled back toward the 
center of the bounded region, and likewise a particle 
outside the bounded region will be repelled away from the 
region.   
 
The inertial component, vi(t) cm rm(t), represents the 
particle’s momentum.  Its velocity term, vi(t), is the 
normalized particle velocity from the previous time step.  
Momentum helps particles explore their environment and 
reinforces the effect of the force component after the 
particle has left a boundary region’s field of influence. 
 
The social component, vs(t) cs rs(t), represents a colony’s 
tendency to explore and expand.  The velocity term, vs(t), 
is a unit vector in the direction of the colony’s center 
relative to the particle’s current position.  The scaling 
factor, cs, is set based on the current state of the particle.  
A negative scaling factor will cause the particle to move 
toward the center of the colony, while a positive value 
causes the particle to move away from the colony. 
 
The random component, vr(t) cr rr(t), represents the 
particle’s tendency for local exploration.  The velocity 
term, vr (t), is a randomly generated unit vector and the 
scaling factor, cr, is small enough that it is not sufficient 
to overcome the force component in the bounded regions 
of the environment map. 
 
The result of the movement equation is normalized and 
represents a stochastically weighted direction of 
movement for the particle.  The magnitude of movement 
is determined by the local energy level of the environment 
which is the normalized intensity value from the 
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environment map at the particle’s current location.  The 
position of the ith particle is then updated using  
 
xi (t+1) = xi (t) +  vi (t+1) (cmin +  εf (t) cmax) / | vi (t+1) | 
 
where xi (t) represents the current particle position, cmin 
represents a constant minimum speed and εf (t) is the local 
energy level. 
 
2.3.2 Particle Interaction 
 
In swarm algorithms, local agent interaction is the 
mechanism by which global behavior emerges.  In the 
ACO algorithm, agents interact by modifying their 
environment.  In the PSO algorithm, agents interact by 
observing each other’s position and velocity and by 
sharing information about the best solution found.    This 
algorithm combines the spatial environment map of the 
ACO algorithm with the observation based particle 
interaction of the PSO algorithm.  In this algorithm 
interaction between particles is based on two regions that 
determine when a particle can detect and influence 
surrounding particles. 
 
Inside a perception zone, surrounding particles are 
considered as being nearby.  These surrounding particles 
are counted as relatives if they belong to the same colony 
or enemies if they belong to a different colony.  While 
this is similar to the communication mechanism in the 
PSO algorithm, our particles have no awareness of the 
position or velocity of surrounding particles.  Only the 
presence of a nearby particle is noted and their colony 
status is recorded. 
 
The engagement zone is a smaller region inside the 
perception zone where “enemy” particles are challenged.  
A system wide stochastic parameter determines whether a 
challenge occurs when a particle recognizes an enemy 
within its territory.  When a challenge does occur between 
two particles, a contest is fought between the two particles 
involved.  The aggressor attempts to force the enemy 
particle to join its colony, while the defender attempts to 
remain in its current colony.  Both particles are given a 
score based on the number of relatives it detected within 
its own perception zone.  These scores determine the 
probability of the attacker winning the challenge.  After a 
defender loses a challenge it becomes a member of the 
winning colony. 
  
Since the size of the perception and engagement zones are 
system wide parameters, particles will play the role as 
aggressor and defender.  By using the number of 
surrounding relatives as the score, the strength of the 
attack is proportional to the size of the colony, but it does 
not unfairly advantage a rouge particle that is far away 
from the rest of a large colony. 
 
 
 

2.3.3 Particle State 
 
Each particle has a number of parameters that collectively 
define the particle’s state: a behavior parameter that 
encodes its current goals, an energy parameter that 
represents its fitness and survivability, and an affinity 
parameter that describes its proximity and relationship to 
surrounding particles. 
 
The behavior parameter encodes the particle’s affinity 
toward its colony’s center or the degree to which it is 
repelled away from the colony.  In effect this gives the 
particle one of two goals: to explore outward for 
boundaries or to return home to the colony.  This is 
implemented through the social component of the 
movement equation.  Changing the magnitude and sign of 
the stochastic scaling factor causes a general tendency to 
explore outward or return home. 
 
The energy state parameter accumulates energy collected 
by the particle from its environment.  At each generation, 
a particle’s energy increases proportional to the intensity 
of the local energy in the environment.  When a particle’s 
energy level exceeds a global threshold its behavior 
parameter changes from exploration to seeking home.  
When the particle moves within some distance from the 
colony’s position its energy is lowered back to a small 
starting value and its behavior parameter changes back to 
exploration. 
 
For particles enclosed by an appropriately sized boundary, 
the behavior and energy parameters cause the particle to 
continuously cycle between gathering energy at the 
boundary edge and delivering that energy back to its 
colony.  How well a particle can perform this task is 
based on its position, its colony’s position and the local 
environment map.  Over time, a particle’s performance at 
finding and collecting energy from the environment 
determine its fitness and survivability. 
 
Every particle also calculates an affinity parameter as the 
ratio of relative and enemy particles detected within its 
perception zone.  This affinity parameter represents the 
proximity and composition of surrounding particles and is 
another measure of the fitness of the particle’s position.  
When a particle is not surrounded by a properly sized 
closed boundary, it will expand far away from other 
particles in its colony.  In this case, its calculated affinity 
parameter will be low and consequently its energy level is 
allowed to decay toward zero at a heuristically determined 
rate eventually causing the particle to be terminated. 
 
Another adverse condition occurs when a particle is 
surrounded by a closed boundary that is too small.  The 
geometry of stacked tubular objects along with the 
process of creating the environment map forms small 
bounded regions in the spaces between tubes.  A particle 
trapped in this region will be constantly accumulating 
energy since it can not move outside of the field of 
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influence around the boundary.  When this accumulated 
energy exceeds a maximum threshold the particle is 
killed. 
 
In summary, a particle is considered to be dead when any 
one of the following conditions exists: the particle’s 
energy deceases to zero, the particle’s energy exceeds 
some maximum threshold or the particle moves outside 
the limits of the environment map. 
 
2.4 Colonies 
 
In this algorithm, a colony is a collection of particles 
which are similar to each other and different from other 
particles in the system.  A colony represents a potential 
solution to the segmentation problem and the survivability 
of its member particles represents the fitness of that 
solution. 
 
A colony’s position is defined as the average position of 
all the particles that are a member of the colony.  A 
colony’s size is defined as a bounding region surrounding 
its member particles.  In practice the bounding region is 
implemented as a circle that encloses most of the colony’s 
member particles.  It is determined by calculating the 
distance between each particle and the colony center, and 
then averaging the maximum particle distance over time.  
Each colony is then evaluated as being too small, too big 
or the proper size, based on its size compared with the 
average size of other colonies in the habitat.  If a colony’s 
size exceeds some threshold with respect to the average 
colony size all of its member particles are exterminated 
and it is considered a dead colony.  If a colony is too 
small, its member particles are not allowed to release their 
accumulated energy and consequently they may exceed 
the maximum energy level and be terminated. 
 
If a colony’s radial size is within a heuristically 
determined tolerance of the average size, it accumulates 
the energy transferred from its member particles.  When 
this stored energy grows above a threshold the colony is 
allowed to reproduce, creating a new particle at its current 
location.  After the colony’s population has reached a 
maximum limit any additional energy collected by its 
particles contributes to increasing the colony’s fitness.  
When a colony becomes highly fit it is marked as a valid 
solution.  The habitat then uses the colony’s position and 
size to estimate where other valid solutions are likely to 
exist based on the symmetric nature of stacked tubular 
objects.  As each valid colony is established, the habitat 
spawns new colonies in surrounding regions that are 
likely to also be valid. 
  
 
3. Results 
 
A simulation was written in Java using the MASON [6, 7] 
multi agent simulation toolkit to test the effectiveness of 
the algorithm and to investigate the effect of changing 

system parameters.  Multiple simulations were performed 
on the sample image set to assess the effectiveness of the 
algorithm and to determine appropriate ranges for 
algorithm parameters under different conditions. 
 
Source images were obtained in an industrial environment 
under normal lighting conditions with a digital camera at 
a resolution of 2048x1536 pixels.  The source images 
where then tiled into 150x150 pixel regions and scaled to 
500x500 pixels.  From these tiled images, a test set was 
selected that represented the major features found in the 
source image.  The algorithm’s performance was 
evaluated based on how accurately it accomplished three 
specific tasks: 
 

1. Finding the center of each bounded region 
completely contained inside the image perimeter.  

2. Ignoring the small regions formed by adjacent 
tubes.  

3. Identifying only bounded regions created by the 
tube profiles and ignoring the large empty spaces 
at the perimeter of the tube stack. 

 
Figure 2 shows the environment map generated from a 
test image and the random distribution of 100 colonies.  
In this simulation each colony has an initial population of 
15 particles and the maximum colony size is 25 particles.  
 

 
Figure 2 – Initial random colony distribution 

 
Figure 3 shows the simulation after 50 generations.  Many 
colonies have clustered into bounded regions.  Colonies 
are represented as a circle with a small solid disk at the 
colony’s current position.  Colonies that are not bounded 
by a properly sized region have grown much larger than 
the average and will eventually be die out.  
 
Figure 4 shows that after 500 generations all colonies that 
were bounded by a properly sized region have posted 
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themselves as being valid and their final locations 
correlate with the positions of tubes in the source image 
whose profiles were not cropped by the image boundaries.   
 

 
Figure 3 – Simulation results after 50 generations 

 
Colonies occasionally formed in the regions between the 
target objects, but these colonies did not survive long 
enough to be counted.  Also colonies that started in the 
empty regions of the image did not survive. 
 

 
Figure 4 – Simulation results after 500 generations 

 
 
4.  Conclusion 
 
One of the distinguishing features of this algorithm for 
image processing is that the algorithm extracts useful, 

simplified information.  The final location and size of 
colonies directly correlates to bar locations in the source 
image.  If missed regions or false positives exist they can 
be inferred from the available information and tested as 
appropriate.  In the cases tested, the algorithm 
successfully segmented the target objects present that 
were not cropped by the image boundary. 
 
In the future, we would like to apply the algorithm to 
larger images, using it to intelligently explore small 
regions of a total image.  This would capitalize on the 
strengths of the algorithm, while providing an economic 
use of available resources.  We would also like to 
compare the performance of this algorithm with other 
algorithms for detecting round objects such as the Hough 
transform and Cord Bisecting procedures described by 
Davies [8]. 
 
In conclusion, we believe this algorithm is effective at 
segmenting the target objects. 
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