

A SWARM INTELLIGENCE APPROACH TO COUNTING STACKED
SYMMETRIC OBJECTS

Chad George

Indiana University
South Bend, Indiana

United States
cgeorge@cs.iusb.edu

James Wolfer
Indiana University

South Bend, Indiana
United States

jwolfer@iusb.edu

ABSTRACT
In a manufacturing environment it is often necessary to
perform a manual inventory of finished goods and raw
materials. These raw materials might be wood, plastic or
metal and often represent a large investment of capital to
procure and store. While the economic value of an
accurate inventory is high, the process of obtaining a good
count is tedious and fraught with human error. As a
precursor to counting an inventory of tubular steel bar
stock from digital images, we present a hybrid algorithm
inspired by ant colony and particle swarm technology.
This algorithm defines an environmental habitat for
interacting particles to competitively cluster into
segmented colonies. By forming colonies at bar stock end
profile locations the algorithm provides potentially
countable high-level information.

KEY WORDS
Computational intelligence, swarm intelligence, computer
vision and manufacturing.

1. Introduction

In a manufacturing environment it is often necessary to
perform a manual inventory of finished goods and raw
materials. These raw materials might be wood, plastic or
metal and often represent a large investment of capital to
procure and store. While the economic value of an
accurate inventory is high, the process of obtaining a good
count is tedious and fraught with human error. It would
be beneficial to have an automated system that could
assist a human operator in determining inventory on hand.

One raw material used for this study is metal bar stock,
specifically small diameter steel tubes as displayed in
Figure 1. Like most raw materials this tubular stock is
usually stored in homogenous stacks or bundles. Digital
images taken of the tube stack end profiles usually
contain edges defined at areas of large local grey scale
changes. Additionally in the industrial environments
studied, the homogeneous bar stock to be counted is
almost always clustered in a single continuous region of
fairly symmetrical objects that may be isolated from

background and other foreground objects. By processing
digital images of the tube ends we seek to identify
individual tubes as a precursor to inventory assessment.

Figure 1 – Profile end of small diameter tube stock

As with most image processing problems, the task of
accurately counting discrete bars from images acquired in
an industrial environment is complex. A practical
solution must handle a wide variety of bar stock shapes
and sizes, inconsistent image quality and changes in
camera angle. Given these challenges we feel that this
task may be well suited to help assess the real world
potential of swarm approaches to image processing.

Swarm processing is popular in computational
intelligence, where a desired global behaviour is allowed
to emerge from the local interaction of agents each
utilizing much simpler individual behaviour. This
processing model has been successfully applied to
optimization problems. The two most common types of
swarm processing models are the Ant Colony
Optimization (ACO) and the Particle Swarm Optimization
(PSO) algorithms. In recent literature, both of these
algorithms have been adapted for image processing.

502-076 125

debbie

For example, Ramos and Almeida [1] use digital images
as the habitat of an artificial ant colony. They used the
simple ant model described by Chialvo and Millonas [2]
to define the movement of ants within a digital habitat. A
grey scale digital image was used to represent the initial
pheromone concentrations for the ant’s environment. As
the ants moved throughout the digital habitat, they
changed the pheromone concentrations in their
environment. The resulting global patterns of movement
that emerged correlated with edge locations in the source
images, showing that even simple ant colony systems can
be used to effectively extract edge features from digital
images.

Zhuang and Mastorakis [3] present an alternative ant
colony model for image processing. In their approach a
perceptual graph of the connections between pixels was
constructed. Specifically, as the ants explored their
environment, they updated the connections on the
perceptual graph based on the cost of the path they
followed. By using appropriate path cost functions their
model proved capable of extracting both image edge
features and segmenting similar image regions.

Omran, Salman and Engelbrecht [4] apply a PSO
algorithm on the problems of image segmentation and
classification. This approach uses the PSO algorithm to
search for an optimal clustering of pixels. Their results
showed that the PSO algorithm can be applied effectively
at the problem of image segmentation.

Finally, Li [5] presents a particle swarm model where
local neighbourhoods of particles are formed by allowing
species to differentiate from the initial homogenous set of
swarm particles. These individual species are able to
independently search for separate local minima within the
problems space. While not originally applied to image
processing, this model seems useful for the problem of
isolating symmetrical discrete regions within the image
space.

The next section of this paper presents a swarm approach
to image processing composed of a hybrid of these basic
swarm models, followed by the results of applying this
algorithm to the problem of counting small diameter bar
stock.

2. Algorithm Description

As previously discussed, research using swarm techniques
for digital image processing has shown that the distributed
processing model utilized in the ACO and PSO
algorithms can perform low level tasks such as edge
detection or region segmentation. While extracting these
features is fundamentally important to high level image
processing, often they do not significantly simplify the
problem of counting symmetric objects in an image. This

encouraged the development of a new swarm based
algorithm specifically designed to handle the problem of
segmenting stacked symmetric objects. The final
algorithm utilizes many of the principles found in the
ACO and PSO algorithms but combines their strengths as
needed by this specific problem domain.

Our approach to segmenting and counting the stacked
objects uses the following steps:

1. Create an environment map to represent the
source image of objects to be counted

2. Seed the image as represented by its environment
map with a population of randomly placed
particles.

3. Allow the particles to interact with each other
and their environment in such a way that they
form segmented colonies.

4. Utilize the survivability of particles in a colony
to represent the fitness of the colony’s size and
position.

5. After a stabilization criteria is met, the number of
colonies remaining approximates the number of
target objects in the source image.

The four main components of this algorithm are a global
habitat, an environment map, a distribution of particles
and their associated colonies. The remainder of this
section will discuss each of these components in greater
detail.

2.1 Habitat

The habitat consists of an environment map, particle
colonies and the particles themselves. The habitat
performs the fitness evaluations of the colonies and
handles house keeping issues such as collecting dead
particles and controlling colony reproduction.

2.2 Environment Map

The environment map provides individual particles with a
perception of their surroundings. Similar to the digital
habitats described in [2], an environment map is produced
from a source image by calculating a gradient vector and
an intensity value for each pixel location.

During image pre-processing a region of the source image
containing objects to be counted is cropped, scaled and
converted to grey scale. Because of its well defined
edges, tubular stock does not require additional image
processing. After pre-processing the target image, the
following procedure is used to create an environment
map:

1. Gradient vectors are calculated for each pixel in
the image by applying a 3x3 Sobel convolution
over the image.

126

2. The intensity at each pixel location is calculated
as the length of the gradient vector at that
position.

3. Gradient vectors are then normalized to unit
length and rotated such that closed regions in the
source image produce an interior region where
the gradient vectors point inward and an exterior
region where the gradient vectors point outward.

4. The intensity values at every pixel location are
normalized by dividing by the largest intensity
found. This represents the energy level at that
location in the environment map.

5. After normalizing intensity values, any gradient
vector whose corresponding intensity is below a
given threshold is set to be zero.

After the initial development of the environment map, the
image pixel values are no longer processed directly. Only
the local interaction of autonomous particles and their
segmentation into colonies are used to determine the
position and size of the target objects in the source image.
Also, unlike the traditional Ant Colony Optimization
where autonomous agents communicate with each other
by changing their local environment, in this algorithm the
agents (particles) have no mechanism to change the
contents of the environment map and therefore cannot
communicate with each other using stigmergy.

2.3 Particles

As with other swarm algorithms, the algorithm presented
here is primarily based on the behavior of individual
particles and their interaction with surrounding particles
within a local context. While it is active, each particle
exists at a position constrained by the limits of the
environment map. In each generation, a particle performs
three tasks.

1. Each particle moves based on its local
environment, the location of its colony and its
current state.

2. Particles continuously interact with surrounding
particles to form colonies or change their own
state.

3. A particle updates its own state based on its
position, surrounding particles and the local
environment

The performance of these basic behaviors determines the
particles interaction with its environment and surrounding
particles. Next we describe the individual particle’s
behavior rules in more detail.

2.3.1 Particle Movement

A particle’s movement at any time is stochastically
determined from four main components: a force
component calculated from the environment map, an
inertial component representing its momentum, a social

component directing the particle to move toward or away
from its colony and a random component to encourage
local exploration.

In each generation, the direction of movement for the ith
particle is calculated using the following equation:

 vi (t+1) = vf (t) cf rf (t) + vi (t) cm rm (t) + vs (t) cs rs (t) +

 vr (t) cr rr (t)

where rf, rm, rs, and rr are randomly generated from the
interval [0,1],
cf, cm, cs, and cr are stochastic scaling constants,

and
vf (t), vi (t), vs (t) and vr(t) are velocity terms from
the previous time step.

The force component, vf (t) cf rf (t), represents the local
environment’s impact on the particles movement. The
velocity term, vf (t), is the normalized gradient vector
stored in the environment map at the current location. A
scaling term, cf, chosen heuristically is based on the scale
and composition of the environment map so that this term
dominates the movement equation as a particle
approaches bounded regions. Because the gradient
vectors always point inward for closed curves, a particle
approaching a boundary will be repelled back toward the
center of the bounded region, and likewise a particle
outside the bounded region will be repelled away from the
region.

The inertial component, vi(t) cm rm(t), represents the
particle’s momentum. Its velocity term, vi(t), is the
normalized particle velocity from the previous time step.
Momentum helps particles explore their environment and
reinforces the effect of the force component after the
particle has left a boundary region’s field of influence.

The social component, vs(t) cs rs(t), represents a colony’s
tendency to explore and expand. The velocity term, vs(t),
is a unit vector in the direction of the colony’s center
relative to the particle’s current position. The scaling
factor, cs, is set based on the current state of the particle.
A negative scaling factor will cause the particle to move
toward the center of the colony, while a positive value
causes the particle to move away from the colony.

The random component, vr(t) cr rr(t), represents the
particle’s tendency for local exploration. The velocity
term, vr (t), is a randomly generated unit vector and the
scaling factor, cr, is small enough that it is not sufficient
to overcome the force component in the bounded regions
of the environment map.

The result of the movement equation is normalized and
represents a stochastically weighted direction of
movement for the particle. The magnitude of movement
is determined by the local energy level of the environment
which is the normalized intensity value from the

127

environment map at the particle’s current location. The
position of the ith particle is then updated using

xi (t+1) = xi (t) + vi (t+1) (cmin + εf (t) cmax) / | vi (t+1) |

where xi (t) represents the current particle position, cmin
represents a constant minimum speed and εf (t) is the local
energy level.

2.3.2 Particle Interaction

In swarm algorithms, local agent interaction is the
mechanism by which global behavior emerges. In the
ACO algorithm, agents interact by modifying their
environment. In the PSO algorithm, agents interact by
observing each other’s position and velocity and by
sharing information about the best solution found. This
algorithm combines the spatial environment map of the
ACO algorithm with the observation based particle
interaction of the PSO algorithm. In this algorithm
interaction between particles is based on two regions that
determine when a particle can detect and influence
surrounding particles.

Inside a perception zone, surrounding particles are
considered as being nearby. These surrounding particles
are counted as relatives if they belong to the same colony
or enemies if they belong to a different colony. While
this is similar to the communication mechanism in the
PSO algorithm, our particles have no awareness of the
position or velocity of surrounding particles. Only the
presence of a nearby particle is noted and their colony
status is recorded.

The engagement zone is a smaller region inside the
perception zone where “enemy” particles are challenged.
A system wide stochastic parameter determines whether a
challenge occurs when a particle recognizes an enemy
within its territory. When a challenge does occur between
two particles, a contest is fought between the two particles
involved. The aggressor attempts to force the enemy
particle to join its colony, while the defender attempts to
remain in its current colony. Both particles are given a
score based on the number of relatives it detected within
its own perception zone. These scores determine the
probability of the attacker winning the challenge. After a
defender loses a challenge it becomes a member of the
winning colony.

Since the size of the perception and engagement zones are
system wide parameters, particles will play the role as
aggressor and defender. By using the number of
surrounding relatives as the score, the strength of the
attack is proportional to the size of the colony, but it does
not unfairly advantage a rouge particle that is far away
from the rest of a large colony.

2.3.3 Particle State

Each particle has a number of parameters that collectively
define the particle’s state: a behavior parameter that
encodes its current goals, an energy parameter that
represents its fitness and survivability, and an affinity
parameter that describes its proximity and relationship to
surrounding particles.

The behavior parameter encodes the particle’s affinity
toward its colony’s center or the degree to which it is
repelled away from the colony. In effect this gives the
particle one of two goals: to explore outward for
boundaries or to return home to the colony. This is
implemented through the social component of the
movement equation. Changing the magnitude and sign of
the stochastic scaling factor causes a general tendency to
explore outward or return home.

The energy state parameter accumulates energy collected
by the particle from its environment. At each generation,
a particle’s energy increases proportional to the intensity
of the local energy in the environment. When a particle’s
energy level exceeds a global threshold its behavior
parameter changes from exploration to seeking home.
When the particle moves within some distance from the
colony’s position its energy is lowered back to a small
starting value and its behavior parameter changes back to
exploration.

For particles enclosed by an appropriately sized boundary,
the behavior and energy parameters cause the particle to
continuously cycle between gathering energy at the
boundary edge and delivering that energy back to its
colony. How well a particle can perform this task is
based on its position, its colony’s position and the local
environment map. Over time, a particle’s performance at
finding and collecting energy from the environment
determine its fitness and survivability.

Every particle also calculates an affinity parameter as the
ratio of relative and enemy particles detected within its
perception zone. This affinity parameter represents the
proximity and composition of surrounding particles and is
another measure of the fitness of the particle’s position.
When a particle is not surrounded by a properly sized
closed boundary, it will expand far away from other
particles in its colony. In this case, its calculated affinity
parameter will be low and consequently its energy level is
allowed to decay toward zero at a heuristically determined
rate eventually causing the particle to be terminated.

Another adverse condition occurs when a particle is
surrounded by a closed boundary that is too small. The
geometry of stacked tubular objects along with the
process of creating the environment map forms small
bounded regions in the spaces between tubes. A particle
trapped in this region will be constantly accumulating
energy since it can not move outside of the field of

128

influence around the boundary. When this accumulated
energy exceeds a maximum threshold the particle is
killed.

In summary, a particle is considered to be dead when any
one of the following conditions exists: the particle’s
energy deceases to zero, the particle’s energy exceeds
some maximum threshold or the particle moves outside
the limits of the environment map.

2.4 Colonies

In this algorithm, a colony is a collection of particles
which are similar to each other and different from other
particles in the system. A colony represents a potential
solution to the segmentation problem and the survivability
of its member particles represents the fitness of that
solution.

A colony’s position is defined as the average position of
all the particles that are a member of the colony. A
colony’s size is defined as a bounding region surrounding
its member particles. In practice the bounding region is
implemented as a circle that encloses most of the colony’s
member particles. It is determined by calculating the
distance between each particle and the colony center, and
then averaging the maximum particle distance over time.
Each colony is then evaluated as being too small, too big
or the proper size, based on its size compared with the
average size of other colonies in the habitat. If a colony’s
size exceeds some threshold with respect to the average
colony size all of its member particles are exterminated
and it is considered a dead colony. If a colony is too
small, its member particles are not allowed to release their
accumulated energy and consequently they may exceed
the maximum energy level and be terminated.

If a colony’s radial size is within a heuristically
determined tolerance of the average size, it accumulates
the energy transferred from its member particles. When
this stored energy grows above a threshold the colony is
allowed to reproduce, creating a new particle at its current
location. After the colony’s population has reached a
maximum limit any additional energy collected by its
particles contributes to increasing the colony’s fitness.
When a colony becomes highly fit it is marked as a valid
solution. The habitat then uses the colony’s position and
size to estimate where other valid solutions are likely to
exist based on the symmetric nature of stacked tubular
objects. As each valid colony is established, the habitat
spawns new colonies in surrounding regions that are
likely to also be valid.

3. Results

A simulation was written in Java using the MASON [6, 7]
multi agent simulation toolkit to test the effectiveness of
the algorithm and to investigate the effect of changing

system parameters. Multiple simulations were performed
on the sample image set to assess the effectiveness of the
algorithm and to determine appropriate ranges for
algorithm parameters under different conditions.

Source images were obtained in an industrial environment
under normal lighting conditions with a digital camera at
a resolution of 2048x1536 pixels. The source images
where then tiled into 150x150 pixel regions and scaled to
500x500 pixels. From these tiled images, a test set was
selected that represented the major features found in the
source image. The algorithm’s performance was
evaluated based on how accurately it accomplished three
specific tasks:

1. Finding the center of each bounded region
completely contained inside the image perimeter.

2. Ignoring the small regions formed by adjacent
tubes.

3. Identifying only bounded regions created by the
tube profiles and ignoring the large empty spaces
at the perimeter of the tube stack.

Figure 2 shows the environment map generated from a
test image and the random distribution of 100 colonies.
In this simulation each colony has an initial population of
15 particles and the maximum colony size is 25 particles.

Figure 2 – Initial random colony distribution

Figure 3 shows the simulation after 50 generations. Many
colonies have clustered into bounded regions. Colonies
are represented as a circle with a small solid disk at the
colony’s current position. Colonies that are not bounded
by a properly sized region have grown much larger than
the average and will eventually be die out.

Figure 4 shows that after 500 generations all colonies that
were bounded by a properly sized region have posted

129

themselves as being valid and their final locations
correlate with the positions of tubes in the source image
whose profiles were not cropped by the image boundaries.

Figure 3 – Simulation results after 50 generations

Colonies occasionally formed in the regions between the
target objects, but these colonies did not survive long
enough to be counted. Also colonies that started in the
empty regions of the image did not survive.

Figure 4 – Simulation results after 500 generations

4. Conclusion

One of the distinguishing features of this algorithm for
image processing is that the algorithm extracts useful,

simplified information. The final location and size of
colonies directly correlates to bar locations in the source
image. If missed regions or false positives exist they can
be inferred from the available information and tested as
appropriate. In the cases tested, the algorithm
successfully segmented the target objects present that
were not cropped by the image boundary.

In the future, we would like to apply the algorithm to
larger images, using it to intelligently explore small
regions of a total image. This would capitalize on the
strengths of the algorithm, while providing an economic
use of available resources. We would also like to
compare the performance of this algorithm with other
algorithms for detecting round objects such as the Hough
transform and Cord Bisecting procedures described by
Davies [8].

In conclusion, we believe this algorithm is effective at
segmenting the target objects.

References

[1] V. Ramos, and F. Almeida, Artificial Ant Colonies in
Digital Image Habitats - A Mass Behaviour Effect Study on
Pattern Recognition, Proceedings of ANTS’2000 - Int.
Workshop on Ant Algorithms (From Ant Colonies to
Artificial Ants), Brussels, Belgium, 2000, 113-116.

[2] D. Chialvo, and M. Millonas, How Swarms Build
Cognitive Maps, The Biology and Technology of Intelligent
Autonomous Agents, NATO ASI (144), 1995, 439-450.

[3] X. Zhuang, N. E. Mastorakis. Image Processing with the
Artificial Swarm Intelligence, WSEAS Transactions on
Computers, 4 (4), April 2005, 333-341.

[4] M. Omran, A. Salman, and A. P. Engelbrecht, Image
classification using particle swarm optimization. Proc. 4th
Asia-Pacific Conference on Simulated Evolution and
Learning 2002, Singapore, 2002, 370-374.

[5] X. Li, Adaptively Choosing Neighbourhood Bests using
Species in a Particle Swarm Optimizer for Multimodal
Function Optimization, in Proc. Genetic and Evolutionary
Computation Conference 2004, Seattle, WA, 2004, 105-116.

[6] S. Luke, G. C. Balan, L. A. Panait, C. Cioffi-Revilla, and
S. Paus. MASON: A Multiagent Simulation Environment.
Simulation, 81(7), July 2005, 517-527.

[7] MASON 10: A Java Multi-agent Simulation Library,
http://cs.gmu.edu/~eclab/projects/mason, August, 2005.

[8] E. R. Davies, Machine Vision: Theory Algorithms
Practicalities 3rd Ed (San Francisco, CA: Morgan
Kaufmann, 2005)

130

