Test-2 Review
C442 - Database Systems

Introduction
- What is a database?
- Persistent vs. non persistent data.
- What is a DBMS?
- Why use a database?
 Redundancy, shareability, inconsistency, standards, integrity, data independence
- Advantages of databases over traditional file systems.
- When not to use a DBMS?
- Database Models (relational, hierarchical, network and object oriented)
- Data Models (set of concepts used to describe the structure of a database)
 1) high level or conceptual (entities, relationships, attributes) ER
 2) Representational or Implementation data model (relational hierarchical, network, OO)
 3) Low level or physical (record format, access mechanism)
- Database Schema (structure or intension of the database)
- Database State (occurrences, instances or the extension of the database)
- DBMS architecture (ANSI/SPARC model)
 1) External view (individual user or programmer’s view)
 2) Conceptual view (representation of the entire database as known to user community)
 3) Internal view (storage view)
- Physical and logical data independence
- Data sub-languages (DDL and DML)
- Database query facilities (procedural and non-procedural)
 1) Form based (QBE)
 2) Menu based
 3) Natural language
 4) Query language (SQL)

ER Modeling
- ER Modeling (a conceptual design tool for database design)
 1) Entities
 2) Relationships
 3) Attributes
- Be prepared to produce an ER based on a description of an organization.
 Types of attributes (simple, composite, single and multi valued, stored, derived and NULL)
- Keys, composite keys, domains, weak entities, owner or identifying entities
- Recursive relationships, degree of a relationship
- Cardinality and ordinality.
Relational Model
- Relational Data Model and Relational Algebra
- Definitions for database, relation, attribute, tuple, domain under the relational model.
- Relation Schema
- Degree of a relation
- Cardinality of a relation (# of values in the domain, depth of table, varies over time)
- Basic properties of relations: (no duplicate tuples, unordered, all attributes are atomic)
- Relational model constraints:
 1) Domain constraints
 2) Key constraints
 3) Entity integrity constraints
 4) Referential integrity constraints
 5) Semantic integrity constraints
- Keys, super keys, candidate key, primary key, alternate key, foreign key
- Relational Algebra Operations on Relations:
 1) Update operations:
 (insert, delete, modify)
 2) Retrieval operations:
 (select, project, join, union, intersection, difference, cartesian product, divide)
- Steps in defining a database.
 1) Data model
 2) Data Definition Language
 3) Data Manipulation Language
- ER to Relational Mapping (seven steps, see chapter 6)

SQL
- SQL - Structured Query Language
- History and Standard
- Data definition:
 Create schema, create table, create domain,
 Alter
 Drop
 Primary key and foreign key, not null and default constraints.
- Data manipulation language.
 Insert / into / values
 Delete /from/ where
 Update/ set /where
 Select / distinct / From / Where / groupby / having / orderby
- Aggregate functions:
 Count, sum, max, min, avg

Normalization and Formal Methods
- Functional Dependencies and Normalization
- Informal Design guidelines: (semantics, of attributes, reduce redundancy, reduce null values, disallow spurious tuples.)
- Formal Design Guidelines: (Functional dependencies, Normal forms.)
- Update Anomalies
 1) Insertion anomalies
 2) Deletion anomalies
 3) Modification anomalies
- Definitions for FD, FFD, 1NF, 2NF, 3NF
- Be prepared to take a relation and apply the FD’s and Normal forms to it, showing the resulting relation(s) after each transformation.
Transaction Processing

- **Transaction**
- **Single vs. multiuser DB's**
- **Operations of a DB transaction**
 - Begin trans, read, write, commit, roll back / abort, undo, redo, commit trans.
- **Logical vs. Physical concurrency**
- **Concurrency Control**
- **Why Concurrency control is needed?**
- **Typical CC problems:** (Lost update, temporary update, incorrect summary)
 - Typical solutions: (Locking, 2PL, BTO, etc)
- **Granularity of data:**
 - Logical granularity: (field, record, file, database)
 - Physical granularity: (OS page, Disk page)
- **Relationship between granularity and concurrency**
- **ACID properties:** (Atomicity, Consistency, Isolation, Durability)
- **What is recovery?** (in case the transaction fails!!)
 - Types of failure: (Hardware, System (OS or DB), Transaction or application, User)
- **Database States:** (Active, partial commit, failed, committed, terminated)
- **State transitions:** (Begin-trans, read, write, end-trans, commit, abort.)
- **System log or Journal**