
The Epic Adaptive Car Pilot

Charles Guse and Dana Vrajitoru
Computer and Information Sciences Department

Indiana University South Bend
South Bend, IN 46617

Abstract

In this paper we present an adaptive autonomous car pi-
lot developed for the TORCS competition environment.
This software provides a multi-track competition sys-
tem where the user can control a car on several different
circuits and compete against other pre-defined pilots.
Our pilot is composed of several control units based on
the input available within the TORCS system. The pa-
rameters of the systems were learned by a hill-climbing
method and the pilot can adapt some of them dynam-
ically to a new track. The car was submitted to the
GECCO 2009 competition (Raidl 2009).

1. Introduction

Automatic pilots have been a standard in aviation for a good
number of years (Atkins et al. 1998), and the interest is
slowly but surely being extended to cars and other vehicles
(Al-Shihabi and Mourant 2003), (Chaperot and Fyfe 2006),
(Gavrilets et al. 2001). With the amount of traffic present on
the road, assistive driving systems are becoming more com-
mon and popular, and so the need to develop autonomous or
semi-autonomous pilots is present in the industry.

In this paper we present an adaptive car pilot developed
within the TORCS (The Open Racing Car Simulator) envi-
ronment (Wymann and Espie ) (Lazaric et al. 2007). The
problem of developing autonomous car drivers is challeng-
ing and intensive. Being able to test your system in a compe-
tition setting, where it can be compared with similar systems
from around the world, makes it even more interesting. Us-
ing the TORCS environment for the project was a good way
to develop our driver in a highly realistic simulation both in
terms of graphics and of physics. This has helped us write a
driver that is more potentially useful in the real world. The
program makes it easy for new users to engage and focus on
the high level details instead of the physics implementation.

The TORCS system provides a simulation environment
for realistic car driving and competing, with appealing
graphics and complex physics. The program provides a
server for the race and the user can write a module that can
be plugged in as a client. Our pilot was submitted to the
Genetic and Evolutionary Computation Conference in 2009
(Raidl 2009). The TORCS system has been used for several
competitions already (Loiacono et al. 2008) and this paper
presents our first experience with it. The best drivers have

reported the use of evolutionary strategies using covariance
matrix adaptation to improve the system (Butz and Lönneker
2009), or fuzzy systems (Onieva et al. 2009), or the use of
neural networks to learn by imitating a human driver (Muñoz
2009).

The model developed for the car race bears some similar-
ity with the motorcycle pilot driver presented in (Vrajitoru
and Mehler 2005). Similar ideas are used in the decomposi-
tion of the pilot in control units, but these components also
come naturally from the way a real vehicle is driven. Some
of the decisions taken on the road follow common strategies,
but the available perception data are quite different between
the two systems and the control outputs are also substantially
different.

Our model consists in decomposing the car control into
several units, mostly following the control outputs specified
within the TORCS system. Thus, our pilot starts by finding
a suitable target direction, based on which it will determine
the target speed, which in turn determines the gear, acceler-
ation, and brakes. The driving decisions are based on con-
cerns about maximizing the available free distance ahead,
keeping the vehicle safely inside the road, and anticipating
sharp turns further down the road. The pilot presents a learn-
ing and adaptive component both to choose appropriate val-
ues for all the parameters it uses, and to adapt to a new track
when the need occurs.

2. The TORCS Competition Environment

TORCS (Wymann and Espie ) (Lazaric et al. 2007) is a
multi-platform open source racing car simulation environ-
ment created by a multi-national team. It has an active com-
munity of developers and users and competitions are orga-
nized yearly to take advantage of it as part of several inter-
national conferences.

The software provides a variety of car models and tracks
for the race and allows up to 50 opponents to compete
against each other. The race takes place in a realistic 3D
environment with sophisticated dynamics where the terrain
configuration and the car specifications will greatly influ-
ence the physical behavior of the vehicle on the road. The
conditions become even more complex as the cars interact
with each other and can collide and damage one another.
Figure 1 shows a screen capture of this environment.



Figure 1: The TORCS Graphic Environment

The system is organized in a client-server mode. The pro-
gram provides a server that keep track of all the vehicles
involved in the race. The user can write a C++ or Java API
module that can be compiled to run as a client to the TORCS
server. Figure 2 shows the outline of the system, where UDP
is a socket-based communication API.

Figure 2: The TORCS Interface

Communication.
The client will receive a set of perception indicators as

input from the server in real time. These consist in the fol-
lowing measures:

• the distance to the border of the road or to the closest ob-
stacle in a direction going from −90o to +90o from the
direction of movement of the vehicle, in a fan covering
the area in 10o increments; the visibility for this measure
is limited to 100m;

• the distance to the closest opponents in a 360o area, also
in 10o increments and limited to a radius of 100m;

• the current speed, gear, angle with the centerline of the
road, RPM, fuel, damage, distance covered in the race,
position on the track, etc.

Figure 3 shows an example of the opponent sensors for a car
with another vehicle close by.

Figure 3: Opponent sensor information

The control output from the client must consist in the fol-
lowing effectors:

• steering wheel [-1,+1] for a change in direction: -1 corre-
sponds to −45o while +1 to 45o; this simulates the tech-
nical specifications of a real car that couldn’t turn by an
arbitrary angle on the spot,

• gas pedal [0, +1] for accelerating; just as for a real car, a
lack of gas input will result in loss of speed;

• brake pedal [0,+1] for slowing down,

• gearbox {-1,0,1,2,3,4,5,6} for a change of gear.

3. Epic Car Pilot Model

In this section we present the details of the car pilot that we
developed for this competition.

The control of the car is decomposed in several control
units:

• the target speed; this is the speed we will attempt to
achieve and is considered ideal for the current road con-
ditions;

• the gear, a simple function of the target speed,

• the target direction, in reference to the current direction,

• speed adjustment for sharp turn; this last component an-
ticipates a sharp turn further down the road and not in the
immediate vicinity of the car.

The general algorithm consists in the following steps:

• calculate the target direction and speed

• determine the correct gear

• calculate the target angle based on the target direction

• calculate the acceleration and brakes based on the target
angle and speed

Below we will describe each of the control units more in
detail.

3.1 Gear

We have used a simple gear changing mechanism where if
the RPM value goes up to about 7000, then we move to the
next gear up, and if the RPM descends to about 3000, then
we move to the next gear down.



3.2 Target Direction

This component of the car pilot decides the direction of
movement of the car. More specifically, the function respon-
sible for steering will return a target angle as a result. In this
case, 0 means that no change is necessary to the current di-
rection, while any other value will cause the car to steer.

To compute the target direction we start by deciding if
the car can continue to move in the current direction. The
conditions for not altering the direction are:

• if the current direction of the car is close enough to the
direction of the road centerline,

• if there is enough free distance straight ahead in the car’s
direction of movement

• if the car is safely inside the track, meaning at a given
percentage (for example, 90%) of distance to the borders
of the road.

If the three conditions above are not met, then we need to
decide on a new direction of movement. For this, we start
from the direction of the road centerline, and scan by incre-
ments of 10 degrees in the direction in which the available
free distance ahead of the car increases or stays constant,
until we find an angle at which this distance starts to de-
crease, or until we reach the maximal allowed turn angle of
45o from the current direction of movement. Figure 4 illus-
trates this scanning procedure to look for a good direction of
movement:

Figure 4: Determining the target direction of movement

The second factor in deciding the new direction of move-
ment is the closeness to the border of the road. If the car is
too close to the border of the road or if it is outside the road
altogether, we modify the steering angle to bring the vehicle
back inside the road. The threshold for the car being safely
inside the road was established experimentally as 90% of the
distance between the center of the road and the border. We
needed to adjust this component such that when the car is
turning in one direction and following the inside curve, it

does not get constantly pushed away from it, as shown in
Figure 5.

Figure 5: Constant wiggle around a curve

3.3 Target Speed

The target speed is computed after the steering angle has
been decided at the previous step, because the speed at
which the car can safely ride depends on how straight it is
going.

The safe conditions for the speed are considered to be:

• if the car is going almost straight, meaning if the target
angle for the change in direction is smaller than a given
threshold;

• if the free distance in front of the car in the new direction
given by the target angle is large enough;

• if no sharp turn is anticipated to follow up on the road
soon.

If the three conditions above are met, then the acceleration
is set to its maximal value. We call this situation pedal to the
metal.

In any other case, we start with a large value for the target
speed, which is first scaled by the sine of the target angle for
the change in direction and with the available free distance
in the aimed direction.

3.4 Sharp Turn Factor

An early difficulty we observed was that the car skidded
when we tried to turn by a large amount at a high speed.
To illustrate this particular condition, we have taken some
measurements of the difficulty of a turn with respect to the
speed of the vehicle when engaging it. The track we used,
illustrated in Figure 6, was named Aalborg. We’ve run the
car by hand over four of the angles of various difficulty and
at various incoming speed. For each angle we’ve registered
the speed range within which the turn could be taken safely,
or could be achieved with some amount of trajectory adjust-
ment required in addition to turning, and at which a collision
combined with skidding would ensue. Table 1 shows these
measurements. The four turns we’ve chosen for the exper-
iment are marked on the images by circles. One of them is
marked by two angles in the table because it is composed of
two really close turns of different angles.

If the vehicle tomes toward at a high speed, it may not be
able to slow down fast enough to take the turn safely. We
concluded that a sharp turn needed to be detected ahead of



Figure 6: Aalborg track used to measure the safe speed for
entering a turn

Table 1: Speed range (km/h) while entering a turn and driv-
ing safety

Angle Safe Correction Collision

84o 0-44 45-55 > 55

106o + 75o 0-54 55-70 > 70

106o 0-74 75-105 > 105

112o 0-79 80-110 > 110

time, and not just when it comes within turning range. Thus,
we computed the sharp turn factor as 1 over 1+ the minimal
absolute difference between the distance ahead at adjacent
angles in 10 degrees increments, as explained below. This
factor is used to further scale the speed after it is computed
as detailed in the previous subsection.

The factor is computed to account for the sharpest turn in
the road detected ahead. For this purpose we scan up to 20
degrees left and right of the aimed direction and we look at
the difference between the free distances ahead in adjacent
directions that differ by 10 degrees. A very similar amount
of free distance indicates a sharp turn in the road, because
the new direction of the border of the road in that case is at
a large angle with the current direction of movement. This
is a situation that requires the vehicle to slow down ahead
of time because it can happen that at a high speed, the car
will not be able to steer fast enough to make the turn. A
larger difference between these distances indicates that the
road continues in a direction that is close enough to the cur-
rent direction of movement, so it is safe to go at a higher
speed. Figure 7 illustrates these two situations.

3.5 Learning

Each control unit of the car is controlled by several parame-
ters that can be adapted and learned with any given machine
learning method. As this was our first experience with the

Figure 7: Detection of a sharp turn

competition, we used a simple hill-climbing technique to ad-
just these parameters. As future research we would like to
employ simulated annealing or genetic algorithms to learn
these parameters.

The pilot also has a dynamic adaptation mechanism that
it can use to learn its behavior on a new track. Each race
on a given track in the competition settings consist of sev-
eral circuits completed on the same track. The pilot will first
complete a circuit on the new track and examine the results.
If no damage has been registered during this first trial, the
parameters determining the maximal speed in each situation
and the caution to be taken during turns on the road are incre-
mented to make the car go faster. Otherwise every time the
car gets out of the track or registers damage without another
car being close by, the pilot will adapt the same parameters
to make its behavior safer.

4. Independent Testing

The TORCS environment provides some numerical mea-
sures that are reported after each competition is completed.
As a benchmark for future research and to see how well our
system is doing, Table 2 shows some of these reports on sev-
eral races of increasing difficulty. We have tested our system
in a competition involving two other pre-program drivers
available in TORCS: a very fast one called Damned 1 and
a safer one called Inferno 2. For this first set of experiments,
the adaptation/learning mechanism was not active.

The track called E-Track 3 is the one that we’ve trained
our system on. The tracks called Alpine 1, Dirt 3, and Eroad
are the ones used in the GECCO competition. The track
called Street 1 was particularly difficult because two very
sharp turns were bordered by an area of sand, and if the car
skidded onto it, it would take a long time to navigate back to
the road.



Table 2: Driver ranking and statistics on several tracks with-
out adaptation

Track Laps Best Time (s) Top Speed Damage

E-Track 3
1. Damned 1 10 101.97 231 0
2. Epic 10 112.36 254 74
3. Inferno 2 9 122.45 194 0

Alpine 1
1. Damned 1 10 151.22 131 783
2. Inferno 2 9 200.74 180 1083
3. Epic 8 186.12 193 5483

Eroad
1. Damned 1 10 75.93 219 0
2. Inferno 2 9 89.86 192 0
3. Epic 9 89.58 213 944

Dirt 3
1. Damned 1 10 65.01 185 1002
2. Inferno 2 9 78.72 152 694
3. Epic 8 69.12 156 2096

Street 1
1. Damned 1 10 92.01 230 1
2. Inferno 2 9 107.45 198 0
3. Epic 1 457.38 218 162

Our driver outranked one of the two drivers we raced
against on the track we’ve used for learning and came close
to the performance of the best driver on this track. Its perfor-
mance was not as good on the other tracks, which means that
for the next development we need to focus on several tracks
at the same time. From a visual observation of the race,
most of the recorded damage comes from collision with the
other vehicles, so a more sophisticated avoidance mecha-
nism could improve our driver’s performance.

Table 3 shows the statistics of similar experiments per-
formed with the learning mechanism that adapts the speed
function to the road conditions activated. By comparing the
results of the Epic driver on all the tracks, we can see that
the amount of damage incurred by the car has significantly
decreased in all the cases. In particular, on the difficult track
Street 1, a more conservative speed behavior has allowed the
car not to skid on the sand area too often. Thus, the car was
able to complete 5 laps before the winner completed 10, as
opposed to only 2 without adaptation.

These results are encouraging for continuing to improve
the adaptation mechanism for future work. However, this
adaptation has not allowed the car to outperformed the best
provided pilot on any of the tracks. Furthermore, in many
cases, the driver was slowed down by this mechanism and
the number of completed lapses decreases in some cases.
Based on these observations, we decided to submit our
driver to the GECCO competition without adaptation.

5. Competition Results

We submitted the car pilot to the ACM Genetic and Evo-
lutionary Computation Conference 2009 for their TORCS
competition. This was our very first experience with such

Table 3: Driver ranking and statistics on several tracks with
adaptation/learning

Track Laps Best Time (s) Top Speed Damage

E-Track 3
1. Damned 1 10 101.89 231 0
2. Epic 9 114.02 242 676
3. Inferno 2 9 122.51 194 0

Alpine 1
1. Damned 1 10 149.79 216 6
2. Inferno 2 8 186.4 175 3716
3. Epic 7 196.48 190 3828

Eroad
1. Damned 1 10 75.5 220 0
2. Inferno 2 9 90.01 191 411
3. Epic 8 100.5 205 808

Dirt 3
1. Damned 1 10 64.61 182 1139
2. Inferno 2 9 78.57 153 686
3. Epic 5 130.25 160 596

Street 1
1. Damned 1 10 91.53 230 0
2. Inferno 2 9 107.56 193 1048
3. Epic 6 126.74 201 2330

a competition and many of our competitors were veterans
pilot developers.

The competition consisted of two stages. Each stage was
composed of 3 tracks and a maximum of 10 circuits to com-
plete on each track. In all the cases the cars would run to-
gether until one of them completed the 10 circuits of the
track which were the goal. When that happened the race
would be over and the score recorded for each car was the
number of completed circuits up to that point. The total
score over the 3 races is a sum of the scores on each track.

In the first stage all the pilots that were submitted to the
competition raced against each other, and the goal was to
select the top 8. Figure 8 shows the results of this first stage.
Our pilot, called Epic, qualified to the second race in the 7th
place.

Figure 8: Results after the first stage of the competition

The second stage was identical to the first one except that
only the top 8 pilots participated. Figure 9 shows the final



results after this stage. Our pilot, Epic, was placed this time
on the 4th place.

Figure 9: Results after the second stage of the competition

Our conjecture about these results and the difference be-
tween the stages, even though the tracks were the same, is
that it is due to the fact that our pilot does not incorporate
a sophisticated opponent maneuvering procedure. Thus, our
pilot treats the opponents as simple obstacles or as if the
border of the road was too close, and the avoidance proce-
dure doesn’t consider the fact that they are moving targets.
During the first stage of the competition, more cars were
present, and our car could more easily have been bounced
off the track by one of these opponents. In the second stage,
fewer opponents being present means that the car had less to
deal with the other cars and thus our final results were better.

In the future we are planning to add a better learning sys-
tem to improve the performance of our driver. The program
depends on a large set of parameters whose values can be
learned by any machine learning strategy. We plan to use
simulated annealing as a first learning strategy for these pa-
rameters, and compare it with the use of hill climbing and
genetic algorithms. The dynamically adaptive system that
adjusts these parameters during the race can also be im-
proved and extended.

6. Conclusions

In this paper we presented an autonomous car pilot capable
of driving successfully over a variety of tracks. The pilot has
a modest learning component and will be extended to grow
in this direction.

The car pilot was submitted to the GECCO 2009 compe-
tition. It passed the first screening stage successfully and
finished on the fourth place in the second stage.

The results are promising and we intend to continue work-
ing on our model and to participate again in similar compe-
titions.

References

Atkins, E. M.; Miller, R. H.; VanPelt, T.; Shaw, K. D.;
Ribbens, W. B.; Washabaugh, P. D.; and Bernstein, D. S.
1998. Solus: An autonomous aircraft for flight control and
trajectory planning research. In Proceedings of the Ameri-
can Control Conference (ACC), volume 2, 689–693.

Butz, M. V., and Lönneker, T. D. 2009. Optimized sensory-
motor couplings plus strategy extensions for the TORCS
car racing challenge. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games, 317–324.

Chaperot, B., and Fyfe, C. 2006. Improving articial intel-
ligence in a motocross game. In Proceeding of the IEEE
Symposium on Computational Intelligence and Games.

Gavrilets, V.; Frazzoli, E.; Mettler, B.; Piedmonte, M.; and
Feron, E. 2001. Aggressive maneuvering of small heli-
copters: a human centered approach. International Journal
on Robotics Research.

Lazaric, A.; Loiacono, D.; Prete, A.; Restelli, M.; and
Lanzi, P. L. 2007. Learning driving tasks in TORCS using
reinforcement learning. In Machine Learning and Games
(MALAGA) NIPS 2007 Workshop.

Loiacono, D.; Togelius, J.; Lanzi, P. L.; Kinnaird-Heether,
L.; Lucas, S. M.; Simmerson, M.; Perez, D.; Reynolds,
R. G.; and Saez, Y. 2008. The WCCI 2008 simulated car
racing competition. In Proceedings of the IEEE Symposium
on Computational Intelligence and Games.

Al-Shihabi, T., and Mourant, R. 2003. Toward more re-
alistic behavior models for autonomous vehicles in driving
simulators. Transportation Research Record (1843):41–49.

Muñoz, J. 2009. Controller for TORCS created by imita-
tion. In Proceedings of the IEEE Symposium on Computa-
tional Intelligence and Games, 271–278.

Onieva, E.; Pelta, D. A.; Alonso, J.; Milans, V.; and Prez,
J. 2009. A modular parametric architecture for the TORCS
racing engine. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 256–262.

Raidl, G., ed. 2009. Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO). Montreal,
Canada: ACM SIGEVO.

Vrajitoru, D., and Mehler, R. 2005. Multi-agent au-
tonomous pilot for single-track vehicles. In Proceedings
of the IASTED Conference on Modeling and Simulation.

Wymann, B., and Espie, E. TORCS- the open racing car
simulator. http://sourceforge.net/projects/torcs/.


