
Large Population or Many Generations for

Genetic Algorithms?

Implications in Information Retrieval

Dana Vrajitoru12

1 University of Neuchâtel, Computer Science Department, Pierre-à-Mazel 7, 2000
Neuchâtel, Switzerland

2 EPFL, Department of Mathematics, CH-1015 Lausanne, Switzerland, email:
dana.vrajitoru@epfl.ch

Abstract. Artificial intelligence models may be used to improve performance of
information retrieval (IR) systems and the genetic algorithms (GAs) are an example
of such a model. This paper presents an application of GAs as a relevance feedback
method aiming to improve the document representation and indexing. In this par-
ticular form of GAs, various document descriptions compete with each other and a
better collection indexing is sought through reproduction, crossover and mutation
operations. In this paradigm, we are searching for the optimal balance between two
genetic parameters: the population size and the number of generations. We try to
discover the optimal parameter choice both by experiments using the CACM and
CISI collections, and by a theoretical analysis providing explanation of the exper-
imental results. The general conclusion tends to be that larger populations have
better chance of significantly improving the effectiveness of retrieval.

1 Introduction

Probabilistic algorithms are relatively recent in computer science but their
range of applications has increased rapidly. They present the advantage of
being able to take different decisions at different moments while solving the
same problem (Brassard and Bratley 1994 [2]). If they do not find the solution
to a problem the first time, they can still find it in another trial. The GAs
are a special case of such algorithms. Since their development (Holland 1975
[10]), they have been applied to various problems, and information retrieval
is an example.

Inspired by the natural selection of living organisms, the GAs are adapt-
able to a large number of problems because they offer a very general paradigm,
where the domain-specific knowledge can easily be plugged in. Their robust-
ness, simplicity, and variety of solutions they can find make them attractive in
various fields and especially for problems difficult to solve by more traditional
approaches (De Jong and Spears 1989 [4], Sushil and Gong 1997 [21]).

The GAs work within a space of possible solutions to a given problem.
Starting with a number of such potential solutions, they will seek better ones
by operations of reproduction, crossover and mutation. For the GAs to be

2 Dana Vrajitoru

efficient, the user needs to provide a good representation of their own problem
and a fitness function describing how ‘close’ a solution guess is to the goal of
the search, departing ‘good’ from ‘bad’ solutions. These two aspects represent
the main difficulty of the GAs.

Information retrieval researchers have suggested these algorithms to im-
prove the performance of their systems. Gordon (1988 [8]), and Blair (1990
[1]) have used them to improve document indexing. Chen (1995 [3]), Petry
et al. (1993 [14]), Yang et al. (1992 [24], 1992 [24]), Kraft et al. (1992 [11])
and Sanchez et al. (1992 [19]) present an approach based on GAs to enhance
the query description. Finally, Gordon (1991 [9]) has employed them to build
document clusters.

In our previous research (Vrajitoru 1997 [22]), we have used the GAs in in-
formation retrieval to improve the document representation within the vector
space model (Salton 1971 [15]). Our results have shown that this paradigm
can be an interesting approach for this research field. As a side effect, we have
also found that the parameter settings are very important when the problem
size is rather large.

In the present research we start from the idea that information retrieval
is a problem of large size. Thus, the available memory imposes limitations
concerning the size of the genetic population and the number of genera-
tions. Following this idea, the present paper analyses the importance of the
population size for the GAs in general, and its implications for real informa-
tion retrieval tasks. The question we would like to address is: for the same
computational effort, what advantage can we take from constructing larger
populations, or, on the contrary, can a greater number of generations lead to
better performance ?

To answer this question, this paper presents an experimental and a theo-
retical approach. Thus, Section 2 introduces the GAs, the problem we want
to use them for, and its genetic representation. Section 3 presents our ex-
periments and their results, as well as a theoretical discussion about the
implications of the parameter choice we have studied.

2 Genetic algorithm and information retrieval

This section presents the GAs and the genetic representation of our informa-
tion retrieval problem. In the first subsection, we present the main guidelines
and terminology of the GAs. In a second, we expose how the GAs may be
used within the context of information retrieval. Finally, the last subsection
introduces the main parameter setting we have used in our research.

2.1 The functionality of GAs

The GAs are evolutionary algorithms initially elaborated for optimization
problems, but that can be used in many other contexts.

Genetic Algorithms in Information Retrieval 3

Problem. Let E be a set of potential solutions to a problem. A fitness function
taking real values f : E → R tells us, for each element of E, how good a
solution it is for the given problem. We search for one of the elements in E
that maximize the fitness function:

e0 such that f(e0) = max(f(e), e ∈ E) (1)

In the context of GAs, each solution is represented as a vector of length
L, where each position is called a locus and the vector’s value at that position
is called a gene. The elements of this form are called individuals or chromo-
somes. The genes are usually binary, a representation that is easy to handle
and offers many possible combinations.

ind =< i1, i2, . . . , iL > (2)

A GA will start with a number of individuals chosen by various crite-
ria from E and will seek a better solution by making these individuals and
their descendants compete with each other through a number of iterations or
generations. The simplest GA constructs a new generation from an old one
following three steps:

• reproduction
• crossover
• mutation

If P0 is the initial population, the reproduction operation chooses a num-
ber of individuals from P0 equal to its cardinal, using a random selection with

replacement. The selection is biased according to the fitness of the underlying
individuals. Thus, the ‘good’ individuals have a better chance to be selected,
and can appear several times after reproduction, while the ‘weak’ individuals
tend to disappear. This form of reproduction is called the ‘roulette wheel’ or
‘fitness-proportionate’ (Goldberg 1989 [7]).

The crossover operation builds two new individuals or children from two
parents. We have used the 1-point crossover (Goldberg 1989 [7]) which cuts
both parents at a random position 1 ≤ site ≤ L, and then swaps the second
part of the parents resulting from the cut.

0011 | 0011101
1001 | 1011001

⇓
0011 | 1011001
1001 | 0011101

Finally, the mutation simply replaces a random gene in an individual to
its opposite:

01 0 01011 → 01 1 01011

4 Dana Vrajitoru

This last operation is introduced to guarantee that every value {0, 1}
may always appear in every position or locus and to simulate spontaneous
information income.

These three operations are repeated a number of times called the gener-
ation number. This parameter can be chosen by the user in advance, or can
be determined by a stop condition like the detection of convergence or the
achievement of an upper bound for the fitness function. In our research, the
generation number is always fixed in advance and its ‘optimal’ value is one
of the goals of this paper.

2.2 From information retrieval to genetic algorithms

General Problem. Given a document collection D = {di, i = 1 . . .m} and a
query q, find the set of documents {dr, r = 1 . . . R} that are relevant to the
query.

Our starting point is the vector space model (Salton 1971 [15]). According
to it, after removing the common words and the suffixes, each term tj occur-
ring in a document di is attributed a weight tij reflecting its importance in
the document representation. More precisely, we have computed this weight
as:

tij = ntfij · nidfj where ntfij =
tfij

maxk tfik

and nidfj =
log(m) − log(dfj)

log(m)
(3)

In Equation (3), we denoted by ntfij the normalized frequency of the term
tj in the document di. It is computed as the actual frequency of the term tj

in the document di divided by the maximal frequency over all the terms tk

occurring in the document di. The component nidfj denotes the normalized
inverted frequency of the term tj in the collection. In the formula defining it,
m in the size of the collection, and dfj is the number of documents in which
the term tj occurs.

Intuitively, Equation (3) means that terms that are frequent in a docu-
ment will get higher weights (component ntf). On the other hand, we must
reduce the weights of a term that is frequent in the whole collection (compo-
nent nidf).

The query is processed in the same way as the documents according to
Equation (3). For each document in the collection, its similarity with the
query is computed with the cosine measure (Salton 1971 [15]):

sim(dk, q) =

∑

wqitki
√

∑

w2
qi

∑

t2ki

(4)

within which, wqi represents the weight of the term ti in the query q.

Genetic Algorithms in Information Retrieval 5

To evaluate the response of the system, the user must specify which of
these documents are really relevant to its needs. In practice, there exist sev-
eral test collections provided with a set of queries whose relevance judgments
are known. We have used the CACM collection (Communications of the As-
sociation for Computing Machinery) and the CISI collection (Collection of
the Institute for Scientific Information). Table 1 presents a short description
of these collections.

Table 1. Statistics of our test collections

CACM CISI

Number of documents 3204 1460

Number of queries 50 35

Number of unique indexing terms 5935 5823

Average number of terms by query 11.24 7.43

Average number of relevant documents by query 15.84 49.77

Average number of indexed terms by document 58.57 119.80

Knowing the relevance judgments, there exist two well-known measures
to evaluate the system’s answer to a query: the precision and the recall.

precision = number of retrieved ∩ relevant documents

number of retrieved documents

recall = number of retrieved ∩ relevant documents
number of relevant documents

(5)

We have used a combined measure, the ‘average precision at 11 recall
points’ (Salton and McGill 1983 [17]). This method has been adopted by
the scientific community thanks to the work of Cleverdon, to the Cranfield
project (Lesk, 1997 [13], Section 7.6), and to the work of Sparck Jones (1977
[20]).

This measure is computed by fixing the recall at the values (0.0, 0.1, ...,
1.0), by interpolating the precision at these values and by computing the
average at the 11 precision values obtained by interpolation. To compute the
precision at a given recall value, the list of retrieved documents is cut at the
corresponding number of relevant documents. For example, to compute the
precision at a recall value of 0.3, the list of retrieved documents is cut as
soon as 30% of the relevant documents have been retrieved. If the entire list
contains less that 30% of the relevant documents, this value is obtained by
an interpolation making the precision depend on the recall in a monotonous
way.

6 Dana Vrajitoru

Specific Problem. Given a set of queries with known relevance judgments,
how can this information be used to improve the retrieval effectiveness of the
search system over time ?

The information contained in the relevance judgments of past queries
can sometimes be used to increase the performance of the system on future
requests. This process of learning is known as the ‘relevance feedback’. The
methods in this category can be classified by the object they modify: some
will try to improve the query representation (Dillon and Desper 1980 [5],
Salton and Buckley 1990 [18]) and others the documents indexing (Salton
1971 [15], Vrajitoru 1997 [22]).

In our work, we have chosen to improve the document representation
using a form of relevance feedback. To apply the GAs to this context, the
genetic individuals must contain a representation of the whole collection.

Gordon (1988 [8]) has applied GAs to a similar problem by improving the
indexing of one document at a time. In this case, a genetic individual is a
particular description of a document.

If the collection is large, the cost of improving the document descriptions
one by one can become too large. Considering this, in our model a genetic
individual contains a particular description of all the documents in the col-
lection.

There are various ways to describe a document, and even two indexers
would give different answers to this problem. Several sources of information
can be taken into account, like the various logical sections of the document
(the title, the abstract, etc.) or the relevance feedback (our special interest).
The idea is to make all these sources of information compete with each other
with the help of GAs, and hope that the collection description coming out of
this operation will be significantly better than what we have started with.

We will now mathematically define the notions of document and collection
description. For a given document dj , where j = 1 . . .m, and a set of terms
tk where k = 1 . . . n, a description of dj takes the form:

dj =< t1j , t2j , . . . , tnj > (6)

The value tij shows the importance of the term ti in description of the
document dj and comes from the ntf · nidf indexing (Equation 3). For per-
formance reasons, we have discretized the tij values into the integer interval
[0,10] using a histogram of the weight values. These new term weights are
coded on 4 binary genes using the canonical transformation from the base 16
to the base 2. This operation opens the way for higher weights than those
obtained by indexing the collections, but it does not present any technical
problem.

After the discretizing operation, each pair (document, term) is represented
by four binary genes. Thus, four ‘0’ genes mean that the term is absent from
the document description, but the ‘1’ genes contain now more information
than the presence of the term in the document description.

Genetic Algorithms in Information Retrieval 7

By putting together the description of all the documents in the collection
we obtain an individual (chromosome):

ind =< d1, d2, . . . , dm >=

t11, . . . , tn1

t12, . . . , tn2

. . .
t1m, . . . , tnm

(7)

We have noticed that in these individuals, the number of ‘1’ values is
significantly smaller than the number of ‘0’ values. The reason for this is in
the fact that the average number of terms per document is smaller than the
total number of terms in the collection (see Table 1), and the ‘1’ genes only
appear in the 4 genes representing a term present in a document. Concretely,
the number of ‘1’ values in the matrix from Equation (7) represent around
1% of its size for the CACM collection, and around 2% of its size for the CISI
collection. This particularity leads us to represent the individuals in the rare
matrix form, which is nothing else than the usual indexing of the collection.

Based on the average precision at 11 fixed recall points (Salton and McGill
1983 [17]), there are two possibilities to compute the fitness function : recur-
rent and transient.

According to the recurrent method, for each new individual, the fitness
function is computed as an average over all the test queries, of the average
precision at 11 recall points. Thus, the size of the individual is equal to
the total number of terms in the collection multiplied by the number of
documents in the collection. Our previous research has shown that in this
case, the problem size is too large for the GA to be able to significantly
improve the performance in a reasonable amount of time (Vrajitoru 1997
[22]).

In the transient approach, the GA considers only one query at a time.
For each individual, its fitness value is computed as the average precision
at 11 recall points considering its answer to the current query. The size of
the individual is equal to the number of terms present in the indexing of the
current query multiplied by the number of documents in the collection and
by 4. As the individual size decreases, the GA can perform a more effective
search.

The GA starts from a new initial population for each query, and selects
the best individual obtained after a given number of generations. In the end,
the performance of the experiment is computed as the average of the results
obtained by the best individual for each query. We have already obtained
interesting results with this approach (Vrajitoru 1997 [23]), that we extend
in the present research.

2.3 Initial populations

There are various ways to construct the initial population, but we are con-
fronted with a special constraint. As the goal of this research is to estimate

8 Dana Vrajitoru

whether it is better to have a large population or many generations, we have
to build the initial population in such a manner that we can vary its size
without loosing or adding information. This means that, for any position
in the individual, the set of genes corresponding to that position in all the
individuals from the population should be the same, independently of the
population size.

In our case, as the genes are binary, the constraint can be expressed by
the fact that if a gene is equal to ‘0’ in an individual from one starting
population of the family, than any other starting population must contain at
least one individual with the same gene equal to ‘0’. This can be expressed
by the fact that the and operation applied to that particular position to all
the individuals in each starting population must be constant for that family.

The following two starting populations contain the same information con-
cerning the ‘0’ values:

1011110111

1001011110

1100010110 1010110110

1001011010 1011011011

1001110110 1001010110

1000010010 1000010010

To obtain the result on the last line, we have applied the and operation
on each column.

If we impose the same constraint for the ‘1’ values, we must apply the or
operation on each column. The two populations we have considered do not
contain the same information concerning the ‘1’ values:

1011110111

1001011110

1100010110 1010110110

1001011010 1011011011

1001110110 1001010110

1101111110 1011111111

We can now express mathematically the two constraints by the following.
If G ⊂ N is an arbitrary set of integer numbers, and {Psg , sg ∈ G} is a

Genetic Algorithms in Information Retrieval 9

family of starting populations with size sg, where sg varies inside G, and if
we denote the individuals in each starting population by:

Psg = {indsg1, indsg2, . . . , indsg sg},

then we must have:

indsg1 and indsg2 and . . . and indsg sg = indconst0, ∀sg ∈ G (8a)

indsg1 or indsg2 or . . . or indsg sg = indconst1, ∀sg ∈ G (8b)

where indconst1 is a constant representing the entire set of genes equal
to ‘1’ in the individuals from the starting population, like in the second
example, and indconst0 is also a constant representing the same concept for
the ‘0’ values, as in the first example.

Equation (8b) expresses the fact that the union of all the genes equal
to ‘1’ in any of the individuals of a population must be the same for any
population in the family. The condition (8a) incorporates the similar idea for
the ‘0’ genes.

In our case, we have only insured that the condition (8b) holds, for two
reasons:

• the ‘1’ values appear in cases of presence of a term in a document de-
scription and we are more interested in what is present than in what is
absent,

• the number of ‘1’ values is much smaller than the number of ‘0’ values,
but have a greater impact on the fitness function.

We have found two ways to construct the family of starting populations
satisfying the (8b) constraint, and we named them as the ‘past queries’ pop-
ulation and the ‘empty’ population.

The question that arises is how to form the first generation. The ntf ·nidf
weighting scheme of the collection (Equation 3) provides us with an individ-
ual that we called ‘automatically indexed’. As it represents the baseline solu-
tion we want to improve, this individual will be an element of each starting
population, for each of the construction methods we chose .

To form other individuals, the past queries population contains one auto-
matically indexed individual and a variable number of individuals built from
the known relevance judgments of past queries in the following manner:

10 Dana Vrajitoru

for id = 1 to sg − 1
individualid = 0̄

id = 1;
for each (query q)

for each (term tj ∈ q with weight wqj)
for each (relevant document di for q)

tij = wqj in individualid;
id = id mod (sg − 1) + 1;

individualsg = the automatically indexed individual

where the mod operator represents the rest of the integer division, usually
called modulo.

According to this strategy, the first individual in the population is the au-
tomatically indexed one. Then the entire set of tuples (query, term, relevant

document) is partitioned to form the rest of the population (from individual1
to individualsg−1). The partition is accomplished with the round-robin strat-
egy, which consists in adding the first tuple to the first individual, the second
tuple to the second individual, and so on. When we arrive at the last indi-
vidual, we start again from the first one. The operation of adding the tuple
(q, tj , di) to an individual consists in setting the 4 genes corresponding to tij

to the 4 binary values in wqj . This means that the term tj will have a weight
in the relevant document di equal to its weight in the query q.

To check that the condition (8b) is fulfilled, we can notice first that the
automatically indexed individual is present in any starting population, so
we must only check the condition (8b) for the sg − 1 other individuals. We
can notice that the or operation applied to each position in one of the tuples
(query, term, relevant document) gives the result ‘1’, and applied to any other
position it has the result ‘0’. This means that the condition (8b) is fulfilled.

The empty starting population uses again the automatically indexed in-
dividual and a variable number of individuals having all genes equal to 0.
We can clearly duplicate this kind of individual without changing the infor-
mation contained in the initial population according to Equation (8b). We
have called this starting population empty because these individuals contain
nothing in the rare matrix representation, and they also give no information
about the content of the documents in the collection.

2.4 Evaluation methodology

In our research we have paid a special attention to the evaluation issues.
The first important question concerns the evaluation of the fitness func-

tion for each individual. If the GA knows the relevance judgments of the
current query, its evolution will be biased. To remove this bias, we have sim-
ulated the user’s implication in the genetic evolution by showing him the
first 30 documents appearing in the retrieved list for each new individual.

Genetic Algorithms in Information Retrieval 11

Concretely, the list of relevant documents for the current query is empty in
the beginning, and each relevant document found in the top 30 of a list re-
trieved by each of the individual is added to this list as the generations are
constructed. When the genetic evolution is over, the best individual from
the last generation is evaluated according to the complete list of relevance
judgments, and these result are presented in all the tables that follow.

A second question concerns the ‘past queries’ family of starting popula-
tions.It is obvious that is the relevance judgments of the current query are
used to build the initial population, the results will be incredibly high from
the beginning, but will not show th real learning possibilities of the GA.

In a real situation, the system would keep track of the user’s judgments
for each submitted request, and use this information to improve the retrieval
effectiveness on new queries. To evaluate this assumption, we only dispose of
a rather limited number of queries with known relevance judgments in our
test-collections, which makes it difficult to evaluate the learning system in an
accurate way (Kulikowski and Weiss 1991 [12]). It would not be statistically
correct to use the same queries to train and to test the system, so we must
clearly state the ‘past-future’ distinction. This is a well known problem for
classifier systems (Efron 1986 [6]).

As the number of samples (test queries) is small (35-50), the ‘leaving-one-
out’ model presents various advantages (Efron 1986 [6]). This method consists
in separating one sample (the test set) from all the others (the training set),
in repeating the experiment for each sample, and in computing the average
result.

The theory shows that this strategy estimates the error rate in a very
accurate way, even if the sample set is small.

In our case, the ‘leaving-one-out’ method is the following:

for each query qi ∈ Q = {q1, q2, . . . , qs}
training seti = Q\{qi}
test seti = {qi}
build a number of generations based on training seti

resulti = evaluate the best individual from the last generation
using test seti

result = 1
s

∑s

i=1 resulti

In this algorithm, Q is the entire set of queries with known relevance
judgments. The evaluation of the best individual uses the average precision
at 11 recall points as described in Section 2.2. The meaning of this algorithm
is that for each query, the construction of the starting population will use the
relevance judgments of all the queries except the current one. The relevance
judgments of the current queries are used to evaluate each individual created
by the GA in the way we have described in the beginning of this subsection.
This method is therefor fair and unbiased.

12 Dana Vrajitoru

3 Large population size or many generations ?

The number of individuals contained in the initial population is an important
parameter for the GAs. Usually, this choice is limited by the available mem-
ory, especially in our context where the individual size L is relatively large. In
this section we analyze the influence of this parameter on the performance of
the GAs, first from an experimental perspective and second in a theoretical
way. In other terms, for the same computational effort, should the results be
better when starting with a large population, or when the GA explores many
generations?

3.1 Experimental approach

We have already described the main aspects of the problem representation,
parameter settings, and some evaluation issues in the previous section. In
this subsection, we are concerned by two parameters, namely, the population
size and the number of generations. To evaluate our experiments correctly,
two essential conditions must be respected:

• The number of individuals generated on the whole in one run must be the
same in all experiences within the same family of starting populations.
This value is equal to the number of generations multiplied by the number
of individuals by generation. This obvious condition is the expression of
the goal of our experiences:

if P = {Psg , sg ∈ G} is a family of starting populations of size sg,

then we must have ∀sg ∈ G, sg ∗ number of generations = constP

• The information contained in any initial population from a family must be
the same, no matter what its size is, otherwise we could not fairly compare
their results. In the previous section we have expressed this constraint
with Equation (8b). We have also shown that the two families of starting
populations (‘past queries’ and ‘empty’) both fulfill this condition.

Tables 2 and 3 present the results of the experiments on the two families
of starting populations with the number of generations multiplied by the
population size (constp) being equal to 80 in all runs. The choice of this
constant is essentially due to limitations concerning memory consumption
and computational time.

As mentioned in the previous section, the numbers in Tables 2 and 3
represent the average precision at 11 recall points computed in a transient
way (see Section 2.2).

The baseline performance represents the fitness value of the best individ-
ual from the starting population. For the empty family of starting popula-
tions, this is the automatically indexed individual.

Genetic Algorithms in Information Retrieval 13

For the past queries population, the baseline performance varies with the
population size, and has been mentioned for each experiment. For both pop-
ulations, the number inside parenthesis represents the percentage of change
from the baseline. Usually, if this percentage is equal or greater to 5%, the
difference will be considered as significant (Sparck Jones [20]). Finally, all
these results represent the performance of the best individual occurring in
the last generation, which is also the best individual among the 80 individuals
totally generated, as our GA is monotonic (see Section 2).

Table 2. Results obtained from the ‘past queries’ family of initial populations

Population size/ CACM CISI

number of generations baseline best individual baseline best individual

2/40 36.26 37.24 (+2.71%) 20.29 22.15 (+9.17%)

4/20 35.37 37.37 (+5.65%) 20.01 21.71 (+8.53%)

6/13 35.10 37.96 (+8.15%) 20.80 23.21 (+11.61%)

8/10 34.42 38.16 (+10.84%) 20.52 24.90 (+21.34%)

10/8 35.48 39.43 (+11.15%) 20.48 24.14 (+17.87%)

14/6 34.54 40.62 (+17.61%) 20.55 24.77 (+20.5%)

16/5 34.72 37.96 (+9.34%) 20.54 24.24 (+18.02%)

20/4 34.36 41.61 (+21.11%) 21.48 24.96 (+16.23%)

Table 3. Results obtained from the ‘empty’ family of initial populations

Population size/ best individual

number of generations CACM CISI

baseline 32.70 19.83

2/40 33.05 (+1.09%) 21.06 (+6.21%)

4/20 33.59 (+2.74%) 21.86 (+10.24%)

6/13 35.18 (+7.60%) 21.75 (+9.70%)

8/10 36.00 (+10.11%) 22.88 (+15.38%)

10/8 36.17 (+10.63%) 22.85 (+15.26%)

14/6 36.71 (+12.28%) 23.73 (+19.68%)

16/5 37.65 (+15.16%) 22.81 (+15.04%)

20/4 38.30 (+17.13%) 22.88 (+15.40%)

14 Dana Vrajitoru

We would like to interpret these results to deduce the total gain in perfor-
mance obtained by variation of these parameters. For this, we have compared,
in each family of starting populations, the parameter values having shown the
worst and the best performance, as shown in Table 4.

Table 4. The best and the worst parameter values

CACM CISI

past queries empty past queries empty

worst parameter values 2/40 2/40 4/20 2/40

performance 37.24 33.05 21.71 21.86

best parameter values 20/4 20/4 20/4 14/6

performance 41.61 38.30 24.96 23.73

difference between them +11.73% +15.87% +14.97% +12.69%

The parameter values of 20 individuals by generation and 4 generations
produce almost always the best performance. The exception is the empty
population for the CISI collection where the best performance is given by a
population of 14 individuals and 6 generations.

The case of 2 individuals with 40 generations represents the worst choice
for almost all the experiences, except for the past queries population for
the CACM collection, where the worst results are given by the case of 4
individuals by generation and 20 generations.

From Table 4 we can conclude that a larger population size is a better
choice than many generations. We should also remark that the difference
between the worst and the best performances is significant.

To inquire more about the meaning of this conclusion, an overall measure
like the mean may hide some irregularities. We have used the fact that each
of these results is an average over 50 queries (CACM) and 35 queries (CISI).
As a consequence, more comparison measures can be imagined based on an
analysis query by query. Thus, Table 5 presents a more detailed comparison
following this idea.

First, we want to compare the average best and worst parameter choices
to each other for each query. More precisely, we would like to know the
number of queries where each of the parameter choices has shown better
performance than the other in a simple and significant way. We have expressed
these measures by the two first questions in Table 5. For example, on the
CACM collection and the ‘past queries’ starting population, the average best
parameter choice performs better than the average worst parameter choice
on 38 queries. The reverse happens for 10 queries. As the total number of
queries is 50, we can deduce that their performance is equal on 2 queries.

Genetic Algorithms in Information Retrieval 15

Table 5. Analysis query by query

Number of CACM CISI

queries past queries empty past queries empty

Total 50 35

Which population is better ?

the best 38 44 24 30

the worst 10 1 9 4

Which population is significantly better ?

the best 24 28 14 22

the worst 7 1 5 2

Does the population improve the baseline ?

the best 48 45 33 33

the worst 10 9 23 18

Does the population significantly improve the baseline ?

the best 32 30 24 27

the worst 7 5 16 8

Second, we thought it interesting to know how each parameter choice
improves the baseline performance on each query. This measure gives the
next two questions in Table 5. For example, on the CISI collection and the
‘empty’ starting population, the average worst parameter choice improves the
baseline performance in a significant way on 8 queries.

The new comparison measures enforce our conclusion, that large starting
populations are a better choice than many generations.

3.2 Theoretical analysis

In this subsection we intend to give a partial explanation of the experimental
results by theoretically analyzing some of the implications of the variation of
the two parameters.

Convergence .
The first factor that is strongly influenced by the population size is the

convergence of the genetic population to an individual representing an op-
timum for the fitness function. This phenomenon is the greatest danger for

16 Dana Vrajitoru

the GAs, especially when the dominate individual is a suboptimal solution.
The evolutionary potential of a population is closely related to having very
different parents to explore different solutions and usually the mutation rate
is too small to ensure it.

We will now consider the case where an individual in the starting popula-
tion has an important fitness advantage over the others. We will compute its
expected number of occurrences in future generations under the hypothesis
of the fitness-proportionate selection.

Let imax be an individual whose fitness value is fmax. The population
of size sg contains sg − 1 more individuals of average fitness value fmin,
where fmax � fmin. Let ek be the expected number of occurrences of imax

in generation number k. The fitness-proportionate selection tells us that the
probability that imax gets selected in one selection operation is proportionate
to its fitness value:

P (imax) =
fmax

fmax + (sg − 1) · fmin

(9)

According to the fitness-proportionate selection, the probability that an
individual is selected in one selection operation is equal to its fitness value di-
vided by the sum of the fitness values of all the individuals in the population.
In Equation (9), the denominator on the right side is equal to this sum.

If there are ek occurrences of imax, then P (imax) is multiplied by this
number and the denominator also changes according to it:

P (imax) =
ek · fmax

ek · fmax + (sg − ek) · fmin

(10)

As P (imax) is the probability of selecting imax in one selection operation,
and on the whole we have sg selection operations, then we can express ek as
a recurrent sequence:

e0 = 1

ek+1 = sg · P (imax) = sg · ek ·fmax

ek ·fmax+(sg−ek)·fmin

(11)

The sequence ek converges in two situations, that are if the sequence is
monotonically ascendant or descendant, giving two possible limits, elim1 and
elim2. These values can be computed by imposing the following condition:

Genetic Algorithms in Information Retrieval 17

ek+1 = ek ⇒

sg·ek ·fmax

ek ·fmax+(sg−ek)·fmin

= ek ⇒

a) elim1 = 0, or, by division with ek 6= 0

b) sg·fmax

ek ·fmax+(sg−ek)·fmin
= 1 ⇒

sg · fmax = ek · fmax + (sg − ek) · fmin ⇒

sg · (fmax − fmin) = ek · (fmax − fmin) ⇒

if fmax 6= fmin then elim2 = sg

(12)

From Equation (12) we can deduce that if the sequence is monotonically
ascendant, then it converges to sg, the population size, and if it is monotoni-
cally descendant, it converges to 0. The monotony condition can be expressed
by:

ek+1 ≥ ek ⇔

sg·ek ·fmax

ek ·fmax+(sg−ek)·fmin

≥ ek ⇔

sg·fmax

ek ·fmax+(sg−ek)·fmin
≥ 1 ⇔

sg · fmax ≥ ek · fmax + (sg − ek) · fmin ⇔

(sg − ek) · fmax ≥ (sg − ek) · fmim ⇔

fmax ≥ fmim

(13)

To solve the inequality (13), we have used the facts that ek > 0 and that
sg − ek > 0. It is clear that ek ≥ 0 and sg ≥ ek. Both equalities happen in
cases of convergence, as shown in Equation (12). We have assumed the strict
inequalities because we are checking the monotonicity of the sequence before
it converges.

And last, the principle of fitness-proportionate selection in the form we
have used it, only works in the case where the fitness function f is strictly
positive, which is true in our case. Even the empty individuals present a very
low but non zero fitness, due to interpolation reasons (see Tables 6 and 7).
Thus, we are sure that ek · fmax +(sg− ek) · fmin > 0, and we have also used
this fact to solve the inequality (13).

Equations (12) and (13) signify that the population converges towards
the best individual and that the others tend to disappear. The convergence
rate is faster if sg is small.

18 Dana Vrajitoru

In our case, the individual obtained from automatic indexing (see Subsec-
tion 2.3), presents a much higher fitness value than the others. The difference
is even more important for the ‘empty’ family of populations. In this case, the
number of occurrences of the automatically indexed individual for the CACM
collection is expected to increase according to the sequence in Table 6.

Table 6. CACM, fmax = 32.70, fmin = 1.43

g e0 e1 e2

2 1 1.92 (95.8%) 2.00 (99.8%)

4 1 3.64 (90.9%) 1.99 (99.1%)

20 1 10.88 (54.4%) 19.26 (96.3%)

From Table 6 we can see that for a population size of 2, in one generation
the non-dominate individual has less that 5% of 2 = 0.1 expected occurrences,
which practically means that it vanishes very quickly. For a population of 20
individuals, in one generation the dominate individual occupies about half of
the population, which makes the evolution still possible.

For the CISI collection, the convergence rate of the population to the
dominate individual in 3 generations is also impressive, but slower because
the difference between fmim and fmax is less important (see Table 7).

Table 7. CISI, fmax = 19.83, fmin = 4.65

g e0 e1 e2 e3

2 1 1.60 (80.2%) 1.87 (93.6%) 1.96 (98.0%)

4 1 2.34 (58.5%) 3.43 (85.7%) 3.84 (96.0%)

20 1 3.67 (18.3%) 9.26 (46.3%) 15.71 (78.5%)

Tables 6 and 7 can explain the fact that if the population size is small,
the number of queries for which the system’s performance improves is very
small (see Table 5).

Crossover selection .
The condition (8b) which imposes the fact that all starting populations

from a family must contain the same prior information, can lead to the sit-
uation where a number of individuals are almost identical. This is actually
the case for the ‘empty’ populations. We can also remark that individuals
of high fitness value, like the automatically indexed one, could be selected
several times for reproduction, which is equivalent to the previous case.

Genetic Algorithms in Information Retrieval 19

This also means that we can expect several crossover operations to be ap-
plied to the same parents. In this case, we will show that the probability that
these individuals produce interesting offspring increases with the population
size.

For two individuals, let p1 be the probability of randomly choosing a
‘good’ cross position. For example, if the parents were the automatically
indexed individual and an empty individual, p1 would be the percentage of
crossover sites that produce children of fitness values superior to their parents.

If p2 is the same probability for the case where we perform two crossover
operations between the same individuals, then p2 can be computed as the
union of two independent events of probability p1:

p2 = p1 + p1 − p2
1 = 1 − (1 − p1)

2 (14)

We can generalize this sequence by:

pk = p1 + pk−1 − p1 · pk−1 = 1 − (1 − p1) · (1 − pk−1) ⇒

pk = 1 − (1 − p1)
k (15)

As k is the number of performed crossover operations, we have k ≤ sg/2.
For sg → ∞ and k → sg/2, the sequence pk → 1 because 1 − p1 < 1 ⇒

(1 − p1)
k → 0.

We can conclude that if the population size is sufficiently large, then the
baseline performance may be improved with a big probability. This observa-
tion can also be an argument for choosing larger starting populations.

Crossover combination .
In this paragraph we will demonstrate that larger populations can allow

better crossover combinations. However, a minimal number of generations is
always necessary to obtain the ‘best’ solution.

First, we notice that the composition of crossover operations is commu-
tative. The proof is obvious, and Figure 1 illustrates it. Thus, the result of
the successive application of the crossovers of sites labeled 1 and 2 does not
depend on their order.

1 2

1

2

2

1

Fig. 1. Two crossover operations

The second step is to show that three crossover operations can be done
in two generations. Figure 2 shows the result of three successive crossover
operations in three generations.

20 Dana Vrajitoru

Fig. 2. Three crossover operations

A generation contains only individuals one crossover away from the previ-
ous generation. We must find out if a crossover between individuals obtained
from two different crossover operations can give the same result as in Figure 2.
They can, indeed, and Figure 3 shows how.

1 2 3

1

3

2

2

Fig. 3. Crossover combination

Let us consider now an optimal solution found after a number of genera-
tions ng. We can express this process as a binary tree with the root represent-
ing the optimal solution, where each leaf belongs to the initial population,
and where any ancestor node is obtained from its descendants by a crossover
operation (Figure 4). In this tree, the ancestor-descendant notation is the
reverse of the genetic parent-child notation, and for more clarity, the arrows
in Figure 4 show the direction of action of the crossover operations.

Fig. 4. Binary tree with nnd nodes

Genetic Algorithms in Information Retrieval 21

Then the solution is at a crossover distance from the initial population
equal to the total number of nodes in the tree nnd. The number of generations
ng represents the depth of the tree. It is well known that the minimal value for
ng is dlog2 nnde when the tree is complete. This tells us that by increasing the
population size, the tree linking the initial population to the optimal solution
can gain width and loose depth, which would make the search more balanced
and increase the chances for good performance.

As the crossover operations are arranged in a tree, we know that a tree
with nnd nodes cannot have a depth less that dlog2 nnde. This means that
to find a given optimal solution from a given starting population, we need
a minimal number of generations that do not depend on the probabilistic
behavior of the GA. This number is equal to the binary logarithm of the
distance between the optimal solution and the starting population in terms
of crossover operations.

We can conclude that if the information contained in the initial population
is the same, we should expect a limit for the gain in performance we obtain
by increasing the population size.

Related to this observation, Figures 5 and 6 show the evolution of the
performance according to the population size. We could say that the limit we
have predicted is achieved for the CISI collection and the ‘empty’ starting
population, but we think that the parameter values we have used are too
small compared to the problem size to allow us to trust this conclusion.

Fig. 5. Plot of results for the CACM collection

The three factors we have analyzed in this subsection also stand for the
choice of large populations. If the problem size is large, as for our experiment,
the available memory space should affect this choice more than the limitations
presented in the last paragraph.

4 Conclusion

When GAs must deal with very large search spaces, as in information re-
trieval, the difficulty of the problem imposes a fine parameter tuning without

22 Dana Vrajitoru

Fig. 6. Plot of results for the CISI collection

which the search for good solutions may simply fail. In this context, this pa-
per has tried to answer the question of whether it is better to build many
generations or to start with a large population.

In Section 2 we introduced the general notions underlying the GA ap-
proach to information retrieval, and the way GAs can be applied to our
problem. We also presented the specific difficulties for this problem and some
practical details reducing them. Section 3 presented and discussed the re-
sults of our experiences, as well as a mathematical analysis that shows the
theoretical implications of the parameter choice we have studied.

Both the experimental and the theoretical investigations lead to the same
conclusion. It seams that larger populations are a better choice than many
generations, as far as memory space allows it. We have also shown some
theoretical arguments against a too small number of generations that could
eventually have influenced one of our results (see Figure 6). The comparison
between the best and the worst choices has shown that the more difficult a
problem is, the more advantage we can take of choosing the right values for
the genetic parameters (see Tables 4 and 5).

Our experiences have also proved that GAs may significantly improve the
performance of information retrieval systems and that the relevance judg-
ments of past queries can be very useful for this task.

Finally, we can say that although the GAs are widely employed in many
fields, various aspects of their behavior are still barely known and can open
interesting directions of exploration.

Acknowledgments - This research was supported in part by the FNRS (Swiss
National Science Foundation) under grant 20-43’217.95.

References

1. Blair D.C. (1990) Language and Representation in Information Retrieval. Else-
vier, Amsterdam (NL).

2. Brassard G., Bratley P. (1994) Fundamentals of Algorithmics. Prentice-Hall.

Genetic Algorithms in Information Retrieval 23

3. Chen H. (1995) Machine Learning for Information Retrieval: Neural Networks,
Symbolic Learning, and Genetic Algorithms. Journal of the American Society
for Information Science. 46(3), 194-216.

4. De Jong K., Spears W. (1989). Using Genetic Algorithms to Solve NP-Complete
Problems. International Conference on Genetic Algorithms. George Mason Uni-
versity, Fairfax (VA), 124-132.

5. Dillon M., Desper J. (1980) Automatic Relevance Feedback in Boolean Retrieval
Systems. Journal of Documentation. 36, 197-208.

6. Efron B. (1986) How Biased Is the Apparent Error Rate of a Prediction Rule.
Journal of the American Statistical Association. 81(394), 461-470.

7. Goldberg D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading (MA).

8. Gordon M. (1988) Probabilistic and Genetic Algorithms for Document Retrieval.
Communications of the ACM. 31(10), 1208-1218.

9. Gordon M. (1991) User-Based Document Clustering by Redescribing Subject
Descriptions with a Genetic Algorithm. Journal of the American Society For
Information Science. 42(5), 311-322.

10. Holland J.H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor,
University of Michigan Press.

11. Kraft D.H., Petry F.E., Buckles B.P., Sadavisan T. (1997) Genetic Algo-
rithms for Query Optimization in Information Retrieval: Relevance Feedback.
In Sanchez E., Zadeh L.A., Shibata T. (Eds.), Genetic Algorithms and Fuzzy
Logic Systems, Soft Computing Perspectives. World Scientific. 155-173.

12. Kulikowski A.C., Weiss M.S. (1991) Computer Systems That Learn. Morgan
Kaufmann, San Mateo (CA).

13. Lesk M. (1997) Practical Digital Libraries: Books, Bytes and Bucks. Morgan
Kaufmann, San Francisco (CA).

14. Petry F., Buckles B., Prabhu D., Kraft D. (1993) Fuzzy Information Retrieval
Using Genetic Algorithms and Relevance Feedback. Proceedings of the ASIS
Annual Meeting. 122-125.

15. Salton G. (ed.) (1971) The SMART Retrieval System - Experiments in Auto-
matic Document Processing. Prentice-Hall Inc., Englewood Cliffs (NJ).

16. Salton G., Fox E., Wu U. (1983) Extended Boolean Information Retrieval.
Communications of the ACM. 26(12), 1022-1036.

17. Salton, G., McGill M. J. (1983) Introduction to Modern Information Retrieval.
McGraw-Hill (NY). Chapter 5

18. Salton G., Buckley C. (1990) Improving Retrieval Performance by Relevance
Feedback. Journal of the American Society for Information Science. 26, 361-372.

19. Sanchez E., Pierre Ph. (1994) Fuzzy Logic and Genetic Algorithms in Informa-
tion Retrieval. Proceedings of the 3rd International Conference on Fuzzy Logic,
Neural Nets and Soft Computing, Iizuka, Japan, 29-35.

20. Sparck Jones K., Bates R. G. (1977) Research on Automatic Indexing 1974-
1976. Technical Report. Computer Laboratory, University of Cambridge.

21. Sushil J.L., Gong L. (1997) Augmenting Genetic Algorithms with Memory to
Solve Traveling Salesman Problems. Proceedings of the Joint Conference on
Information Science. Duke University, 108-111.

22. Vrajitoru D. (1997) Apprentissage en recherche d’informations. Doctoral thesis,
University of Neuchâtel, Switzerland.

23. Vrajitoru D. (1998) Crossover Improvement for the Genetic Algorithm in In-
formation Retrieval. Information Processing and Management. 34(4), 405-415.

24 Dana Vrajitoru

24. Yang J.-J., Korfhage R.R., Rasmussen E. (1992) Query Improvement in In-
formation Retrieval Using Genetic Algorithms. Proceeding of the fith ICGA.
603-611.

25. Yang J.-J., Korfhage R.R. (1993) Query Optimization in Information Retrieval
Using Genetic Algorithms: Report on the Experiments of the TREC Project.
Proceedings of TREC’1. NIST, Gaitherburgs (MD). 31-58.

