
Consistent Graph Layout for Weighted Graphs

Dana Vrajitoru
Intelligent Systems Laboratory

Indiana University at South Bend
Computer and Information Sciences

danav@cs.iusb.edu

Jason DeBoni
Intelligent Systems Laboratory

Indiana University at South Bend
Computer and Information Sciences

wanderung@yahoo.com

Abstract

In this paper we present three algorithms that build
graph layouts for undirected, weighted graphs. Our goal
is to generate layouts that are consistent with the weights in
the graph. All of the algorithms are force-oriented and have
been successful in solving the problem up to a certain preci-
sion. They all start with a random layout and improve it by
iteratively repositioning the vertices to reduce the current
error. The first two methods move the vertices along one
edge at a time, either by selecting it randomly, or by follow-
ing a breadth-first strategy. The third method computes the
result of all of the tension forces occurring in each vertex
and moves all of them in each step along the resulting vec-
tors. We also show that if we start building the layout with a
robust method and then refine the configuration with a more
precise one, we can improve the quality of the solution.

1. Introduction

Let us suppose that millions of years from now aliens
discover traces of human civilization on Earth and they at-
tempt to recover our history from them. Moreover, suppose
that the continents have derived from the form that they
have today, and that all that the aliens can find is a sched-
ule of an airline company featuring the duration of various
flights from a location to another. The question is, can the
aliens reconstruct the current map of the world based on that
timetable?

To express this problem in mathematical terms, given an
undirected and weighted graph, we must assign a 2D or 3D
point to each of the vertices in the graph (a layout) such
that for every two vertices A and B such that the edge A, B

exists in the graph, the distance between the points assigned
to them is equal to the weight of the edge.

Extensive work has been accomplished on drawing un-
weighted graphs with emphasis on showing the structure
of the graph in the geometrical representation (Battista et

al. [11], Diaz, Petit, and Serna [5]). Layouts present-
ing some aesthetic qualities are also appreciated (Gajer and
Kobourov [9], Nesetril [12]). The problem is even more in-
teresting and challenging when the graphs to be drawn are
large (Gajer and Kobourov [9], Brandes and Wagner [3]).
Another approach is to build the graph layout according to
constraints that can be user-defined (Tamassia [14], He and
Marriott [10]).

The best-known heuristic for generating graph layouts
is certainly the spring algorithm (Eades [6]) that regards
the edges in the graph as springs connecting the vertices
such that the springs attract the vertices if they are too far
apart and repel them if they are too close. In addition, non-
connected vertices repel each other. In the usual implemen-
tation, the edges are expected to have the same length. An
interesting model (Branke, Bucher, and Schmeck [4]) com-
bines this method with the use of genetic algorithms.

Part of the research on graph layouts has also focused on
weighted graphs and the best methods seems to be force-
oriented (Battista et al. [11], Eades and Kelly [8], Bodlan-
der et al. [1]).

Among the applications of these algorithms we can cite
designing electronic circuits (Battista et al. [11]), design-
ing web sites and visualizing the content of the World Wide
Web (Brandes et al. [2]), parallel computing and VLSI.

The methods we present in this paper can be seen as vari-
ations of the spring algorithm (Eades [6]) in which we ig-
nore the repulsion force exerted by non-adjacent vertices in
the graph. The criteria we are interested in is the consis-
tency between the distances between vertices in the graph
and the weights of the edges.

The paper is structured the following way: Section 2 in-
troduces the problem and the algorithms that minimize the
error in the graph or attempt to find an equilibrium based
on the tension forces. Section 3 presents some experimen-
tal results that validate our approach. We finish with some
conclusions.

2. Problem Description and Algorithms

In this section we introduce the problem and present two
methods aiming to generate layouts minimizing the error
in the graph defined as the absolute difference between the
weights of the edges and the Euclidean distance between
the vertices.

2.1. The Problem

Definition. Let G = {V , E} be a graph where V is the
set of vertices, |V| = n, and E is the set of edges, |E| =
m. A layout for the graph is a function P : V → R

p

that maps each vertex v ∈ V to a geometrical point in R
p,

where usually p = 2 or 3. The edges are represented as line
segments connecting the points associated with the vertices.

We will denote the undirected edges by uv, where u, v ∈
E .

Problem. Let G = {V , E , W} be an undirected,
weighted graph where the weights of the edges are given
by the function W : E → R

+. We must find a layout
P : V → R

3 such that ∀ u, v ∈ V , d (P (u), P (v)) = Wuv ,
the weight of the edge uv. A layout with this property will
be called a consistent layout for this graph.

If V = {v1, v2, . . . , vn}, then we must find a set of points
{P1, P2, . . . , Pn} such that if there is an edge between two
vertices vi and vj , vivj ∈ E , then the points associated with
these vertices are placed at a distance from each other equal
to the weight of the edge.

d (Pi, Pj) = Wvivj
(1)

We can express the constraints in Equation 1 as a system
of m equations of second degree with 3n variables. Let us
denote each of the points as a 3-dimensional vector Pi =
(xi, yi, zi), 1 ≤ i ≤ n, and the weight of the edge vivj ∈ E
by wij . Then for each edge vivj ∈ E , we have the following
equation:

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 = wij (2)

This system of equations has either no solution, or an
infinity of them. Any isometric geometrical transformation,
for example, a translation, rotation, or symmetry, applied
to a consistent layout, transforms it into another consistent
one.

The necessary conditions for the existence of an exact
solution are related to the properties of the Euclidean dis-
tance. Thus, if the weights of the edges represent actual
distances, then they must satisfy the following conditions:

∀ u, v ∈ V , Wuv ≥ 0, Wuv = Wvu (3)
∀ u, v, z ∈ V , Wuz ≤ Wuv + Wvz (4)

Equation 4 is also known as the triangulation condition.
To verify this condition for any three vertices in the graph,
we must dispose of the edges forming the triangle, and this
is not always the case. It seems appropriate to extend the
triangulation condition to any polygon or cycle in the graph,
as expressed in Equation 5. This is also a necessary but not
sufficient condition for the existence of the solution.

∀n ∈ N, n ≥ 3, ∀v1, v2, . . . , vn ∈ V ,

w1n ≤ w12 + w23 + . . . w(n−1)n (5)

These constraints represent necessary but not sufficient
conditions for the existence of the solution. For example,
the following graph satisfies all of these conditions, but no
layout for this graph can be consistent with the weights.

Figure 1. A graph with no solution

This problem has been proved to be NP-hard (Eades and
Mendonça [7]). We would also like to consider the case
where an exact solution doesn’t exist and the algorithms we
present will be classified according to the criteria used to
find an approximate solution.

2.2. Minimal Total Error

To generate graphs for which a consistent layout can be
found, we can start with any unweighted graph, build a lay-
out by any method, then assign weights to the edges ac-
cording to the Euclidian distance between the correspond-
ing points.

We can also easily generate graphs for which the prob-
lem is insolvable. For this, the graph must contain at least
one cycle, because there is always a solution for a tree. We
can generate the weights in a cycle of the graph such that
the constraint 5 is not satisfied. This operation is linear in
the selected cycle.

Let u and v be two adjacent vertices in the graph. Sup-
pose that we have associated the geometrical points Pu and
Pv with the vertices u and v respectively. Let us denote by
erruv the error on the edge uv computed as the difference
between the weight of the edge and the Euclidean distance
between the two points:

erruv = Wuv − d(Pu, Pv). (6)

This error gives us an estimation of how much the points
are misplaced with respect to each other considering that

the weight of the edge represents the ideal distance between
them. If the error is positive, then the points are too close
to each other. If the error is negative, the points are too far
apart.

We would like to find a layout that minimizes the total
absolute error in the graph:

total error =
∑

∀uv∈E

|erruv | (7)

An exact solution to the graph layout presents a total er-
ror equal to 0. If the graph doesn’t have an exact solution,
then minimizing the total error represents a good approxi-
mation.

We will introduce next two algorithms designed to mini-
mize the total error. Following the ideas from the the spring
algorithm and most of the force-oriented methods, the graph
forms a dynamic system in which each element (vertex) is
attracted or repelled by its neighbors according to the dis-
crepancy between the length of the line segment connecting
them and the weight of the edge. In our model, if two ver-
tices are not neighbors in the graph, then they do not interact
directly with each other.

The algorithms to be presented in this section start with
a totally random layout that is adjusted in a number of iter-
ation to obtain one that is consistent. At each iteration the
algorithms move from one state of the system to another one
of greater probability. Both of them reposition one vertex at
a time in such a way as to reduce the error on one of the
edges starting from it.

The first algorithm, that we refer to as the random edge
(RE) algorithm, chooses an arbitrary edge in the graph at
each iteration and moves one of the points associated with
the vertices composing the edge. The point is moved on the
line containing the two points, further away from the second
point if the distance is smaller that the weight of the edge,
and closer to the second point if the distance between them
is greater than the weight of the edge.

Let u and v the two vertices that have been randomly
selected and Pu and Pv the points assigned to them in the
current layout. If the error on the edge uv is not equal to 0,
we will adjust the position of the vertex v by assigning it a
new point P ′

v determined in the following way:

P ′
v = Pv + ε ·

erruv

d(Pu, Pv)
· (Pv − Pu), (8)

where ε is a constant, 0 < ε < 1.
In this formula, if the error is positive, then the point Pv

will be moved away from Pu on the line containing Pu and
Pv . If the error is negative, the point Pv will be moved
closer to Pu on the same line.

It can be mathematically justified that the procedure we
have described reduces the error on the edge and the experi-
ments show that the total error in the graph also decreases in

general. The parameter ε allows us to control the amount of
adjustment that is performed at each step and thus, decide
on the convergence rate.

The second algorithm that we refer to as the breadth-first
scan (BFS) algorithm we propose uses the same method to
adjust an edge (Equation 8), but it does not choose the edge
randomly. At each iteration, the algorithm starts with a ran-
domly chosen vertex (origin), and it adjust all the other ver-
tices in the graph starting from this origin with a breadth-
first scanning method. Thus, the direct neighbors of the
origin will be adjusted in the first steps, then all of their
neighbors, and so on. The adjustment is spreading in the
graph as a wave starting from the origin. The only random
component in this variant is the choice of the origin.

This method presents the advantage that when a vertex is
moved on an edge, we know that by decreasing the error on
that edge, we don’t affect the edges considered beforehand
in that iteration, only edges to be visited afterward or not
at all. Thus, we expect this algorithm to decrease the total
error more consistently than the first one, which is actually
what we have observed in our experiments (Section 3). By
starting from a different origin at every iteration, we insure
that the layout will not prematurely converge to a subopti-
mal configuration and that all of the edges in the graph will
be visited at some point.

If the graph has a solution, then we expect the breadth-
first scan algorithm to converge faster than the random edge
one. If there is no solution to the problem, we think that
in some cases the random edge algorithm could find better
solutions for this category of graphs.

2.3. Equilibrium Layout

Let us suppose that we can construct a physical repre-
sentation of the graph using interconnecting springs for the
edges, as in the spring method. Each spring corresponding
to an edge would have an initial length equal to the weight
of the edge and a section much smaller than the length.
These springs can only be deformed along the main direc-
tion. When extended, the springs tend to contract to their
initial length, and when compressed, they tend to extend.
Moreover, each spring creates a contracting or extending
force along the main direction proportionate to the amount
of deformation that was applied to it.

We can build the graph using these springs by deforming
them as necessary to fit the connections in the description of
the graph. The physical construction would then naturally
evolve to an equilibrium state in which the deformation ten-
sions compensate each other, if they are not solved.

With the next algorithm we try to find the equilibrium
solution for the situation that we have described.

We focus again on the points representing the vertices in
the graph. For each point, a number of forces exert on it as

Figure 2. Resulting tension force

a result of the deformation along the edges connected to the
vertex. If the result of all the forces is not 0, then the point
will be pushed in the direction of the resulting force.

We can now express the condition for the solution with
no local tension. We would like to find a layout for the graph
such that the result of all the deformation forces that exert
on each vertex is a null vector. An approximate solution
must minimize the total norm of the resulting tension force
in each vertex. We believe that for any graph, there exists at
least one equilibrium solution.

In the following algorithm, that we will refer to as the
tension vector (TV) algorithm, for each of the edges that
has suffered deformation, opposite forces of equal norm are
exerted on the vertices composing the edge. Thus, the result
of all the tension forces in the graph is always 0.

For example, let us suppose that a vertex A is connected
to three vertices B1, B2, B3 as in Figure 2.

On each of the edges ABi ∈ E , i = 1, 2, 3, the defor-
mation suffered by the edge engenders a force proportional
to it in the contrary direction, that we have denoted by ~Fi,
i = 1, 2, 3. Thus, from the direction of these forces we can
deduce that the points corresponding to the vertices B1 and
B3 are closer to the point associated with the vertex A than
they should be. On the contrary, the point associated with
B2 is farther from the point assigned to A than indicated by
the weight of that edge.

By composing the three deformation forces ~Fi, i =
1, 2, 3, we obtain the resulting force that applies to A, de-
noted by ~R = ~F1 + ~F2 + ~F3. The algorithm assumes that
the point corresponding to A will be moved along ~R until
the resulting force is null.

We still have to define the the deformation force in a
precise way. We can start by the amount of deformation
errAB which has been defined in Equation 6 as the differ-
ence between the weight of the edge AB and the distance
between the points associated with the two vertices, PA and
PB . Then we can define the deformation force applied to
the point PB as being

~FAB = errAB

~AB

‖ ~AB‖
(9)

Thus, is the error is positive, then the two points are too

close and PB should move away from PA, which is in the
direction of the vector ~AB.

In Equation 9, we have assumed that the deformation
suffered by the edge AB is equally distributed between the
two points. Thus, for an undirected graph, for each force
~FAB , there is a corresponding opposing force equal in norm
applied to the other extremity of the edge: ~FAB = −~FBA.

Then we can define the resulting force applied to the
point PA:

~RA =
∑

∀AB∈E

~FBA (10)

If PA is the point associated with the vertex A in a partic-
ular iteration and ~RA is the force exerted on it, the algorithm
moves the point to a new location P ′

A defined as follows:

P ′
A = PA + ε ~RA (11)

where ε is a constant, 0 < ε ≤ 1.
At last, the algorithm starts again with a random layout

and moves the points according to Equation 11 in a given
number of iterations or until the layout convergences to an
equilibrium. In each iteration, all of the tension forces are
computed in the first step, then all of the points are moved
in the next step without recomputing the forces.

In this algorithm, the tension force in every vertex is
computed based on the current layout before any of them
is moved. This is the major difference between this algo-
rithm and the previous ones introduced in Section 2.2, that
move one point at a time and reevaluate the situation after
each of them.

3. Experimental Results

We have conducted our experiences with two sets of
problems, the first one containing 10 weighted graphs for
which there is at least one known solution to the problem,
and the second one containing 10 graphs for which an exact
solution probably doesn’t exist.

In the first set, the graphs have been generated in 3 steps:
(1) the unweighted graph has been generated by random;
(2) we have generated a random bounded 3D layout for the
graph; (3) the weights in the graph have been computed as
the distance between the points assigned to vertices com-
posing each edge.

For the second set, both the unweighted graphs and the
weights have been generated randomly. From the results
of the various trials on these graphs we can deduce that by
generating the weights this way we have introduced several
conflicts with Equation 5. Thus, there is no exact solution
for these problems.

The results from the first set of problems are encourag-
ing. All of the methods have converged to a solution very

Table 1. Average results in 1000 iterations for
graphs with existing solution

Graph Total Error
Initial BFS RE TV

dg30 9.32e3 182.60 290.91 212.39
dg40 1.64e4 60.01 230.97 68.65
dg50 2.68e4 278.41 389.69 256.74
dg60 4.99e4 1249.94 895.73 986.75
dg70 9.95e4 780.53 998.76 208.13
dg80 1.17e5 4.39 3.50 0.13
dg90 1.34e5 6.33 1807.24 677.91
dg100 1.97e5 3437.07 4466.20 442.30
dg125 2.89e5 1732.63 2935.63 95.74
dg150 3.90e5 34.62 4.84 0.41
dg175 4.76e5 47.94 8077.07 0.47
dg200 6.70e5 7.22 0.22 0.61

close to an exact one within a number of iterations depend-
ing on the size of the graph and on the number of connec-
tions. A higher number of connections can increase the
speed of the convergence.

Table 1 shows the results of the three methods on the first
set of problems. The graphs are named after their number of
vertices. The numbers represent the total error in the graph
after 1000 iterations as an average over 10 different trials
with different seeds for the pseudo random number gener-
ator. The ε parameter is equal to 0.005 for these results.
Higher values have caused the tension vector algorithm to
diverge.

Table 2 shows the total error from Table 1 as a percentage
of the sum of all of the weights in the graph. From this table
we can notice that the error is less that 3% in all of the cases,
and at least half of the time less than 1%. This means that
all of the algorithms have found a solution that is more than
97% precise.

The last column in the table shows the total sum of the
norms of the tension vectors in each vertex of the graph. We
have included this column in the table because it illustrates
that the algorithm in this case may converge to an equilib-
rium solution that does not minimize the total error in the
graph. It would represent a physically unstable equilibrium.
In these cases, the system has been stabilized, but any small
perturbation in the position of one of the vertices could re-
sult in the system becoming unstable and converging to a
different solution.

We can also remark from this table that the tension vec-
tor algorithm is in general more precise than the other two
methods. The situations in which this is not the case are
most probably due to the convergence of the graph to an un-

Table 2. Total error in 1000 iterations as per-
centage of the total weight in the graph, ex-
isting solution

Graph BFS RE TV TV Norm
dg30 1.48% 2.36% 1.72% 0.67
dg40 0.36% 1.39% 0.41% 0.23
dg50 0.80% 1.12% 0.74% 0.00
dg60 2.06% 1.48% 1.63% 0.00
dg70 0.64% 0.82% 0.17% 3.26
dg80 0.00% 0.00% 0.00% 0.00
dg90 0.00% 1.02% 0.38% 0.05
dg100 1.40% 1.82% 0.18% 0.45
dg125 0.46% 0.77% 0.03% 1.70
dg150 0.01% 0.00% 0.00% 0.01
dg175 0.01% 1.26% 0.00% 0.01
dg200 0.00% 0.00% 0.00% 0.01

stable equilibrium solution. The criteria for deducing this is
the fact that the sum of the norms of all the tension vectors
in the graph is very small in these situations.

Table 3 shows the results of the three methods on the set
of problems with no solution.

Table 4 shows the total error in Table 3 as the percent-
age of the sum of all of the weights in the graph. The last
column has the same meaning as before, showing that even
if the solution found by the tension vector algorithm is far
from being exact, it still represents an equilibrium point for
the system.

From this second set of results we can see that although
there is no solution to these problems, all of the methods
have found a graph layout that is much closer to the con-
straints than the original one. The third method also gen-
erates more precise solutions than the other for these prob-
lems, and the difference is even more visible than for the
other set of problems. We can also notice from the last col-
umn in Table 3 that the tension vector method has generated
layouts that are quite close to an unstable equilibrium solu-
tion.

To illustrate the behavior of the algorithms, we have plot-
ted the average total error as it evolves through the first 500
iterations. Figure 3 shows these charts for the set of prob-
lems with existing solution, for the breadth-first scan, ran-
dom edge, and tension vector algorithms respectively.

From this figure we can notice that the total error de-
creases very fast in the first few iterations, and then it’s evo-
lution is much slower for both sets of problems. To illustrate
this phenomenon, Figure 4 shows the average total error for
the second set of problems for the tension vector method in
200 iterations. This figure shows that in the 20 first itera-

Table 3. Average results in 1000 iterations for
graphs with non-existing solution

Graph Total Error
Initial BFS RE TV

ukn50 8177.43 2171.06 2278.01 2082.65
ukn60 13326.01 3988.10 4115.64 3871.15
ukn70 27483.10 9714.54 9640.60 9477.52
ukn80 32838.28 11498.75 11547.96 11282.03
ukn90 38774.58 13357.58 13412.91 13106.14
ukn100 53859.34 20306.40 20338.95 19842.18
ukn125 82358.92 31329.29 31348.58 30742.93
ukn150 110082.90 42273.58 42115.45 41624.43
ukn175 136130.17 54228.63 54227.70 53380.87
ukn200 191138.27 77473.52 77285.36 76503.80

Table 4. Total error in 1000 iterations as per-
centage of the total weight in the graph, non-
existing solution
Graph BFS RE TV TV Norm
ukn50 27.27% 28.62% 26.16% 0.11
ukn60 29.98% 30.94% 29.10% 0.31
ukn70 37.45% 37.17% 36.54% 8.15
ukn80 36.75% 36.91% 36.06% 8.55
ukn90 37.19% 37.35% 36.49% 7.47
ukn100 38.79% 38.85% 37.90% 8.22
ukn125 40.29% 40.31% 39.53% 8.77
ukn150 41.16% 41.01% 40.53% 8.66
ukn175 41.52% 41.52% 40.87% 9.51
ukn200 42.19% 42.08% 41.66% 12.19

Figure 3. Average total error for BFS in 500
iterations

tions, the total error is adjusted a lot more than in the 180
next iterations for all of the problems.

Figure 4. Average total error for TV in 200 it-
erations

Finally, Figure 5 shows the evolution of a graph with 125
vertices and 3000 edges through 1000 iterations under the
tension vector algorithm and the layout of the graph at var-
ious stages of the computation. The edges are color coded
with the following meaning: red for edges that are too long
(the distance between the points is greater than the weight
of the edge), blue for edges that are too short, and yellow
for edges of the right length. The images have been created
in OpenGL using the DataViewer package [13].

Figure 5. Evolution of a graph layout in 1000
iterations with TV

3.1. Combining Methods

The previous results have shown that the tension vector
algorithm is the one generating the most consistent layouts.
Still, this method has a major disadvantage which is that
for relatively large graphs (with more than 50 vertices), the
algorithm diverges for values of the parameter ε that are
not small enough. In our example, the maximal value of ε

that we could use was 0.005. This means that although the
algorithm can build quite precise layouts, the limitation on
the value of ε imposes a longer execution time to achieve to
a certain degree of precision.

The breadth-first scan method on the other hand has
never presented divergence problems, which means that we
can use any value for ε. Higher values of the parameter lead
to faster convergence of the layout to a given precision.

The last idea that present in this paper is to combine the
two algorithms to take advantage of the strong points for
each of them. We have performed a new set of experiments
using 2 graphs with existent solution and 2 graphs with non-
existent solution, with 100 and 200 vertices respectively.
We start by applying the breadth-first scan method for 900
iterations with ε = 0.05, then we continue with the tension
vector method for another 100 iterations with ε = 0.005.

Table 5 compares the results of this last method with
the breadth-first scan algorithm on 1000 iterations with
ε = 0.05, and with the tension vector algorithm also on
1000 iterations with ε = 0.005. From these results we can
see that for the same amount of computation time, we can
generate more precise layouts by combining the two meth-
ods. This also means that to attain a given precision, the

Table 5. Average results with the combined
method in 1000 iterations

Graph BFS TV Combined
dg100 634.69 442.30 213.39
dg200 0.46 0.6 0.38
ukn100 19890.52 19842.18 19614.77
ukn200 76758.73 76503.80 75779.31

combination of the two algorithms can work faster.

3.2. Complexity and Execution Time

The complexity of our algorithms is not easy to deter-
mine since the number of iterations is not predefined, but
is chosen by hand either based on a convergence criteria or
as a fixed number. All of our methods are linear over the
number of edges in the graph for a single iteration. This
means that in general, they are quadratic over the number
of vertices in the graph.

We have performed a different experiment in which we
stop the iterations when the total error has achieved a pre-
defined lower limit, which is 0.5% in our case, meaning
that the solution is at least 95% correct for an epsilon of
ε = 0.05. We have used the graphs with existing solution
for this experiment. Figure 6 shows the results of this ex-
periment together with the execution time in each case, as
well as the execution time for 500 iterations.

Figure 6. Convergence iteration with a preci-
sion of 95%

From this figure we can see that the convergence gen-
eration doesn’t follow a regular pattern depending on the
number of vertices. In particular, larger graph can be eas-
ier for the algorithms if they present a higher edge density

which can determine the layout more precisely. And finally,
the breadth-first algorithm seems to be the one converging
towards an approximately good solution faster, while the
higher spikes for the tension vector method are due to the
divergence occurrences we have observed.

4. Conclusion

In this paper we have presented three algorithms that aim
to build graph layouts that are consistent with the weights
in an undirected graph. All of the algorithms start with a
random layout that they improve by iteratively decreasing
the amount of error on the edges. All of them are based
on the idea of attraction and repulsion forces between the
vertices based on the Euclidean distance between the points
and the weights. This idea is similar to the spring algorithm
and other force-oriented methods.

The first two algorithms, breadth-first scan and random
edge, modify one vertex at a time based on the informa-
tion from one edge the vertex belongs to. They are robust
methods that can be applied with a large range of choices
for the parameters. The third method, named the tension
vector algorithm, considers all of the edges associated with
each vertex and moves all of the points in one step before
recalculating all of the tension forces.

The experimental results have shown that all of the meth-
ods can generate consistent layouts with a precision of over
97% if the problem is solvable. In the case where it is not
possible to generate a consistent layout, the algorithms can
build configurations minimizing the total error or even find
equilibrium solutions in the case of the tension-vector algo-
rithm.

The best results clearly belong to the tension vector al-
gorithm, although the phenomenon of divergence occurring
in some cases makes the other methods valid alternatives
to it. Finally, we have shown that combining the strength
of several algorithms we can generate more precise layouts
faster.

References

[1] H. Bodlaender, M. Fellows, and D. Thilikos. Derivation of
algorithms for cutwidth and related graph layout problems.
Technical Report UU-CS-2002-032, Institute for Informa-
tion and Computing Sciences, Utrecht University, 2002.

[2] U. Brandes, V. Kääb, A. Löh, and D. Wagner. Dynamic
WWW structures in 3d. Journal of Graph Algorithms and
Applications, 4(3):183–191, 2000.

[3] U. Brandes and D. Wagner. Using graph layout to visualize
train interconnection data. Journal of Graph Algorithms and
Applications, 4(3):35–155, 2000.

[4] J. Branke, F. Bucher, and H. Schmeck. Using genetic al-
gorithms for drawing undirected graphs. In J. Allen, editor,

The Third Nordic Workshop on Genetic Algorithms and their
Applications, pages 193–205, 1997.

[5] J. Daz, J. Petit, and M. Serna. A survey on graph layout
problems. ACM Computing Surveys, 34(3):313–356, 2002.

[6] P. Eades. A heuristic for graph drawing. Congressus Nu-
merantium, 42:149–160, 1984.

[7] P. Eades and X. de Mendonça. Vertex splitting and tension-
free layout. In Graph Drawing, number 1027 in Lecture
Notes in Computer Science,, pages 244–253, 1995.

[8] P. Eades and D. Kelly. Heuristics for reducing crossings in
2-layered networks. Ars Combin., 21.A:89–98, 1986.

[9] P. Gajer and S. Kobourov. Grip: Graph drawing with intelli-
gent placement. Journal of Graph Algorithms and Applica-
tions, 6(3):203–224, 2002.

[10] W. He and K. Marriott. Constrained graph layout. In
S. North, editor, The 4th Internation Symposium on Graph
Drawing. LNCS 1190, 1997.

[11] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. An
Alan R. Apt Book. Prentice Hall, Upper Saddle River, NJ,
1999.

[12] J. Nesetril. Art of graph drawing and art. Journal of Graph
Algorithms and Applications, 6(1):131–147, 2002.

[13] R. Paffenroth, D. Vrajitoru, T. Stone, and J. Maddocks.
DataViewer: A scene graph based visualization library. In
The 5th IASTED Conference on Computer Graphics and
Imaging (CGIM 2002), pages 200–205. ACTA Press, 2002.

[14] R. Tamassia. Constraints in graph drawing algorithms. Con-
straints, 3(1):87–120, 1998.

