

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 11 November 2017, Page No. 23089-23094

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i11.15

Dana Vrajitoru, IJECS Volume 6 Issue 11 November 2017 Page No. 23083-23088 Page 23089

Growth Rates in Algorithm Complexity: the Missing Link

Dana Vrajitoru
1

1Indiana University South Bend, Department of Computer and Information Sciences

1700 Mishawaka Ave, South Bend, IN 46634, USA

Abstract:

In this paper, we propose an explicit measure for the growth rate of an algorithm complexity function. This measure complements

the usual time or space complexity analysis of algorithms and can fill a gap in the understanding of the asymptotic notation and

thus, provide educational benefits. First, we discuss some properties of the growth measure, such as its behavior with respect to

linear operators. Second, we analyze its connection to the asymptotic complexity notations and discuss its implications.

Keywords: algorithm complexity, growth rate, asymptotic notations, education.

1. Introduction

The asymptotic algorithm behavior notations of O, Ω, Θ, and

corresponding o and ω, are commonly used to describe the

time and space complexity of algorithms. They are known as

the Landau family of notations [1]. Big O, called the Bachman-

Landau notation, was first introduced by P. Bachman in 1892

[2]. Big Ω and Θ, as they are used now, were defined by D.

Knuth in 1976 [3], and were based on the Hardy-Littlewood

notations [4]. In this paper, we will use the common algorithm

complexity definitions for these notations, as found in [5] and

[6].

Analysis of algorithms is among the most difficult topics in

the computer science curriculum. A typical challenge for the

students consists of understanding the need for the constant in

the definition of the asymptotic notations and how to choose it.

A source of confusion is the fact that even though we use the

equality notation, O(f(n)) represents a set or family of

functions. It is also difficult to grasp that if an algorithm is

O(n), then it is also O(n2), but we only state the smallest such

family as the algorithm's order of complexity.

The usual language used with these notations posits that

they describe the growth of a function, or the growth of an

algorithm effort. We often explain to students that the

execution time is not that important in itself, because it can

depend on the platform. Thus, in our analysis we want to know

how the execution time will change when the problem grows,

especially by a given factor such as 2 or 10. It is what we call

the growth of the function.

In the expert literature as well as in informal complexity

discussions, it is often said that if f(n) = O(g(n)), then the

function f grows at most as fast as the function g for n large

enough. It is even fairly common to say that the growth rate

of the function f is less than or equal to the growth rate of the

function g, such as in [7]. Currently, there is no formal

definition of the term of “growth rate”. The asymptotic

notations themselves represent only an indirect measure of the

growth of a function. In this study, we propose a direct

measure of it.

The term “growth rate” is used in connection to the time or

space complexity of algorithms, as well as in other situations

related to economics or biology. In some cases, such as [8], it

is used to represent f(n+1)/f(n). Thus, for an algorithm of

complexity O(2n), the constant 2 is called the growth rate in

this context. It has also been used in other studies [9] to

illustrate the evolution of processor speed and Linux kernel

size from year to year. Some authors simply use it

interchangeably with the term complexity of an algorithm, or

of a data structure [10].

Thus, in this paper, we propose to introduce a direct

measure of the growth of a function, or the growth of the

complexity of an algorithm with the size of the problem. We

also analyze the connection between the direct growth rate and

the asymptotic behavior notations. Our goal is to give the idea

of growth rate a formal definition that can be used both in

complexity analysis and as a pedagogical tool.

When the growth rate or the complexity analysis are

mentioned, the notion of comparing f(n) with f(10n) or f(2n) is

often present [7], [11]. Other authors, such as in [12], inquire

about the size of a problem that can be solved by various

algorithms in a given amount of time, as for example, in one

second. We explore this idea further in our definition of the

growth rate function.

The idea is also implicitly present in algorithm scalability

discussions [13]. Oftentimes, when an argument for an

algorithm being scalable is made, the performance measures

are presented on a logarithmic scale. For example, in [14],

Figure 9 shows the performance of an image retrieval

algorithm for a size of the database going from 10k to 100k

and then to 1M. In [15], the run time performance of the

algorithm is presented on a logarithmic scale over the number

of processors being used. It seems that for scalability purposes,

it is important to know what will happen when a parameter in

the algorithm is multiplied by a constant.

The paper is organized the following way. Section 2 defines

the growth rate function and provides some properties for it.

Section 3 analyzes the connection between the comparison of

growth rates for two functions and their asymptotic

relationship. Section 4 discusses the implications of the

theorems in this paper both in terms of algorithms complexity

http://www.ijecs.in/

Dana Vrajitoru, IJECS Volume 6 Issue 11 November 2017 Page No. 23083-23088 Page 23090

and in terms of pedagogical uses. The paper ends with some

conclusions.

2. Growth Rate Measure

In this section, we define our growth measure for a complexity

function and examine its properties.

Definition. Let f(n) be a positive function defined on positive

integers and let k > 1 be a real number. Then we define the

growth rate function

 nf

knf
nfRk ,

Thus, we measure the growth of an algorithm by checking

how much its complexity grows when the size of the problem

increases by a factor. We can call the parameter k in this

definition the growth factor. In the above definition, we

assume that the function f has an extension defined on all real

numbers. Practically, if that is not the case, and if k is not an

integer, we can apply the floor to kn in the definition. We also

mark k with an underscore instead of using it as a normal

parameter because we usually consider it a constant.

Table 1 shows the growth rates for a variety of common

functions. This table illustrates how the measure can be used as

a pedagogical tool. Here, the growth rate can be seen to

increase clearly from one family of functions to the next.

Table 1. Growth rate function examples

For educational purposes, students can benefit from being

introduced to this table for some value of k such as 2, 5, or

10. As stated in the introduction, sometimes students struggle

to grasp the need and importance of the constant in the O

definition. This table shows directly how a function grows

faster than another without having to select such a constant. It

can help them acquire an intuitive sense of how the most

common functions are ordered by complexity.

Another important element that easily emerges from this

table is the distinction between polynomial functions and the

others. Thus, the growth rate of a polynomial is bound by

constants if k a constant, while for larger functions, it depends

on n.

Theorem 1. If f(n) and g(n) are positive functions defined on

positive integers, then for any real k > 1

a) If h(n) = g(n) / f(n) is a monotonous ascending function,

then

Rk (f, n) ≤ Rk (g, n).

b) If h(n) = g(n) / f(n) is a monotonous descending function,

then

Rk (f, n) ≥ Rk (g, n).

Proof.

a) If h(n) = g(n) / f(n) is a monotonous ascending function,

then for any positive integers p, q such that p < q,

h(p) ≤ h(q) or g(p) / f(p) ≤ g(q) / f(q). Then we can write

 ng

kng

nf

knf
ngRnfR kk ,,

)()(knhnh
knf

kng

nf

ng

The last inequality is true because h is a monotonous

ascending function and k>1 and n>0 mean that n < kn.

b) The proof is similar to a). ■

Theorem 2. If f(n) and g(n) are positive functions defined on

positive integers, then for any real k > 1

a) Rk (cf, n) = Rk (f, n), for any real positive constant c,

b) Rk (fg, n) = Rk (f, n) Rk (g, n),

c) Rk (f+g, n) < Rk (f, n) + Rk (g, n),

d) Rk i (f, n) = Rk (f, n) Ri (f, kn), for any real constant i > 1.

Proof.

a)

 nf

nkf

nfc

nkfc
nfcRk ,

This makes the measure Rk invariant to the function being

multiplied by a constant.

b)

 .,,, ngRnfR
ng

nkg

nf

nkf

ngnf

nkgnkf
ngfR kkk

This makes the measure Rk distributive with respect to

function multiplication.

c)

)()(
,

ngnf

nkg

ngnf

nkf

ngnf

nkgnkf
ngfRk

.
)()()(ngnf

ng

ng

nkg

ngnf

nf

nf

nkf

Since both f(n) and g(n) are positive functions, we can write

that

.1
)(

and1
)(

 ngnf

ng

ngnf

nf

This means that

 .,,

)(
, ngRnfR

ng

nkg

nf

nkf
ngfR kkk

Thus, the measure Rk satisfies the triangular property.

d)

 nfRknfR
nf

nkf

nkf

nikf

nf

nkif
nfR kiik ,,, ■

Theorem 2 a) can be used in classroom to explain the

presence of the constant in the definition of the O notation.

Dana Vrajitoru, IJECS Volume 6 Issue 11 November 2017 Page No. 23083-23088 Page 23091

This theorem tells us that if we multiply a function by a

constant, its growth rate remains the same. Thus, in terms of

comparing growth rates, it does not make a difference if we

compare a function f with a function g or with cg, where c is a

constant.

3. Connection with Asymptotic Notations

In this section, we will examine the connection between the

function Rk and the complexity notations of O, Ω, Θ, and o.

Theorem 3. If f(n) and g(n) are two positive functions of

positive integers such that Rk (f, n) ≤ Rk (g, n) for any k > 1,

n > 0, then either f(n) = o(g(n)), or f(n) = Θ(g(n))$. In both

cases, f(n) = O(g(n)).

Proof.

Let us use the notation h(n) = g(n) / f(n). The first part of the

proof consists of showing that the positive function h(n) is

monotonous ascending.

Let n < m be two positive integers. Then if we take k to be

equal to m / n, then k > 1 and kn = m. Then it must be true that

Rk (f, n) ≤ Rk (g, n) (f, n) . This means that

)()(mhnh
nf

mg

nf

ng

ng

mg

nf

mf

ng

nkg

nf

nkf

This proves that the function h is monotonous ascending.

If this is the case, then h(n) ≥ h(1)$ for any n ≥ 1$. If we

denote by c1 = h(1), then we have that

.)()()(11 ngcnfc
nf

ng
cnh

In particular, this means that f(n) = O(g(n)).

Next, h(n) being a positive function that is monotonous

ascending, either h(n) converges to infinity, or there exists a

constant c2 and a number n0 such that h(n) ≤ c2 for any

n > n0.

If limn→∞ h(n) = ∞, then

0limlim
ng

nf

nf

ng
nn

which means that $f(n) = o(g(n))$.

In the second case, h(n) ≤ c2 for any n > n0 means that

)()(22 nfcngc
nf

ng

which tells us that g(n) = O(f(n)) and f(n) =Ω(g(n)). Since we

already know that f(n) = O(g(n)), this means that

f(n) = Θ(g(n)). ■

Theorem 4. If f(n) = Θ(g(n)), then Rk (f, n) = Θ(Rk (g, n)) for

any k > 1.

Proof.

If f(n) = Θ(g(n)), then there exists c1, c2 > 0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n).

Then we can write

c1 g(kn) ≤ f(kn) ≤ c2 g(kn) and

)(

11

)(

1

)(

11

12 ngcnfngc

By multiplying the two inequalities we get

)()()(1

2

2

1

ng

nkg

c

c

nf

nkf

ng

nkg

c

c

 ngR
c

c
nfRngR

c

c
kkk ,,,

1

2

2

1

Rk (f, n) = Θ(Rk (g, n)) ■

Theorem 5. Let f(n) = A(n)+ h(n), where A(n) and h(n) are

positive functions such that h(n) = o(A(n)). Then

Rk (f, n) ~ Rk (A, n).

Proof.

nhnA

nkh

nhnA

nkA

nhnA

nkhnkA
nfRk ,

nA

nhnA

nh

nh

knh

nA

nhnA

knA

1

1

1

1

.

1

1
,

1

1
,

nA

nhnA

nh
nhR

nA

nh
nAR kk

We know that h(n) = o(A(n)), which means that

limn→∞ h(n) / A(n) = 0. From this, we deduce that

1

1

1
lim

nA

nhn

which leads to Rk (f, n) ~ Rk (A, n) + Rk (h, n) h(n) / A(n).

Now let's compute the limit of Rk (A, n) divided by the

expression on the right-hand side when n goes to infinity.

nA

nh

nAR

nhR

nA

nh
nhRnAR

nAR

k

k
n

kk

k
n

,

,
1

1
lim

,,

,
lim

1

1

1
lim

nkA

nkhn

because f(n) = o(A(n)) implies that limn→∞ h(kn) / A(kn) = 0.

Finally, transitivity of the asymptotic notation gives us the

conclusion of the theorem. ■

Here is an example. Let f(n) = 2n2 + 3n + 5, where

A(n)= 2n2 and h(n) = 3n + 5. When we compute the rate

functions for f and for A we get

532

)1(53
1,and,

2

22

nn

kkn
kknfRknfR kk

Since the second term in Rk (f, n) converges to 0 as n goes to

infinity, Rk (A, n) ~ Rk (f, n) indeed.

Here is a second example where Rk (h, n) is not a simple

Dana Vrajitoru, IJECS Volume 6 Issue 11 November 2017 Page No. 23083-23088 Page 23092

function of k. Let f(n) = 3n + 2n, where A(n) = 3n and

h(n) = 2n. When we compute the growth rate function for A

and we apply the same reasoning as in the proof for Theorem

5, we get

Rk (A, n) = 3(k-1)n and

Rk (f, n) ~ 3(k-1)n + 2(k-1)n (2/3)n = 3(k-1)n + (2k/3)n

We can see that for k > log2(3), the second term converges to

infinity when n goes to infinity.

However, if we compute the limit of Rk (3
n, n) divided by

this last expression, we get

1

3
21

1
lim

3

2
3

3
lim

)1(
1

)1(

)1(

 nknn
k

nk

nk

n

so even in this case, Rk (A, n) ~ Rk (f, n).

So far, the theorems that we have proved seem to show that

our measure Rk behaves pretty well and might be a contender

to the asymptotic notations that can describe the complexity of

an algorithm in a simpler way. The remaining of this section

will show some arguments to the contrary.

Preliminary Observation. Let f and g be positive functions of

positive integers such that f(n) < g(n) for n large enough. It is

possible that Rk (f, na) > Rk (g, na) for some particular value na.

Let us develop this inequality:

a

a

a

a

akak
ng

kng

nf

knf
ngRnfR ,,

 a

a

a
a kng

nf

ng
knf

From f(n) < g(n) we know that g(na) / f(na)} > 1.

Let us assume that the two functions can be extended to real

numbers and that f(x) < g(x) for any real number x large

enough. Figure 1 illustrates visually the value of

f(kna) g(na) / f(na) in connection to the other involved values.

Figure 1. Growth rates for the functions f and g

If we draw a straight line through f(na) and f(kna), as long as

these values are not equal to each other, it will intersect the Ox

axis in a point ma. Then if we draw another line connecting ma

and g(na), it intersects the vertical line going up from kna at the

vertical value g(na) / f(na). This comes from the triangle

similarity: since the two vertical lines are parallel, if we denote

by L the vertical coordinate of the top corner, the following

equalities must be true:

L

ng

mkn

mnf

knf

nf a

aa

aa

a

a

which we can solve for L to find the value mentioned above.

Incidentally, this also allows us to compute the value

$\displaystyle

 aa

aa

aa
nfknf

nfkn
nm

1

From this image we can see that there is a whole interval of

possible values for g(kna)$ that keep it larger than f(kna)

without going over L. For all of these values,

Rk (g, na) < Rk (f, na).

This observation suggests that the function f could be

consistently less than the function g, but its growth rate could

be larger than that of g in a good number of points.

Theorem 6. If f(n) and g(n) are positive functions of positive

integers, then f(n) = O(g(n)) does not imply that

Rk (f, n) ≤ Rk (g, n) for n large enough and for any positive real

number k. Thus,

a) there exist pairs of such functions f and g such that for some

values of k, Rk (f, n) > Rk (g, n) for an infinite number of values

of n;

b) there exist pairs of such functions f and g such that both f

and g are monotonous ascending, and such that for some

values of k, Rk (f, n) > Rk (g, n) for an infinite number of values

of n;

c) there exist pairs of such functions f and g such that

f(n) = o(g(n)) and that for some values of k, Rk (f, n) > Rk (g, n)

for an infinite number of values of n.

Proof.

a) Let

mnn

mnn
nf

2if

12if

2

and g(n) = n2.

The function f is linear for odd numbers and quadratic for

even numbers. It is easily clear that f(n) = O(g(n)). The growth

rate for the function g is R2(g, n) = k2 for any k > 0, as shown

in Table 1.

Let k = 2. Then the growth rate for the function f for odd

numbers is

)12(4

12

24

12

24
12,

2

2

 m

m

m

mf

mf
mfR

Thus, R2(f, 2m+1) > R2(g, 2m+1) = 4 for any m ≥ 1.

Furthermore, R2(f, 2m+1) is not bound by any constant times

R2(g, 2m+1), nor by any constant in general.

As a note, the function f(n) is neither Θ(g(n)), nor o(g(n)).

b) Let us denote by
124

m

mt the sequence of powers of 4

where the exponent is a power of 2. Note that tm
2 = tm+1.

Dana Vrajitoru, IJECS Volume 6 Issue 11 November 2017 Page No. 23083-23088 Page 23093

 11

2

2

if

if

mm

m

mm
tnt

tn

ntnt

n
nf

and g(n) = n2. The function is quadratic in the numbers of the

sequence tm. In between them, the function grows linearly.

Again, it's quite easy to see that f(n)= O(g(n)).

Thus, the function f is quadratic for numbers that increase in

a quadratic fashion, and it grows linearly in between these

values. The function is monotonic ascending.

Let k = 2. We are going to examine the growth rate for

n = ½ tm+1.

 1

12
3

2

12
1

2

2

1
12

1
2

3

2
,

 m

m

m

mm

m
m t

t

t

tt

t
tfR

Just like for the function f at point a),

R2(f, ½ tm+1) > R2(g, ½ tm+1) = 4 for any m ≥ 1. The growth rate

of this function is also not bound by any constant.

c) Let f(n) be either the function from the proof of a) or of b).

If we take g(n) = n3, then f(n) = o(g(n)) in both cases.

R2(g, n) = 8, while for both of these functions, the value of R2

for the set of numbers in the previous proofs grows with n, so

eventually it will be larger than R2(g, n) and than any constant

times R2(g, n). ■

Theorems 3 and 6 show us that the big O notation is more

general than the growth rate function. Thus, if the growth rate

of f is less than the growth rate of g, then f = O(g), but the

other way around is not always true. Even the condition f =

o(g) is not sufficient for the growth rates to be in order.

4. Discussion and Future Work

An observation we can draw from the theorems presented here

is that saying that if f(n) = O(g(n)), then the function g grows

faster than the function f is fine, but not that it grows at a faster

rate.

In a vast majority of the functions observed from analyzing

the complexity of algorithms, when f(n) = O(g(n)), the growth

rate of f is lower than the growth rate of g. Theorem 6 shows

that this is not necessarily the case because the functions are

monotonous. In many cases, the fraction f(n)/g(n) can be

shown to be monotonous, which connects to the grows rates

through Theorem 1. A direction of future research would be to

find more sufficient conditions for the growth rate of a

function to be larger than that of another one.

Furthermore, the function used in the proof for Theorem 6

a) can be used pedagogically as an example where the growth

rate simply fails to describe the behavior of a function. This

function is clearly bound by two polynomials, but its growth

rate in some circumstances is much larger than that of either

polynomial. Even more, it is not a constant, which makes it

larger than any polynomial. This can be used in classroom as

argument explaining why the growth rate is not sufficient.

Another educational argument in favor of the asymptotic

notations is the fact that some algorithms do not always have a

single function describing their number of operations. For

example, the linear search of a value in an array can require

only a constant number of operations if the target is at the

beginning of the array and a linear function of the array size if

the target is not in the array. It is hard to express the growth

rate of this algorithm as a whole. The O notation is more

appropriate in this case.

As stated in several places, the growth rate measure can be

used as an educational tool, to help students understand

various aspects of algorithms complexity more easily. A

direction of future development will be to study the impact that

the idea of growth rate can have on teaching complexity

analysis. It is important, though, to establish the mathematical

foundations of this measure first, which is the purpose of this

paper.

5. Conclusions

In this paper, we introduced an explicit measure for the

growth rate for algorithm complexity functions, Rk(f, n),

defined as the rate between f(kn) and f(n), where n is the size

of the problem and k the growth factor.

In Section 2, we formally defined the measure Rk and

showed that it is invariable with respect to constant

multiplication, similarly to the asymptotic notations. The

growth measure is distributive with respect to function

multiplication, and satisfies the triangular property with respect

to function addition.

In Section 3, we showed that if the growth rate of a function

is less than or equal to the growth rate of another, then the first

function is O of the second. The opposite connection is not as

straightforward, though. If a function is Θ of another one, then

their growth rates are also Θ of each other. More generally, the

growth rate of a function is asymptotic to the growth rate of its

largest term. This echoes the similar property of the Θ

notation.

However, a function can be O of another one, but its growth

rate can be larger than the growth rate of the second function

for some value of the growth factor k and for an infinite

number of values of n. In some of these cases, the first

function is neither o of the second, nor Θ of the second.

However, even the o notation does not guarantee a smaller

growth rate.

For most of the functions observed in analysis of algorithms,

the O notation is tied to a smaller growth rate. Theorem 6

cautions us that this is not true for any pair of functions. It is

better to use the o or Θ notations instead of O when possible.

Finally, the growth rate shows potential of use as a

pedagogical tool in teaching complexity of algorithms and the

paper has highlighted several ideas that can improve the

teaching effectiveness of this difficult topic.

References

1. E. Landau, “Handbuch der Lehre von der Verteilung der

Primzahlen”, Leipzig: B. G. Teubner, 1909.

2. P. Bachman, “Analytische Zahlentheorie”, Leipzig: B. G.

Teubner, 1892.

3. D. Knuth, “Big Omicron and Big Omega and Big Theta”,

in SIGACT News, pp. 18–24, 1976.

4. G. H. Hardy and J. E. Littlewood, “Some Problems of

Diophantine approximation”, in Acta Mathematica, p.

225, 1914.

5. D. Vrajitoru and W. Knight, “Practical Analysis of

Algorithms”, Theoretical Computer Science Series,

Springer, 2014.

6. T. Cormen, C. Leiserson, R. Rivest, and C. Stein,

“Introduction to Algorithms”, MIT Press, 3 ed., 2009.

7. M. A. Weiss, “Data Structures and Problem Solving

Using C++”, Pearson, 2nd ed., 1999.

Dana Vrajitoru, IJECS Volume 6 Issue 11 November 2017 Page No. 23083-23088 Page 23094

8. M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof,

Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlstrom,

“On Problems as Hard as CNF-SAT”, in ACM

Transactions on Algorithms, 12, 2016.

9. L. Yu, “Coevolution of Information Ecosystems: a Study

of the Statistical Relations Among the Growth Rates of

Hardware, System Software, and Application Software”,

in ACM SIGSOFT Software Engineering Notes, 36,

2011.

10. L. Babai, “The Growth Rate of Vertex-transitive Planar

Graphs”, in Proceedings of the 8th Annual ACM-SIAM

Symposium on Discrete Algorithms, 11, 5-7 January

1997, pp. 564–573.

11. A. Drozdek, “Data Structures and Algorithms in C++”,

Cengage, 4th ed., 2012.

12. M. Goodrich, R. Tamassia, and D. Mount, “Data

Structures and Algorithms in C++”, Wiley, 2nd ed.,

2011.

13. W. Pak and Y. Choi, “High Performance and High

Scalable Packet Classification Algorithm for Network

Security Systems”, in IEEE Trans. Dependable Security

Computing, 14, pp. 37–49, 2017.

14. D. Nistér and H. Stewénius, “Scalable Recognition with a

Vocabulary Tree”, in Proceedings of CVPR, 2006, pp.

2161–2168.

15. J. Strassburg and V. Alexandrov, “On Scalability

Behaviour of Monte Carlo Sparse Approximate Inverse

for Matrix Computations”, in Proceedings of the

Workshop on Latest Advances in Scalable Algorithms

for Large-Scale Systems, ScalA ’13, New York, NY,

USA, 2013, ACM, pp. 6:1–6:8.

Author Profile

Dr. Vrajitoru has obtained her title of Doctor of Sciences

from the University of Neuchatel, Switzerland, in 1997. She is

currently an associate professor of computer science at Indiana

University South Bend. Her research interest include

intelligent systems, evolutionary computation, computer

graphics, and scientific visualization.

