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Abstract:  

In this paper, we propose an explicit measure for the growth rate of an algorithm complexity function. This measure complements 

the usual time or space complexity analysis of algorithms and can fill a gap in the understanding of the asymptotic notation and 

thus, provide educational benefits. First, we discuss some properties of the growth measure, such as its behavior with respect to 

linear operators. Second, we analyze its connection to the asymptotic complexity notations and discuss its implications. 
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1. Introduction 

The asymptotic algorithm behavior notations of O, Ω, Θ, and 

corresponding o and ω, are commonly used to describe the 

time and space complexity of algorithms. They are known as 

the Landau family of notations [1]. Big O, called the Bachman-

Landau notation, was first introduced by P. Bachman in 1892 

[2]. Big Ω and Θ, as they are used now, were defined by D. 

Knuth in 1976 [3], and were based on the Hardy-Littlewood 

notations [4]. In this paper, we will use the common algorithm 

complexity definitions for these notations, as found in [5] and 

[6]. 

Analysis of algorithms is among the most difficult topics in 

the computer science curriculum. A typical challenge for the 

students consists of understanding the need for the constant in 

the definition of the asymptotic notations and how to choose it. 

A source of confusion is the fact that even though we use the 

equality notation, O(f(n)) represents a set or family of 

functions. It is also difficult to grasp that if an algorithm is 

O(n), then it is also O(n2), but we only state the smallest such 

family as the algorithm's order of complexity. 

The usual language used with these notations posits that 

they describe the growth of a function, or the growth of an 

algorithm effort. We often explain to students that the 

execution time is not that important in itself, because it can 

depend on the platform. Thus, in our analysis we want to know 

how the execution time will change when the problem grows, 

especially by a given factor such as 2 or 10. It is what we call 

the growth of the function. 

In the expert literature as well as in informal complexity 

discussions, it is often said that if f(n) = O(g(n)), then the 

function f grows at most as fast as the function g for n large 

enough.  It is even fairly common to say that the growth rate 

of the function f is less than or equal to the growth rate of the 

function g, such as in [7]. Currently, there is no formal 

definition of the term of “growth rate”. The asymptotic 

notations themselves represent only an indirect measure of the 

growth of a function. In this study, we propose a direct 

measure of it. 

The term “growth rate” is used in connection to the time or 

space complexity of algorithms, as well as in other situations 

related to economics or biology. In some cases, such as [8], it 

is used to represent f(n+1)/f(n). Thus, for an algorithm of 

complexity O(2n), the constant 2 is called the growth rate in 

this context. It has also been used in other studies [9] to 

illustrate the evolution of processor speed and Linux kernel 

size from year to year. Some authors simply use it 

interchangeably with the term complexity of an algorithm, or 

of a data structure [10]. 

Thus, in this paper, we propose to introduce a direct 

measure of the growth of a function, or the growth of the 

complexity of an algorithm with the size of the problem. We 

also analyze the connection between the direct growth rate and 

the asymptotic behavior notations. Our goal is to give the idea 

of growth rate a formal definition that can be used both in 

complexity analysis and as a pedagogical tool. 

When the growth rate or the complexity analysis are 

mentioned, the notion of comparing f(n) with f(10n) or f(2n) is 

often present [7], [11]. Other authors, such as in [12], inquire 

about the size of a problem that can be solved by various 

algorithms in a given amount of time, as for example, in one 

second. We explore this idea further in our definition of the 

growth rate function. 

The idea is also implicitly present in algorithm scalability 

discussions [13]. Oftentimes, when an argument for an 

algorithm being scalable is made, the performance measures 

are presented on a logarithmic scale. For example, in [14], 

Figure 9 shows the performance of an image retrieval 

algorithm for a size of the database going from 10k to 100k 

and then to 1M. In [15], the run time performance of the 

algorithm is presented on a logarithmic scale over the number 

of processors being used. It seems that for scalability purposes, 

it is important to know what will happen when a parameter in 

the algorithm is multiplied by a constant. 

The paper is organized the following way. Section 2 defines 

the growth rate function and provides some properties for it. 

Section 3 analyzes the connection between the comparison of 

growth rates for two functions and their asymptotic 

relationship. Section 4 discusses the implications of the 

theorems in this paper both in terms of algorithms complexity 
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and in terms of pedagogical uses. The paper ends with some 

conclusions. 

2. Growth Rate Measure 

In this section, we define our growth measure for a complexity 

function and examine its properties.  

Definition. Let f(n) be a positive function defined on positive 

integers and let k > 1 be a real number. Then we define the 

growth rate function 

 
 
 nf

knf
nfRk ,  

Thus, we measure the growth of an algorithm by checking 

how much its complexity grows when the size of the problem 

increases by a factor. We can call the parameter k in this 

definition the growth factor. In the above definition, we 

assume that the function f has an extension defined on all real 

numbers. Practically, if that is not the case, and if k is not an 

integer, we can apply the floor to kn in the definition. We also 

mark k with an underscore instead of using it as a normal 

parameter because we usually consider it a constant. 

Table 1 shows the growth rates for a variety of common 

functions. This table illustrates how the measure can be used as 

a pedagogical tool. Here, the growth rate can be seen to 

increase clearly from one family of functions to the next. 

Table 1. Growth rate function examples 

 

For educational purposes, students can benefit from being 

introduced to this table for some value of $k$ such as 2, 5, or 

10. As stated in the introduction, sometimes students struggle 

to grasp the need and importance of the constant in the $O$ 

definition. This table shows directly how a function grows 

faster than another without having to select such a constant. It 

can help them acquire an intuitive sense of how the most 

common functions are ordered by complexity. 

Another important element that easily emerges from this 

table is the distinction between polynomial functions and the 

others. Thus, the growth rate of a polynomial is bound by 

constants if k a constant, while for larger functions, it depends 

on n. 

Theorem 1. If f(n) and g(n) are positive functions defined on 

positive integers, then for any real k > 1 

a) If h(n) = g(n) / f(n) is a monotonous ascending function, 

then  

Rk (f, n) ≤ Rk (g, n). 

b) If h(n) = g(n) / f(n) is a monotonous descending function, 

then  

Rk (f, n) ≥ Rk (g, n). 

Proof. 

a) If h(n) = g(n) / f(n) is a monotonous ascending function, 

then for any positive integers p, q such that p < q,  

h(p) ≤ h(q) or g(p) / f(p) ≤ g(q) / f(q). Then we can write 

   
 
 

 
 ng

kng

nf

knf
ngRnfR kk  ,,  

 
 

 
 

)()( knhnh
knf

kng

nf

ng
  

The last inequality is true because h is a monotonous 

ascending function and k>1 and n>0 mean that n < kn. 

b) The proof is similar to a).              ■ 

Theorem 2. If f(n) and g(n) are positive functions defined on 

positive integers, then for any real k > 1 

a) Rk (cf, n) = Rk (f, n), for any real positive constant c, 

b) Rk (fg, n) = Rk (f, n) Rk (g, n), 

c) Rk (f+g, n) < Rk (f, n) + Rk (g, n), 

d) Rk i (f, n) = Rk (f, n) Ri (f, kn), for any real constant i > 1. 

Proof. 

a)  
 
 

 
 nf

nkf

nfc

nkfc
nfcRk ,  

This makes the measure Rk invariant to the function being 

multiplied by a constant. 

b)  
   
   

 
 

 
 

   .,,, ngRnfR
ng

nkg

nf

nkf

ngnf

nkgnkf
ngfR kkk   

This makes the measure Rk distributive with respect to 

function multiplication. 

c)  
   
   

 
 

 
 













)()(
,

ngnf

nkg

ngnf

nkf

ngnf

nkgnkf
ngfRk

 

 
 

 
 

   
 

.
)()()( ngnf

ng

ng

nkg

ngnf

nf

nf

nkf





 

Since both f(n) and g(n) are positive functions, we can write 

that 

 
 

 
 

.1
)(

and1
)(





 ngnf

ng

ngnf

nf  

This means that  

 
 
 

 
   .,,

)(
, ngRnfR

ng

nkg

nf

nkf
ngfR kkk   

Thus, the measure Rk satisfies the triangular property. 

d)  
 
 

 
 

 
 

   nfRknfR
nf

nkf

nkf

nikf

nf

nkif
nfR kiik ,,,   ■ 

Theorem 2 a) can be used in classroom to explain the 

presence of the constant in the definition of the $O$ notation. 
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This theorem tells us that if we multiply a function by a 

constant, its growth rate remains the same. Thus, in terms of 

comparing growth rates, it does not make a difference if we 

compare a function f with a function g or with cg, where c is a 

constant. 

3. Connection with Asymptotic Notations 

In this section, we will examine the connection between the 

function Rk and the complexity notations of O, Ω, Θ, and o. 

Theorem 3. If f(n) and g(n) are two positive functions of 

positive integers such that Rk (f, n) ≤ Rk (g, n) for any k > 1,  

n > 0, then either f(n) = o(g(n)), or f(n) = Θ(g(n))$. In both 

cases, f(n) = O(g(n)). 

Proof.  

Let us use the notation h(n) = g(n) / f(n). The first part of the 

proof consists of showing that the positive function h(n) is 

monotonous ascending. 

Let n < m be two positive integers. Then if we take k to be 

equal to m / n, then k > 1 and kn = m. Then it must be true that 

Rk (f, n) ≤ Rk (g, n) (f, n) . This means that 

 
 

 
 

 
 

 
 

 
 

 
 

)()( mhnh
nf

mg

nf

ng

ng

mg

nf

mf

ng

nkg

nf

nkf
  

This proves that the function h is monotonous ascending.  

If this is the case, then h(n) ≥ h(1)$ for any n ≥ 1$. If we 

denote by c1 = h(1), then we have that 

 
 

.)()()( 11 ngcnfc
nf

ng
cnh   

In particular, this means that f(n) = O(g(n)).  

Next, h(n) being a positive function that is monotonous 

ascending, either h(n) converges to infinity, or there exists a 

constant c2 and a number n0 such that h(n) ≤ c2 for any  

n > n0.  

If limn→∞ h(n) = ∞, then 

 
 

 
 

0limlim  
ng

nf

nf

ng
nn

 

which means that $f(n) = o(g(n))$. 

In the second case, h(n) ≤ c2 for any n > n0 means that 

 
 

)()( 22 nfcngc
nf

ng
  

which tells us that g(n) = O(f(n)) and f(n) =Ω(g(n)). Since we 

already know that f(n) = O(g(n)), this means that 

f(n) = Θ(g(n)).                    ■ 

Theorem 4. If f(n) = Θ(g(n)), then Rk (f, n) = Θ(Rk (g, n)) for 

any k > 1. 

Proof. 

If f(n) = Θ(g(n)), then there exists c1, c2 > 0 such that  

c1 g(n) ≤ f(n) ≤ c2 g(n). 

Then we can write 

 

c1 g(kn) ≤ f(kn) ≤ c2 g(kn) and 

)(

11

)(

1

)(

11

12 ngcnfngc
  

By multiplying the two inequalities we get 

     


)()()( 1

2

2

1

ng

nkg

c

c

nf

nkf

ng

nkg

c

c  

      ngR
c

c
nfRngR

c

c
kkk ,,,

1

2

2

1  

Rk (f, n) = Θ(Rk (g, n))    ■ 

Theorem 5. Let f(n) = A(n)+ h(n), where A(n) and h(n) are 

positive functions such that h(n) = o(A(n)). Then 

Rk (f, n) ~ Rk (A, n). 

Proof. 

 
   
   

 
   

 
   













nhnA

nkh

nhnA

nkA

nhnA

nkhnkA
nfRk ,  

 
   

 

 
 

 
   

 








nA

nhnA

nh

nh

knh

nA

nhnA

knA

1

1

1

1  

 
 
 

 
 
   

 

.

1

1
,

1

1
,

nA

nhnA

nh
nhR

nA

nh
nAR kk







 

We know that h(n) = o(A(n)), which means that  

limn→∞ h(n) / A(n) = 0. From this, we deduce that 

 
 

1

1

1
lim 




nA

nhn

 

which leads to Rk (f, n) ~ Rk (A, n) + Rk (h, n) h(n) / A(n). 

Now let's compute the limit of Rk (A, n) divided by the 

expression on the right-hand side when n goes to infinity. 

 

   
 
 

 
 

 
 










nA

nh

nAR

nhR

nA

nh
nhRnAR

nAR

k

k
n

kk

k
n

,

,
1

1
lim

,,

,
lim

 

 
 

1

1

1
lim 




nkA

nkhn

 

because f(n) = o(A(n)) implies that  limn→∞ h(kn) / A(kn) = 0. 

Finally, transitivity of the asymptotic notation gives us the 

conclusion of the theorem.               ■ 

Here is an example. Let f(n) = 2n2 + 3n + 5, where  

A(n)= 2n2 and h(n) = 3n + 5. When we compute the rate 

functions for f and for A we get 

     
532

)1(53
1,and,

2

22






nn

kkn
kknfRknfR kk

 

Since the second term in Rk (f, n) converges to 0 as n goes to 

infinity, Rk (A, n) ~ Rk (f, n) indeed. 

 

Here is a second example where Rk (h, n) is not a simple 
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function of k. Let f(n) = 3n + 2n, where A(n) = 3n and  

h(n) = 2n. When we compute the growth rate function for A 

and we apply the same reasoning as in the proof for Theorem 

5, we get 

Rk (A, n) = 3(k-1)n    and 

Rk (f, n) ~ 3(k-1)n + 2(k-1)n (2/3)n = 3(k-1)n + (2k/3)n 

We can see that for k > log2(3), the second term converges to 

infinity when n goes to infinity. 

However, if we compute the limit of Rk (3
n, n) divided by 

this last expression, we get 

 
1

3
21

1
lim

3

2
3

3
lim

)1(
1

)1(

)1(























 nknn
k

nk

nk

n

 

so even in this case, Rk (A, n) ~ Rk (f, n). 

So far, the theorems that we have proved seem to show that 

our measure Rk behaves pretty well and might be a contender 

to the asymptotic notations that can describe the complexity of 

an algorithm in a simpler way. The remaining of this section 

will show some arguments to the contrary. 

Preliminary Observation. Let f and g be positive functions of 

positive integers such that f(n) < g(n) for n large enough. It is 

possible that Rk (f, na) > Rk (g, na) for some particular value na. 

Let us develop this inequality: 

   
 
 

 
 


a

a

a

a

akak
ng

kng

nf

knf
ngRnfR ,,  

 
 
 

 a

a

a
a kng

nf

ng
knf   

From f(n) < g(n) we know that g(na) / f(na)} > 1. 

Let us assume that the two functions can be extended to real 

numbers and that f(x) < g(x) for any real number x large 

enough. Figure 1 illustrates visually the value of  

f(kna) g(na) / f(na) in connection to the other involved values. 

 

Figure 1. Growth rates for the functions f and g 

If we draw a straight line through f(na) and f(kna), as long as 

these values are not equal to each other, it will intersect the Ox 

axis in a point ma. Then if we draw another line connecting ma 

and g(na), it intersects the vertical line going up from kna at the 

vertical value g(na) / f(na). This comes from the triangle 

similarity: since the two vertical lines are parallel, if we denote 

by L the vertical coordinate of the top corner, the following 

equalities must be true: 

 
 

   
L

ng

mkn

mnf

knf

nf a

aa

aa

a

a 



  

which we can solve for L to find the value mentioned above. 

Incidentally, this also allows us to compute the value 

$\displaystyle 

   
   aa

aa

aa
nfknf

nfkn
nm






1  

From this image we can see that there is a whole interval of 

possible values for g(kna)$ that keep it larger than f(kna) 

without going over L. For all of these values,  

Rk (g, na) < Rk (f, na).  

This observation suggests that the function f could be 

consistently less than the function g, but its growth rate could 

be larger than that of g in a good number of points.  

Theorem 6. If f(n) and g(n) are positive functions of positive 

integers, then f(n) = O(g(n)) does not imply that  

Rk (f, n) ≤ Rk (g, n) for n large enough and for any positive real 

number k. Thus, 

a) there exist pairs of such functions f and g such that for some 

values of k, Rk (f, n) > Rk (g, n) for an infinite number of values 

of n; 

b) there exist pairs of such functions f and g such that both f 

and g are monotonous ascending, and such that for some 

values of k, Rk (f, n) > Rk (g, n) for an infinite number of values 

of n; 

c) there exist pairs of such functions f and g such that  

f(n) = o(g(n)) and that for some values of k, Rk (f, n) > Rk (g, n) 

for an infinite number of values of n. 

Proof.  

a) Let 

 









mnn

mnn
nf

2if

12if

2

 

and g(n) = n2. 

The function f is linear for odd numbers and quadratic for 

even numbers. It is easily clear that f(n) = O(g(n)). The growth 

rate for the function g is R2(g, n) = k2 for any k > 0, as shown 

in Table 1. 

Let k = 2. Then the growth rate for the function f for odd 

numbers is 

 
 
 

 
)12(4

12

24

12

24
12,

2

2 








 m

m

m

mf

mf
mfR  

Thus, R2(f, 2m+1) > R2(g, 2m+1) = 4 for any m ≥ 1. 

Furthermore, R2(f, 2m+1) is not bound by any constant times 

R2(g, 2m+1), nor by any constant in general. 

As a note, the function f(n) is neither Θ(g(n)), nor o(g(n)).  

 

b) Let us denote by 
124



m

mt  the sequence of powers of 4 

where the exponent is a power of 2. Note that tm
2 = tm+1. 
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 













 11

2

2

if

if

mm

m

mm
tnt

tn

ntnt

n
nf

 

and g(n) = n2. The function is quadratic in the numbers of the 

sequence tm. In between them, the function grows linearly. 

Again, it's quite easy to see that f(n)= O(g(n)). 

Thus, the function f is quadratic for numbers that increase in 

a quadratic fashion, and it grows linearly in between these 

values. The function is monotonic ascending.  

Let k = 2. We are going to examine the growth rate for 

n = ½ tm+1. 

  1

12
3

2

12
1

2

2

1
12

1
2

3

2
, 








 


 m

m

m

mm

m
m t

t

t

tt

t
tfR  

Just like for the function f at point a),  

R2(f, ½ tm+1) > R2(g, ½ tm+1) = 4 for any m ≥ 1. The growth rate 

of this function is also not bound by any constant.  

c) Let f(n) be either the function from the proof of a) or of b). 

If we take g(n) = n3, then f(n) = o(g(n)) in both cases.  

R2(g, n) = 8, while for both of these functions, the value of R2 

for the set of numbers in the previous proofs grows with n, so 

eventually it will be larger than R2(g, n) and than any constant 

times R2(g, n).                    ■ 

Theorems 3 and 6 show us that the big O notation is more 

general than the growth rate function. Thus, if the growth rate 

of f is less than the growth rate of g, then f = O(g), but the 

other way around is not always true. Even the condition f = 

o(g) is not sufficient for the growth rates to be in order. 

4. Discussion and Future Work  

An observation we can draw from the theorems presented here 

is that saying that if f(n) = O(g(n)), then the function g grows 

faster than the function f is fine, but not that it grows at a faster 

rate. 

In a vast majority of the functions observed from analyzing 

the complexity of algorithms, when f(n) = O(g(n)), the growth 

rate of f is lower than the growth rate of g. Theorem 6 shows 

that this is not necessarily the case because the functions are 

monotonous. In many cases, the fraction f(n)/g(n) can be 

shown to be monotonous, which connects to the grows rates 

through Theorem 1. A direction of future research would be to 

find more sufficient conditions for the growth rate of a 

function to be larger than that of another one. 

Furthermore, the function used in the proof for Theorem 6 

a) can be used pedagogically as an example where the growth 

rate simply fails to describe the behavior of a function. This 

function is clearly bound by two polynomials, but its growth 

rate in some circumstances is much larger than that of either 

polynomial. Even more, it is not a constant, which makes it 

larger than any polynomial. This can be used in classroom as 

argument explaining why the growth rate is not sufficient. 

Another educational argument in favor of the asymptotic 

notations is the fact that some algorithms do not always have a 

single function describing their number of operations. For 

example, the linear search of a value in an array can require 

only a constant number of operations if the target is at the 

beginning of the array and a linear function of the array size if 

the target is not in the array. It is hard to express the growth 

rate of this algorithm as a whole. The O notation is more 

appropriate in this case. 

As stated in several places, the growth rate measure can be 

used as an educational tool, to help students understand 

various aspects of algorithms complexity more easily. A 

direction of future development will be to study the impact that 

the idea of growth rate can have on teaching complexity 

analysis. It is important, though, to establish the mathematical 

foundations of this measure first, which is the purpose of this 

paper.  

5. Conclusions 

In this paper, we introduced an explicit measure for the 

growth rate for algorithm complexity functions, Rk(f, n), 

defined as the rate between f(kn) and f(n), where n is the size 

of the problem and k the growth factor. 

In Section 2, we formally defined the measure Rk and 

showed that it is invariable with respect to constant 

multiplication, similarly to the asymptotic notations. The 

growth measure is distributive with respect to function 

multiplication, and satisfies the triangular property with respect 

to function addition. 

In Section 3, we showed that if the growth rate of a function 

is less than or equal to the growth rate of another, then the first 

function is O of the second. The opposite connection is not as 

straightforward, though. If a function is Θ of another one, then 

their growth rates are also Θ of each other. More generally, the 

growth rate of a function is asymptotic to the growth rate of its 

largest term. This echoes the similar property of the Θ 

notation. 

However, a function can be O of another one, but its growth 

rate can be larger than the growth rate of the second function 

for some value of the growth factor k and for an infinite 

number of values of n. In some of these cases, the first 

function is neither o of the second, nor Θ of the second. 

However, even the o notation does not guarantee a smaller 

growth rate. 

For most of the functions observed in analysis of algorithms, 

the O notation is tied to a smaller growth rate. Theorem 6 

cautions us that this is not true for any pair of functions. It is 

better to use the o or Θ notations instead of O when possible. 

Finally, the growth rate shows potential of use as a 

pedagogical tool in teaching complexity of algorithms and the 

paper has highlighted several ideas that can improve the 

teaching effectiveness of this difficult topic.  
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