Expected Behavior of Algorithms

- Estimating the average complexity of some algorithms based on the distribution of data.
- The algorithms are O of some function and not Θ.
- Examples: linear search, quicksort.
- **Expected value** for a variable X for which we know the probability $f_x(x)$ for every possible outcome x is

$$E(X) = \sum_{x} (x \cdot f_x(x))$$

Linear Search

```cpp
template <class otype>
int location_by_linear_search
    (const otype a[], const otype &target, int n)
{
    int i=0;
    while (i<n && a[i] != target)
        ++i;
    return i;
}
```

C455 Algorithms Analysis
Linear Search

- Searching for a target in an array, and stopping when we find the value.
- $O(1) \leq T(n) \leq O(n)$
- Suppose the target is in the array and is equally likely to be in any of the positions from 0 to n-1.
- What is the expected time for a successful search?
- What is the expected time for an unsuccessful search? $\Theta(n)$.

C455 Algorithms Analysis

Successful Search

- Let X be the variable representing the number of iterations for a successful search.
- For any x, $0 \leq x \leq n-1$, $P(X=x) = 1/n$
- The expected value for X is the sum of all possible values multiplied by their probability:
 $E(X) = \sum x \cdot P(X=x) = 0 \cdot 1/n + 1 \cdot 1/n + ... + (n-1) \cdot 1/n = (n-1)/2$
- $E(X) = \Theta(n)$
- The search time is another statistical variable $Y = \Theta(X)$ which means $E(Y) = \Theta(n)$.
Bubble Sort

```cpp
template <class otype>
void simple_bubble_sort (otype a[], int n)
{
    for (int k = n; k > 1; --k)
        for (int j = 1; j <= k; ++j)
            if (a[j] > a[j+1])
                swap (a[j], a[j+1]);
}
```

- What is the average number of object comparisons? $n(n-1)/2$
- What is the average number of swaps?

Number of Swaps

- Let Y be the total number of swaps.
- Note: every element in the array must be swapped with all those to its left that are larger than it. Let L be the random variable representing this number.
- Then $E(Y)=E(L_1)+E(L_2)+...+E(L_n)$
- L_i can take the values $\{0, 1, ..., i-1\}$. Each of them is equally probable with a probability of $1/i$.
- $E(L_i) = 0/i+1/i+2/i+...+(i-1)/i = (i-1)/2$
- $E(Y)=(1-1)/2+(2-1)/2+...+(n-1)/2 = n(n-1)/4$

C455 Algorithms Analysis
void binary_search (otype a[], otype &target, int first, int last, bool & found, int & subscript) {
 int mid;
 found = false;
 while (first <= last && !found) {
 mid = (first + last)/2;
 if (target < a[mid])
 last = mid - 1;
 else if (a[mid] < target)
 first = mid + 1;
 else
 found = true;
 }
 if (found)
 subscript = mid;
 else
 subscript = first;
}
Execution Tree

![Execution Tree Diagram]

Expected Time

- \(E(X) = 1(1/10) + 2(2/10) + 3(4/10) + 4(3/10) = 29/10 = 2.9 \)

- \(E(Y) = 2(1/10) + 3(1/10) + 4(2/10) + 5(2/10) + 6(1/10) + 7(2/10) + 8(1/10) = 51/10 = 5.1 \)
Unsuccessful Search

- \(E(X) = 3(5/11) + 4(6/11) = 39/11 \approx 3.55 \)

- \(E(Y) = 3(1/11) + 4(3/11) + 5(1/11) + 6(2/11) + 7(3/11) + 8(1/11) = 61/11 \approx 5.55 \)

Conditional Expected Value

- Suppose we have a successful search for a target in a sorted array by a binary search and that each position is equally likely to contain the target.
- In the first iteration, let \(A_1 \) be the event "target < \(A[\text{mid}] \)"
 - \(A_2: \) "target > \(A[\text{mid}] \)"
 - \(A_3: \) "target == \(A[\text{mid}] \)"
- \(P(A_3) = 1/n \)
- \(P(A_1) = 1/n \lfloor (n-1)/2 \rfloor \)
- \(P(A_2) = 1/n \lceil (n-1)/2 \rceil = 1/n \lfloor n/2 \rfloor \)
Expected Value

- Let X_n be the number of object comparisons for a successful search.
- $X_n = 1 + I(A_2 \cup A_3) + Z_n$
- where $I(A_2 \cup A_3)$ is 1 if either of A_2 or A_3 occurs and Z_n is the number of comparisons done after that.
- $E(X_n) = 1 + P(A_2 \cup A_3) + E(Z_n)$
 $= 1 + P(A_2 \cup A_3) + P(A_1) E(Z_n | A_1) + P(A_2) E(Z_n | A_2) + P(A_3) E(Z_n | A_3)$

Recurrence Relation

- $E(X_n) = 1 + 1/n \lfloor n/2 \rfloor + 1 + 1/n \lfloor (n-1)/2 \rfloor E(X_{\lfloor (n-1)/2 \rfloor}) + 1/n \lfloor n/2 \rfloor E(X_{\lfloor n/2 \rfloor}) + 0$
- If we denote $F(n) = nE(X_n)$, then this becomes
- $F(n) = n + \lfloor n/2 \rfloor + 1 + F(\lfloor n-1/2 \rfloor) + F(\lfloor n/2 \rfloor)$
- We can solve this and obtain
- $F(n) = 3/2 n \lg n$
- $=> E(X_n) = 3/2 \lg n$
Quicksort

- Let X_n be the number of comparisons done by the quicksort.
- $X_0=0, X_1=0$
- $X_n = n+1 + Y_n + Z_n$, where
- $Y_n =$ comparisons done in the first recursive call.
- $Z_n =$ comparisons done in the second recursive call.

E(X_n)

- Number of comparisons during the
- $X_n = n+1 + Y_n + Z_n$
- $E(X_n) = n+1 + E(Y_n)+E(Z_n)$
- Y_n and Z_n depend on the position of the pivot in the original array.
- Let A_k be the event that the pivot ends on the position k in the array, $0 \leq k \leq n-1$.
- $E(Y_n) = P(A_0)E(Y_n|A_0) + P(A_1)E(Y_n|A_1) + \ldots + P(A_{n-1})E(Y_n|A_{n-1})$
- $P(A_k) = 1/n$.
- $E(Y_n | A_k) = E(X_k)$
- $E(Y_n) = 1/n \left[E(X_2) + E(X_3) + \ldots + E(X_{n-1}) \right]$

Same for $E(Z_n)$.

- $E(X_n) = n+1 + 2/n \left(E(X_2) + E(X_3) + \ldots + E(X_{n-1}) \right)$
- Denote by $F(n) = E(X_n)$
- $n F(n) = n^2 + n + 2[F(2) + F(3) + \ldots + F(n-1)]$
- Computing $n F(n) - (n-1) F(n-1)$, we obtain
- $n F(n) - (n-1) F(n-1) = n^2 - (n-1)^2 + n - (n-1) + 2F(n-1)$
- $n F(n) = (n + 1) F(n - 1) + 2n$
- Substituting $G(n) = F(n)/(n+1)$, we can solve this recurrence relation and obtain
- $F(n) = E(X_n) \simeq 2 \ln n \simeq 1.39 \ln n$