Pattern Matching Algorithms

- **Simple** problem: finding the position of a substring (pattern) in a string.
- **Complex** problem: matching a regular expression in a string, like m*?[rt]. It's an adaptation of the simple problem.
- Brute force approach: complexity $O(nm)$, where n is the length of the string and m is the length of the pattern.
- Better algorithms can be of complexity $O(n+m)$.

Brute Force Algorithm

```c
int Search(char *str, char *pattern) {
    bool found=false;
    int n=strlen(str), m=strlen(pattern);
    for (int i=0; i<=n-m; i++) {
        found = true;
        for (int j=0; j<m && found; j++)
            if (str[i+j] != pattern[j])
                found = false;
        if (found)
            return i;
    }
    return -1;
}
```

C455 Algorithms Analysis
The Rabin-Karp Algorithm

- Before it checks if the pattern is matched at a particular position, it does some preliminary checking if it’s possible for the pattern to match or not.
- It checks for a "fingerprint" that can be easily computed and that eliminates many positions in the string.
- If the string and pattern are made of 0/1, the fingerprint can be the bit parity.
- With a good fingerprint, it can be $O(n+m)$ on average (not in the worst case).

```c
int Rabin_Karp(char *str, char *pattern) {
    bool found=false;
    int n=strlen(str), m=strlen(pattern);
    int pfinger = fingerprint(pattern, m);
    int sfinger = fingerprint(str, m);
    for (int i=0; i<n-m && !found; i++) {
        if (pfinger == sfinger) {
            found = true;
            for (int j=0; j<m && found; j++)
                if (str[i+j] != pattern[j])
                    found = false;
            if (found) return i;
        }
        sfinger = updatefinger(sfinger, str[i], str[i+m]);
    }
    return -1;
}
```
Fingerprint

- **Parity:**

  ```
  fingerprint(str, m) = sum(str[i],
  i = 0 to m-1) % 2;
  update(finger, old_bit, new_bit) =
  (finger + old_bit + new_bit) % 2;
  ```

- Only eliminates on average half of the positions.
- It's better to have a fingerprint that gives a lot of different values.

Better Function

- Let q be a prime number > mn^2 and \(r = 2^{m-1} \% q \).

```c
int fingerprint(char *str, int m) {
    int finger = 0;
    for (int i=0; i<m; i++)
        finger = mod((finger*2 + str[i]), q);
    return finger;
}

int update(int finger, char old_bit, char new_bit)
{ return mod((2*(finger-r*old_bit)+new_bit), q); }

int mod(int n, int m)
{ return (n>=0 ? n%m : n%m+m); }
```
The Knuth-Morris-Pratt Algorithm

- Based on the idea that when we have a mismatch at a position, we can eliminate a good number of adjacent positions based on where could the word start from again and on the internal repetitions in the pattern.
- It starts by computing a table of number of positions to be skipped based on how many letters from the pattern have been matched in the current step.
- Complexity: O(n+m).
- Let k be such that pattern[0..k] has been matched in the string.

Examples

<table>
<thead>
<tr>
<th>tortoise</th>
<th>k</th>
<th>-1 0 1 2 3 4 5 6 7</th>
<th>shift</th>
<th>1 1 2 3 3 3 6 7 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>tweedledoodle</td>
<td>k</td>
<td>-1 0 1 2 3 4 5 6 7 8 9</td>
<td>shift</td>
<td>1 1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>pappar</td>
<td>k</td>
<td>-1 0 1 2 3 4 5</td>
<td>shift</td>
<td>1 1 2 2 3 3 6</td>
</tr>
<tr>
<td>tartar</td>
<td>k</td>
<td>-1 0 1 2 3 4 5</td>
<td>shift</td>
<td>1 1 2 3 3 3 3</td>
</tr>
</tbody>
</table>
```c
int KMP(char *str, char *pattern) {
    int n=strlen(str), m=strlen(pattern);
    int *shift = compute_shift(pattern);
    int i=0, j=0;
    while (i<=n-m) {
        while (str[i+j] == pattern[j]) {
            j++;
            if (j >= m)
                return i;
        }
        i = i+shift[j-1];
        j = max(j-shift[j-1], 0);
    }
    return -1;
}

int *compute_shift(char *p) {
    int m=strlen(p), i=1, j=0;
    int *shift=new int[m+1];
    shift[-1] = 1; // this could be position m
    shift[0] = 1;
    while (i+j<m)
        if (p[i+j] == p[j]) {
            shift[i+j] = i;
            j = j+1;
        } else {
            if (j == 0)
                shift[i] = i+1;
            i = i + shift[j-1];
            j = max(j-shift[j-1], 0);
        }
    return shift;
}
```

C455 Algorithms Analysis