The Binary Tree

- **Def.** A **binary tree** is a finite set, call it T, that is either empty or else has its elements partitioned in 3 distinguished subsets:
 - a singleton subset containing the root of T,
 - a left subtree, which is itself a binary tree,
 - a right subtree, which is again a binary tree.
- The objects of T are called nodes.

Parent - Child

- If x and y are nodes such that y is the root of the left subtree of the tree rooted at x, the we say that y is the **left child** of x and x is the **parent** of y.
- Similar definition for the **right child**.
- The **descendants** of a node x are all the nodes that make up the left and right subtrees.
- The **ancestors** of a node x are all the nodes in the tree for which x is a descendant.
- The root of the tree has no ancestors.
- A node with no descendant is called a **leaf node**.
Tree Properties

- The *height* of a tree is equal to
 - -1 if the tree is empty
 - $1 + \max(\text{height(left subtree)}, \text{height(right subtree)})$.
- The *level* of a node is equal to
 - 0 if the node is the root of the tree
 - $1 + \text{level(parent)}$ for any other node.
- The height of the tree is the maximal level of any node in that tree.

Minimum Height

- What is the minimum height of a tree with n nodes?
- If we denote that by $M(n)$, then we have
 - $M(n) = 1 + \min_{0 \leq i < n}\{\max(M(i), M(n-1-i))\}$
- From this we can deduce that
 - $M(n) = 1 + M(\lfloor n/2 \rfloor)$
 - $M(n) = \lceil \lg n \rceil$
Number of Nodes

- What is the minimum/maximum number of nodes in a tree of height \(h \)?
- Min: \(n(h) = h+1 \)
- Max: \(N(-1) = 0 \)
- \(N(h) = 1 + 2 \cdot N(h-1) \)
- \(N(h) = 2^{h+1} - 1 \)
- Number of empty subtrees: \(n+1 \).

Number of Leaves

- Minimum: 1 leaf.
- Maximum number of leaves in a tree with \(n \) nodes?
- Inverse problem: what is the minimum number of nodes in a tree with \(\lambda \) leaves?
- \(\lambda \) leaves \(\Rightarrow \) \(2\lambda \) empty subtrees at least \(\Rightarrow \) at least \(2\lambda - 1 \) nodes in the tree.
- \(n \geq 2\lambda - 1 \iff \lambda \leq (n+1)/2 \Rightarrow \)
- \(\lambda \leq \left\lfloor (n+1)/2 \right\rfloor = \left\lceil n/2 \right\rceil \)
void print_in_preorder (node_ptr p) {
 if (p != NULL) {
 cout << p->datum << endl;
 print_in_preorder (p->left);
 print_in_preorder (p->right);
 }
}

Tree Traversal

Complexity

- **Number of runtime stack frames**: the maximum number at any time is equal to the height of the tree+2.
- **Extra space** required:
 - min: $\lfloor \log n \rfloor + 2$
 - max: $n + 1$
- **Time** (number of operations): a constant times the total number of function calls.
- **Number of calls**: the number of nodes + the number of empty subtrees = $2n+1$.
- Complexity is $\Theta(n)$.

C455 Algorithms Analysis
Height of the Tree

```c
int height (node_ptr p)
{
    if (p == NULL)
        return -1;
    else if (height(p->left)<=height(p->right))
        return 1 + height(p->right);
    else
        return 1 + height(p->left);
}
```

Complexity

\[
K(T) = \begin{cases}
1 & \text{if } T \text{ is empty (}n=0) \\
1 + K(L_T) + K(R_T) + K(\text{taller}(L_T,R_T)) & \text{if } T \text{ is not empty} \\
1 & \text{if } T \text{ is empty (}n=0) \\
1 + K(L_T) + 2K(R_T) & \text{if } R_T \text{ is taller than } L_T \\
1 + 2K(L_T) + K(R_T) & \text{otherwise}
\end{cases}
\]

- In the worst case, if the tree is a string, and we denote the complexity by \(T(n) \), then we have
 - \(T(0) = 1 \)
 - \(T(n) = 2 \cdot T(n-1) + 2 \)
 - So \(T(n) = \Theta(2^n) \)
Binary Search Trees

- **Def.** A *binary search tree* is a binary tree with the following properties:
 - a) Each node carries one object of some type containing a "key" value that distinguishes it from all objects stored in the tree.
 - b) For each node N in the tree, all the keys in the left subtree of N are smaller than the key in N, and all the keys in the right subtree of N are larger than the key in N.

Search for a Key in a BST

```cpp
node_ptr location(node_ptr p, key_type target)
{
    while (p) {
        if (target == key(p->datum))
            return p;
        else if (target < key(p->datum))
            p = p->left;
        else
            p = p->right;
    }
    return NULL;
}
```

C455 Algorithms Analysis
Creating a New Node

// The node contains an integer
// datum and no label.
node_ptr new_node(otype x)
{
 node_ptr result = new node;
 result->left = NULL;
 result->right = NULL;
 result->datum = x;
 return result;
}

Insert a New Key in a BST

bool insert(node_ptr & p, otype x)
{
 if (!p) {
 p = new_node(key);
 return true;
 }
 else if (key(x) < key(p->datum))
 return insert(p->left, x);
 else if (key(x) > key(p->datum))
 return insert(p->right, x);
 else
 return false;
}
Reading From A File

while unread data remain in the file
{
 read one data object from the file into a temporary variable;
 insert the object into the binary search tree;
 advance to the next unread data object in the data file;
}

- File 1: Jill, Cody, Tina, Drew, Beth, Pete, Ruth
- File 2: Jill, Tina, Pete, Cody, Beth, Ruth, Drew
- File 3: Tina, Beth, Ruth, Cody, Pete, Drew, Jill

Height Balanced Trees

- **Def.** A binary tree is **height balanced** if for every node in the tree, the height of the left subtree and the right subtree is at most 1.
- Otherwise, we can define it recursively:
 - $|\text{height(left subtree)} - \text{height(right subtree)}| \leq 1$.
- the left subtree and the right subtree are both height balanced.
- A BST which is height-balanced is an AVL tree.
Height of Height Balanced Trees

- What is the minimum and maximum height of a height balanced tree with \(n \) nodes?
- Minimum: minimum height of a tree with \(n \) nodes, \(\lceil \lg n \rceil \).
- Let \(H(n) \) be the maximum height of a height-balanced tree.
- \(H(0) = -1, H(1) = 0, H(2) = 1 \), etc.
- \(H(n) = 1 + \max_{0 \leq i < n} \{H(i): i \text{ is such that } H(i) \text{ and } H(n-i-1) \text{ differ by at most 1} \} \)

Inverse Problem

- Given a height balanced tree of height \(h \), what is the minimum number of nodes in the tree, \(M(h) = n \)?
- \(M(0) = 1, M(1) = 2, M(2) = 1 + M(1) + M(0) \)
- In general we can write:
- \(M(h) = 1 + M(h-1) + M(h-2) \)
- \(M(h) = a((1+\sqrt{5})/2)^h + b((1-\sqrt{5})/2)^h + c \)
- \(h = \Theta(\lg n) \)
- This means that in general the height of a height balanced tree is \(\Theta(\lg n) \).
Comparison-Based Sorting Algorithms

template <class otype>
void linear_insertion_sort (otype a[], int n)
{
 for (int k = 2; k <= n; ++k)
 {
 otype temp = a[k];
 for (int i = k-1; i >= 1 &&
 a[i] > temp; --i)
 {
 a[i+1] = a[i];
 a[i+1] = temp;
 }
 }
}

Theorem

- **I1 Theorem.** For every comparison based sorting algorithm and every set of \(n \) distinct objects, there is a way of arranging the objects initially so that the number of object comparisons that will be made by the given algorithm while sorting the collection is at least \(\lceil \log(2(n!)) - 1 \rceil \).

- Consequently, if \(T_{\max}(n) \) denotes the maximum possible execution time for a comparison based sorting algorithm on an array of length \(n \), then \(T_{\max}(n) = \Theta(n \log n) \).