Deterministic AA

- Introduction, loop counting
- Euclidian algorithm for GCD
- Divide and conquer
- Traversing binary trees
- Sorting algorithms; lower bound for the comparison based algorithms
- Pattern matching

Analysis of Algorithms

- **Analysis of algorithms** is the science of determining the amounts of time and space required by computers to carry out various procedures.
- Often we need to choose between the space and time requirements.
- In general we try to choose the most efficient algorithm to solve a problem, but the efficient algorithms are in general more complex.
Example A1

template <class otype>
int location_of_max (const otype a[], int first, int last)
{
 int max_loc = first;
 for (++first; first <= last; ++first)
 if (a[first] > a[max_loc])
 max_loc = first;
 return max_loc;
}

Example A2

template <class otype>
int location_by_linear_search
 (const otype a[], const otype &target, int first, int last)
{
 while (first <= last && a[first] != target)
 ++first;
 return first;
}
template <class otype>
void binary_search (const otype a[], const otype &target, int first, int last, bool &found, int &subscript)
{
 int mid;
 found = false;
 while (first <= last && !found) {
 mid = (first + last)/2;
 if (target < a[mid])
 last = mid - 1;
 else if (a[mid] < target)
 first = mid + 1;
 else
 found = true;
 }
 if (found)
 subscript = mid;
 else
 subscript = first;
}

Complexity of the Binary Search

- Let M(n) be the minimum number of times that the body of the loop will be executed during an unsuccessful binary search of a subarray of length n.
- M(0)=0, M(1)=1
- M(n)=1+M(⌊(n-1)/2⌋) ≤1+M(⌊n/2⌋)
- We can show that
- M(n)≤ ⌈lg n⌉ = O(log n)
Theorem A4

Let p, q, and M be positive integers. Then $pq > M$ if and only if $p > \lfloor M/q \rfloor$.

Euclid's Algorithm for GCD

```c
int g_c_d (int m, int n) {
    int dividend = larger (m, n);
    int divisor = smaller (m, n);
    int remainder = dividend % divisor;
    while (remainder != 0) {
        dividend = divisor;
        divisor = remainder;
        remainder = dividend % divisor;
    }
    return divisor;
}
```
Euclid

- **Theorem:** Let \(m \) and \(n \) be positive integers, with \(m \leq n \). Let \(r \) denote the remainder when \(n \) is divided by \(m \). Then the g.c.d. of \(r \) and \(m \) is equal to the g.c.d. of \(m \) and \(n \).

- Complexity in the worst case:
- \(\Theta(\log(\min(m, n))) \)

Divide and Conquer

- Algorithms that solve a problem by dividing it in similar problems of smaller size.
- Examples: binary search, merge sort, quick sort.
template <class otype>
bool merge_arrays (const otype a[], int afirst, int alast, const otype b[], int bfirst, int blast, otype c[], int cfirst, int clast)
{
 if (clast - cfirst + 1 < (alast - afirst + 1) + (blast - bfirst + 1))
 return false;
 else {
 while (afirst <= alast && bfirst <= blast)
 if (a[afirst] <= b[bfirst])
 c[cfirst++] = a[afirst++];
 else
 c[cfirst++] = b[bfirst++];
 while (afirst <= alast)
 c[cfirst++] = a[afirst++];
 while (bfirst <= blast)
 c[cfirst++] = b[bfirst++];
 return true;
 }
}

template <class otype>
void merge_sort (otype a[], int first, int last, otype *aux = NULL)
{
 if (last <= first) return;
 bool initial_call = !(aux);
 if (initial_call)
 aux = new otype[last - first + 1];
 int mid = (first + last) / 2;
 merge_sort (a, first, mid, aux);
 merge_sort (a, mid+1, last, aux);
 merge_arrays (a, first, mid, a, mid+1, last, aux, 0, last);
 for (int i=first, j=0; i<=last; ++i, ++j)
 a[i] = aux[j];
 if (initial_call)
 delete [] aux;
}
Complexity of the Merge Sort

- Let $T(n)$ be the complexity of the merge sort for a problem of size n.
- All the operations preceding the two recursive calls: $\Theta(1)$
- Calling the merge sort recursively: $T(\lfloor n/2 \rfloor)$ and $T(\lceil n/2 \rceil)$.
- Merging the two arrays: $\Theta(n)$
- Copying the array from aux into a: $\Theta(n)$.
- $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n)$
- $T(n) = \Theta(n \log n)$

```
template <class otype>
void quicksort (otype a[], int first, int last)
{
    if (last <= first) return;
    int i = first + 1,  j = last;

    while (i <= last && a[i] < a[first]) i++;
    while (a[j] > a[first]) --j;
    while (i < j) {
        swap (a[i], a[j]);
        do
            ++i;
        while (a[i] < a[first]);
        do
            --j;
        while (a[j] > a[first]);
    }
    swap (a[first], a[j]);
    quicksort (a, first, j-1);
    quicksort (a, j+1, last);
}
```
Complexity of the Quicksort

- In general splitting the array in two will be of complexity $\Theta(n)$.
- If j is the position of the pivot and $k=j$-first, we can write
 - $T(n) = T(k) + T(n-k-1) + \Theta(n)$
- **Worst case:** If the array is sorted then j will be equal to the first, so that $k=0$. Then we have
 - $T(n)=T(n-1)+ \Theta(n)$
 - $T(n) = \Theta(n^2)$

Complexity of the Quicksort

- **Best case:** $k = \lfloor (n-1)/2 \rfloor$
 - $T(n)=T(\lfloor (n-1)/2 \rfloor) + T(\lceil (n-1)/2 \rceil) + \Theta(n)$
 - $T(n)=\Theta(n \log n)$
- **Worst case:** when the array is already sorted.
- Median of three: the worst case become the best case.