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Abstract

This report presents a model for simulating various reproduction modes
and types restrictions from nature with the genetic algorithms. We con-
sider three reproduction modes, which are self-fertilizing, hermaphrodite
excluding self fertilization, and with two differentiated gender types (male
and female). We start with a model in which the reproduction mode
evolves along with the rest of the genotype. Next, we compare the per-
formance of the reproduction modes we have introduced and study the
influence of the population size on their performance. Finally, we in-
troduce some mating restrictions similar to the natural geographical and
social limitations and study their influence on the performance of each
reproduction mode.

1 Introduction

In this report, we introduce a simulation of the phenomenon of gender separation
using the genetic algorithms (GAs). The purpose of this simulation is to study
some of the mechanisms by which this natural feature has become dominant in
our ecosystem and the ways it is connected to the evolution and the potential for
adaptation of the species. Our hypothesis is that the mating schemes developed
by individuals of high fitness, i.e. those highly adapted to their environment,
have become dominant in the population as a consequence of natural selection.
This research is a continuation of (Vrajitoru, 2002).

The study of the sexual reproduction and of the mating schemes has been an
interest of research in GAs and evolutionary computation (Sumida et al., 1990;
Miller and Todd, 1995; Ventrella, 1996; Hemelrijk, 1999; Noble, 1999; Rejeb and
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AbuElhaija, 2000), especially in relation to the development of communication
systems and of biodiversity.

The phenomenon of natural selection of the living beings combined with
the preservation of the genetic diversity are among the most powerful adap-
tation schemes by which many species have survived and evolved into more
intelligent ones. In this context, sexual reproduction is the most important
mechanism for insuring the genetic diversity of a population and increasing the
potential for adaptation of a species to hostile environments. Many studies have
demonstrated the importance of preserving the biodiversity (Naeem et al., 1994;
Martinez, 1996), some of them in particular for the genetic algorithms (Schaffer
and Eshelman, 1991).

Looking at the history of this feature, the original unicellular organisms
achieved reproduction by simple division. Subsequently evolution introduced
an exchange of genetic information with another individual during the process
of cellular division. Later, multicellular organisms came to reproduce through
specialized organs that can either be male or female. We can classify these
organisms in three major categories according to their mating mechanism.

The first type, called self-fertilizing, is manifest in many plants and consists
of individuals that present both male and female features simultaneously, thus
being capable of producing offspring without any exterior contribution. The
offspring are practically genetic clones of the parent.

The second category contains organisms that present both male and female
organs, but that have developed a mechanism to prevent the self-fertilization.
For example, some plants develop the male and female organs at different mo-
ments in time, while some hermaphrodite species of fish can change their sex at
particular stages of their life.

The third category includes all the other multicellular species, in particular
the majority of the animals, for which each individual develops only one of
the two possible reproductive organs and thus can only mate with individuals
of a different gender. This represents in general about half of the population,
although for some species an imbalance in the distribution of the two genders
can be observed.

Sexual reproduction with completely separate male and female organisms
has proven to provide several advantages in nature. The most obvious one is
that by preserving the biodiversity it contributes to the strength of the species,
to its resistance to diseases, and to its adaptability to novel conditions. Some
studies have also shown that sexual differentiation is instrumental in developing
communication within a population. Furthermore, we can remark that all the
mammals and most vertebrate species have adopted this reproduction mode.
This suggests that this reproductive mode may be instrumental in evolving more
intelligent organisms, according to the human criteria of defining intelligence.

It has been observed that, in environments free of viruses like the polar
or desert regions, and where life is sparse, self-fertilizing organisms are more
widespread than in well populated areas (Hamilton et al., 1990). These authors
relate their findings to the presence or absence of viruses in those regions and
conclude that the existence of two gender types in a species provides it with
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better chances to adapt to new situations and harsher environments.
Moreover, the gender differentiation has compelled the organisms to develop

sophisticated mating schemes, which enhance the natural selection of the best
individuals for reproduction (Werner and Todd, 1997). Recruiting an individual
of another gender for mating purposes requires among other things a complex
communication system whose development may have contributed to evolving
language and social structure, both of which are closely related to the intelligence
of a species.

Other interesting research concerning gender approaches the problem of
multi-optimization (Allenson, 1992). In this context, sexual selection can be
regarded as a cooperation between two individuals or even two genetic opera-
tors to solve a symbiotic problem (Sanchez-Velazco and Bullinaria, 2003).

In this report we explore several of the reproductive models and their impact
on the performance of the genetic algorithms.

The first phenomenon that we study in this report is the mechanism by which
gender separation has occurred in nature. For this, we start with a population
following a balanced distribution of all the reproduction modes and evolve the
gene representing this feature along with the rest of the genetic code. This
experiment follows the hypothesis that the original conditions for the separation
of the two genders in nature may have involved a mixed population. Thus,
initially these individuals were competing with hermaphrodite organisms for
survival and dominance within the same species.

The second experiment focuses on a simple comparison of these reproductive
modes with respect to the global performance of the population. For this part
of the study we explore the question: if two species have the exact same genetic
code except for the reproductive mode, how different are their adaptation to
the environment and chances for survival?

In the third part of the report we introduce a new variation in the comparison
of the reproduction modes. We introduce mating restrictions simulating natural
conditions such as geographical and social limitations of the mating choices for
any given individual. We then compare the influence of this factor on the
performance of the species with the influence of the reproduction mode itself.

The remainder of the report is structured as follows. Section 2 presents our
gender evolution model and the general context of our experiment. Section 3
compares the three reproduction modes using three classes of problems: a set of
standard functions, several deception problems, and the problem of Hamiltonian
circuits in a graph. Section 4 introduces the mating restrictions and studies
their influence on the performance of the population, followed by a summary
and conclusions.

2 Evolving the Reproduction Mode

In this section we present a simulation model in which the population is initially
composed of an equal number of several gender types that can evolve through
genetic operations along with the rest of the chromosome. In our experiments,
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the population always converges to one or two (male/female) gender types, and
we are interested in the probability of convergence to each type.

2.1 Model Description

In our model, we have four types of individuals: male (M), female (F), self-
fertilizing (SF) and hermaphrodite (H). The gender of the individual is assigned
at random in the initial population, and is also inherited by the children from
their parents. Thus, the reproduction mode of the individuals selected for re-
production will be inherited by the new generation.

A self-fertilizing individual will mate any individual, including itself. The
hermaphrodite individuals can mate any individual other than themselves. The
males and females can mate an individual of the opposite sex or any of the two
other kinds. It is obvious that in this model, if the population is composed
entirely of male or female individuals, the mating search will not succeed no
matter what first parent we start with. The distribution between males and
females being probabilistically balanced by the design of our algorithm, this
situation is extremely unlikely, but not impossible. We prevent such deadlocks
by a spontaneous sex change from male to female or the other way around after
a number of 25 attempts, or when we have tested 25% of the population and
could not find the second parent. Since this situation can only happen after the
population has already converged to the male/female model, this precaution
does not introduce any bias in the results.

The children inherit the gender type of their parents randomly, with an equal
probability attributed to each parent. To keep a fair balance between male and
female individuals, when one or two of the parents are of either of these types,
then one or two or the children will be either a male or a female, according to
a random choice. Thus, the child of a hermaphrodite and a male could be a
female with a probability of 25%.

Let us denote by n0M , n0F , n0SF , and n0H the number of male, female, self-
fertilizing, and hermaphrodite individuals respectively in a given generation.
We can compute the expected number of occurrences of each gender type in
the next generation, denoted by n1M , n1F , n1SF , and n1H , considering the
mating scheme we have described, first by ignoring the roulette wheel selection.
Let n0M + n0F + n0SF + n0H = n be the size of the population. To simplify
the computation, let n0MF and n1MF be the number of individuals that are
either males or females in the old and new generation respectively, niMF =
niM + niF , i = 0, 1.

For the male/female individuals, their type can be found in the next gen-
eration in either of these situations: if a male or female are chosen as the first
parent, or if an individual of any other type is chosen as the first parent and it
is matched by a male-female individual. The probability that one chosen indi-
vidual is a male or female is equal to n0MF /n, the number of such individuals
divided by the size of the population.
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To simplify Equation 1, let us consider that the number of males and of
females is about the same and let if be m0 = n0MF /2. If we also note that
n0H + n0SF = n − 2m0, then we have that
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By ignoring the last term in Equation 2 since it’s a small negative quantity,
let us see how the expected number of male and female individuals compares to
the previous one which is 2m0. We will try to prove that the expected number
in the new generation is lower than their number in the previous one. This is
equivalent to proving that
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In Equation 3, we can assume that m0 ≥ 1, otherwise n1MF = 0. What re-
mains to verify is that 2m0 ≤ n. If we remember that we have made the assump-
tion that n0MF = 2m0, this means that if either the number of hermaphrodite
or of self-fertilizing individuals in the population is not 0, then the population
of male/female individuals will decrease from each generation to the next.

We can find a hermaphrodite in the new generation if a hermaphrodite was
chosen as a first parent, or if the second parent is a hermaphrodite and not iden-
tical to the first one. The probability of the second case requires a complex com-
putation because in the case where the first parent is a male, a hermaphrodite
individual will be chosen from the entire population except for the male indi-
viduals, which increases their chances. Their expected number is
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To simplify Equation 4 we will make the same assumption as for Equation 1.

Then we can rewrite Equation 4 the following way:
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Considering that the last factor in the previous equation is a negligeable
quantity, if m0 ≥ 1, we can say that
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We can interpret Equations 5 and 6 to indicate that as long as the num-
ber of male/female individuals is not negligible, the number of self-fertilizing
individuals is expected to increase. Then if the number of male/female individ-
uals is close to 0, the expected number of hermaphrodite individuals will slowly
decrease in favor of the self-fertilizing ones.

The number of self-fertilizing individuals is computed similar to the hermaphrodite
individuals, except that there is no restriction for the parents not to be the same
individual. The equation is:
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By making the same assumption as for Equation 4, we can rewrite Equation 7

this way:

n1SF =
n0SF

2

(

1 +
n0SF

n
+

n0H

n − 1
+

2m0

n − m0

)

=

= n0SF +
n0SF

2

(

m2

0

n(n − m0)
+

n0H

n(n − 1)

)

(8)

Equation 8 tells us that as long as the population is not entirely composed
of self-fertilizing individuals, their number is expected to increase. It is also
notable that the increment of the number of self-fertilizing individuals depends
more on the male/female individuals than on the hermaphrodite ones. This
means that as long as the population contains some male/female individuals,
the number of self-fertilizing individuals will grow at a fast rate. When the
population contains only hermaphrodite and self-fertilizing individuals, their
numbers will evolve a lot slower.

Using Equations 1 to 8, we have plotted the expected numbers of individuals
of each of the four types for a population size of 50 over 500 generations, starting
from an equal number of individuals of each type (12.5). Figure 1 shows the
results of this simulation.

In this figure we can see that the number of self-fertilizing individuals is
continuously growing until it almost dominates the population. The number of
hermaphrodite individuals starts by growing while the number of male/female
individuals is still large enough, then it starts to decrease, but at a slower rate
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Figure 1: Theoretical evolution of the number of individuals of each gender type
for a population of size 50 in 500 generations

than the male/female individuals. The number of male/female individuals be-
comes less than 1 in generation number 117, while the number of hermaphrodites
becomes less than 1 only in generation number 380. Our experiences with a ge-
netic algorithm have shown that the population converges to one gender type a
lot faster than in the theoretical case, in general after less than 50 generations.

Note that these computations are done without taking the roulette wheel into
consideration. Roulette wheel selection of the parents for crossover will favor
the individuals of high fitness and increase the expected number of individuals
with their corresponding reproduction type in the new generation.

2.2 Parameter Settings

In this section we introducethe test functions and other parameters that we have
used for the genetic algorithm in our simulation.

2.3 Test Functions

We have chosen three classes of problems to test our model: a set of ten standard
test functions, several deceptive functions, and one NP-complete problem. Each
class of problems presents a special challenge for the GAs, and a combination
of them can give us a better idea of the mechanisms in the model that we try
to simulate.

Standard functions set
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We started our experiments with a set of ten standard functions used in
many cases to test GAs (Whitley et al., 1996). The goal is to find values of the
variables xi that minimize each of the functions in Equation 9.

F1 : f(xi|i = 1, 3) =

3
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(9)

For each function, we have chosen the genetic representation of the variables
xi such that the optimal individual is neither fully composed of 0 values, nor of
1 values to avoid any bias of the genetic operators. The size of an individual
is usually ten times the number of variables involved in the description of its
function, meaning that ten genes are used to encode each variable.

Deceptive problems
This class of problems is based on the phenomenon of deception (Whitley,

1990; Deb and Goldberg, 1994) and contains problems that are known to be
difficult for GAs. For this reason, they are a frequent choice as test functions
in the study of GAs (Goldberg et al., 1992; Kingdon and Dekker, 1995; Mo-
han, 1998). Their difficulty comes from the fact that the optimal individual is
isolated from other individuals of high performance, and there are one or more
suboptimal individuals that are easier to reach by hill-climbing.

8



We have chosen eight deception problems that consist of concatenating a
given number of 3-bit functions as shown in Table 1. For these problems, the
optimal individual is represented by a string of 3 bits whose closest neighbors
display the lowest performance. We have conducted our experiments with in-
dividuals composed of 100 3-bit strings, making the fitness of the optimal indi-
vidual 3000.

To illustrate the concept of deceptive functions, Figure 2 shows a graph of
the function decep1 where the eight possible 3-bit combinations are grouped
according to the Hamming distance between them. In this graph, the combi-
nations that are different by just one bit are connected with a line. The fitness
value associated with each combination is placed under the vertex. Thus, there
is a connection between the combinations 001 and 101 since one is obtained
from the other by mutating the first bit.

From this figure we can notice that the two combinations of highest fitness
are 000 and 111, the latter being the optimal one. All of the closest neighbors
to 111 have a fitness of 0, while the closest neighbors to 000 are assigned posi-
tive fitness values which make the suboptimal solution 000 much easier to reach.

22 0
001 101

26 0
011010

100 110
14 0

28
000

30
111

Figure 2: Graph of 3-bit combinations with associated fitness values for the
function decep1. The edges represent Hamming distances of 1 bit.

Hamiltonian circuit (HC)
Given an oriented graph, does there exist a circuit that passes once and only

once through each vertex? This problem is known to be NP-complete (Brassard
and Bratley, 1994).

We have performed our experiments with ten HC problems having graphs of
9 to 150 vertices and up to 3000 edges. The direct representation of a HC prob-
lem for the GAs is difficult. De Jong and Spears (1989) suggest transforming
the HC instances into instances of the satisfiability (SAT) problem, described
bellow, whose genetic representation is easier.

SAT (Boolean satisfiability)
Given a Boolean expression depending on some variables, does there exist

an assignment to those variables such that the value of the expression becomes
true?
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Table 1: Fitness associated with each 3-bit combination for the deception func-
tions

000 001 010 011 100 101 110 111

decep1 28 26 22 0 14 0 0 30

decep2 28 26 22 14 14 26 22 30

decep3 22 0 28 26 0 30 14 0

decep4 0 14 30 0 26 28 0 22

decep5 22 14 28 26 22 30 14 26

decep6 26 14 30 22 26 28 14 22

decep7 22 14 28 26 14 30 24 14

decep8 14 22 30 14 24 28 14 26

A detailed description of the reduction of a HC instance into a SAT instance
can be found in (Brassard and Bratley, 1994) or (Vrajitoru, 1999). For any
given graph, a Boolean variable corresponds to each edge, and is given the true
value if the edge belongs to the circuit. The SAT expression represents the fact
that, for each vertex, one and only one of the entering edges and of the exiting
edges must belong to the circuit. This translates into an ’xor’ clause binding
all the edges entering each vertex and a similar one for the edges exiting each
vertex. The entire expression is built by combining all the clauses with the ’and’
operator.

For example, let us consider the graph in Figure 3. The conversion of the
HC instance for this graph into a SAT instance would result in Equation 10, in
which a Boolean variable with the same name as edge is true if the edge belongs
to the Hamiltonian circuit. The symbols ’⊗’ and ’∧’ represent the Boolean ’xor’
and ’and’ operators.

Figure 3: The graph for which Equation 10 represents the instance of SAT
corresponding to its HC instance

out (AC ⊗ AD) ∧ BE ∧ (CB ⊗ CD) ∧ DB ∧ (EA ⊗ EC)∧
in EA ∧ (CB ⊗ DB) ∧ (AC ⊗ EC) ∧ (AD ⊗ AD) ∧ BE

(10)
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This SAT expression can be satisfied by the following truth assignment: AC,
CD, DB, BE, and BA being true, and all of the other variables being false. This
solution also represents a Hamiltonian circuit in the graph if considered as a
sequence of edges.

The genetic representation of SAT is straightforward. Each variable is
mapped onto a binary gene, where the 0 / 1 values can be interpreted as
false/true. In the classical evaluation of a Boolean expression, an individual
can only be evaluated to the true / false values. Thus, as long as an individual
does not represent an exact solution for the expression, it is evaluated to 0.
This makes it difficult for the GA to improve the individual performance, be-
cause it cannot decide whether an individual is far from, or close to, the optimal
solution. To evaluate an expression to more than true or false, we used fuzzy
logic measures, also proposed by De Jong and Spears (1989) . Specifically, the
’and’ operation is evaluated to the average of the terms, while the ’or’ operation
returns the maximum of the terms.

2.4 The Crossover Operator

We have used the combined balanced crossover operator (Vrajitoru, 2004). This
operator utilizes four variations of crossover to build every new generation: 1-
point, 2-point, uniform and dissociated. For each operation, one of the four
crossover forms is chosen randomly, each of them having an equal probability
to be selected. We will briefly describe the functionality of these operators.

Let L be the length of the individual, where the genes are numbered from 0
to L − 1.

The 1-point crossover (Holland, 1975) cuts each parent at a random cross
site between 1 and L−1, and swaps the resulting right hand sides of the parents.
In particular, if the cross site is equal to L−1, no exchange of information occurs
between the parents.

The n-point crossover (De Jong, 1975) is equivalent to n independent 1-
point crossovers applied in sequence to the same parents. It cuts the parents
in n points and exchanges every other resulting part from the parents. For our
experiments, we have chosen n = 2.

The uniform crossover (Syswerda, 1989) swaps each of the parent genes
with a probability pswap < 0.5 independently of any other gene. We have
chosen pswap = 0.5 for our research, which means that approximately L/2 of the
parent genes will be randomly exchanged. This operator is interesting because
it eliminates the location bias in the genetic representation of the solutions to
the problem.

The dissociated crossover (Vrajitoru, 1999) splits each parent in two at a
different cross site, and swaps the resulting right hand sides of the parents by
applying logical conjunction and disjunction respectively on the parent genes
for determining the values between the cross sites.
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2.5 Experiment Description

In this experiment we start with a population composed of equal numbers of each
gender type and run the GA for 500 generations. The gender type is inherited
by the children from the parents as we described in Section 3.1. Gender type
evolves along with the rest of the genotype. Our primary interest is in the
composition of the population at the conclusion of the evolutionary simulation.

We performed 150 runs of the GA for each problem with a different initial
population. 50 of the trials were with a mutation rate of 0 (no mutation), 50
of them with a mutation rate of 0.0005, and 50 of them with a mutation rate
of 0.01. The crossover rate is equal to 1 in all the cases. We performed each
experiment with an initial population size of 50.

To have a baseline for estimating the impact of the fitness-proportionate
selection on the gender evolution, we have performed a simulation in the same
conditions as our experiments (population of size 50, 500 generations, 50 trials)
with a fictious population for which the fitness function was constant (equal to
1). This gives us an idea of what the expected gender evolution is if we only
consider the probabilities derived from the mating constraints.

Figure 4 shows the result of this simulation in the first 215 generations, since
the population had completely converged at that point in all of the 50 trials.
The generation number actual total convergence generation is number 212, but
the generation at which the number of male/female individuals have become 0
is 109.

If we compare this figure with Figure 1, we notice that in this second case,
the convergence was less smooth and the population also took longer to con-
verge, but the general outline of the evolution of the number of individuals of
each gender type is similar. The difference between the two simulations is that
Figure 1 presented only a computation of the sequences of expected numbers of
individuals based on the probabilities introduced in Section 2.1. The expected
number of individuals of each gender is a real number in that case. The later
simulation presented in Figure 4 is a more practical one in which individuals
are selected randomly regardless of their fitness, but the mating constraints are
the same as in the case of a real population. The number of individuals of each
gender in this case must be an integer number.

The results of our experiments with the three types of problems are shown
Tables 2 and 3. We display the percentage of simulations for which the popula-
tion has converged to each of the gender types, for each class of problems, and
for population sizes of 50 and 100 respectively. These results are compared with
the convergence number for each gender type in the simulation presented in
Figure 4, denoted in the table by constant fitness. In our experiments, the pop-
ulation has always converged to one particular gender type in 500 generations,
and often a lot sooner than that.

We note that although the general distribution of gender types confirms
the previous computations, the number of male/female composed populations
is not equal to the expected number (0). Also, the number of hermaphrodite
individuals is higher than the expected one. These discrepancies are due to the
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Figure 4: Simulation of gender evolution with a population size of 50 in 500
generations (215 shown), constant fitness

influence of the fitness-proportionate selection and also suggest that the mating
constraints that preserve the bio-diversity of the population by preventing the
self-fertilization (or cloning) show a better performance than the simple repro-
duction scheme, which is why their numbers are higher than expected. This
phenomenon is accentuated for the populations of smaller size. For the larger
populations, the results are closer to the probabilistic expectations and this is
most likely due to the probabilistic law of big numbers.

3 Comparing the Reproduction Modes

We are interested in the influence of the self-fertilization and of the gender
separation on the performance of the GAs.

3.1 Reproduction Schemes

Here we compare four reproduction schemes that we compare using the average
performance over 100 runs on each test problem. Half of these tests were con-
ducted without mutation and half with a mutation rate of 0.01. The population
sizes were 50 and 100.

The first reproduction scheme is based on the fitness-proportionate selection.
In this case, all the individuals are self-fertilizing, and thus the process of mating
doesn’t require any special operation. We denote this scheme by simple.

The second scheme is the one presented in the previous section, where the
gender types belong to any of the four categories. They are assigned randomly
in the initial population and evolve through generations. We denote this scheme
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Table 2: Gender convergence in 500 generations, population size of 50

M/F H S-F

Constant fitness 0 42% 58%

pm = 0 Standard 1.00% 45.80% 53.20%
Deception 0.50% 47.00% 52.50%
HC 0.57% 46.29% 53.14%
Average 0.69% 46.36% 52.95%

pm = 0.0005 Standard 0.00% 42.67% 57.33%
Deception 0.00% 46.34% 53.66%
HC 0.00% 47.90% 52.10%
Average 0.00% 45.64% 54.36%

pm = 0.01 Standard 1.00% 45.80% 53.20%
Deception 0.50% 48.00% 51.50%
HC 0.48% 46.38% 53.14%
Average 0.66% 46.73% 52.61%

Global Average 0.68% 46.54% 52.78%
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Table 3: Gender convergence in 500 generations, population size of 100

M/F H S-F

Constant fitness 0% 40% 60%

pm = 0 Standard 0.20% 48.19% 51.61%
Deception 0.00% 46.02% 53.98%
HC 0.00% 41.65% 58.35%
Average 0.07% 45.29% 54.65%

pm = 0.0005 Standard 0.20% 46.37% 53.41%
Deception 0.00% 37.73% 62.27%
HC 0.00% 44.97% 55.03%
Average 0.07% 43.02% 56.9%

pm = 0.01 Standard 0.20% 47.15% 52.65%
Deception 0.00% 42.00% 58.00%
HC 0.00% 43.86% 56.14%
Average 0.07% 44.34% 55.59%

Global Average 0.07% 44.22% 55.71%
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by mixed.
The last two schemes, denoted by hetero and herm, are based on populations

completely formed of male/female and hermaphrodite individuals respectively.
For both of them, an individual cannot be mated with itself. For hetero, the
mating choice is limited to about half of the population.

We have based our evaluation on the best fitness value achieved in the ter-
minal generation. To evaluate each reproduction type on each problem, we
have chosen two measures: the average performance over the 100 runs and the
best performance from the same 100 runs. This gives us an estimation of the
average and best case performance of each model. These measures provide a
classification of our schemes in which we only consider the top first and second
positions.

We have defined the score of each crossover operator as the number of oc-
currences it has on the top first and top second positions for each of the average
and best case performance. For a global classification of the models, we com-
pute the total number of points in each case as a weighted sum of these four
numbers, where the top second positions receive half the weight of the top first
positions.

3.2 Experimental Results

Table 4 presents the average performance over 100 runs in 500 generations
achieved by each reproduction scheme on the set of standard function. Each
problem in this class is a minimization problem, so that smaller results are bett-
ter. Table 5 presents the results under the same conditions on the deception
problems. This class contains optimization problems, where the maximal per-
formance is equal to 3000. Table 6 shows the results of the reproduction schemes
on the HC problems. The maximal performance in this case is equal to 1.

We have compared the results using a T-Test with a confidence of 95%. In
each table, we have displayed the best results that are significantly better than
the next one in bold. The best results for each class of problems that are not
significantly better than the average are displayed only in bold.

From these tables we observe that the best average performance is obtained
in almost all cases by either the hetero or the hermaphrodite populations. The
mixed scheme, where gender type evolves, is almost never the best one. This
suggests that avoiding self-fertilization can improve the performance of GAs.

Tables 7, 8, and 9 show the same results for a population size of 100, rounded
to 2 or 3 decimals. These represent an average over 150 trial with mutation rates
of 0, 0.01, and 0.0005. Just as before, we have compared the best and second
best results with a T-test with a confidence of 95% and marked in italics the best
results that showed a significant difference with the next ones. We notice that
just as before, very few of these results can be considered significantly better
than the previous ones.

These tables also suggest that for larger populations, the gender-separated
mating type, that we have denoted by “hetero”, performs better than the others
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Table 4: Average fitness in 500 generations, standard test functions, population
size of 50

Problem Simple Mixed Hetero Herm Best

F1 0.136 0.119 0.104 0.122 hetero
F2 0.307 0.212 0.398 0.249 mixed
F3 1.687 1.68 1.667 1.673 hetero
F4 2.433 2.516 2.315 2.463 hetero
F5 3.645 5.074 4.87 4.283 simple
F6 2.636 2.843 2.639 2.822 simple
F7 95.993 110.867 97.407 87.523 herm
F8 1.64 1.846 1.865 1.749 simple
F9 0.091 0.1 0.093 0.1 simple
F10 1.239 1.396 1.119 1.302 hetero

Table 5: Average fitness in 500 generations, deception problems, population size
of 50

Problem Simple Mixed Hetero Herm Best

d1 2720.51 2730.41 2729.75 2725.16 mixed
d2 2875.99 2926.21 2877.45 2876.83 mixed
d3 2548.84 2558.95 2560.35 2563.56 herm
d4 2562.77 2554.69 2553.65 2554.93 simple
d5 2782.01 2783.45 2781.81 2785.69 herm
d6 2780.37 2780.64 2782.03 2782.28 herm
d7 2682.13 2686.25 2683.99 2684.99 mixed
d8 2687.71 2688.39 2688.64 2690.07 herm
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Table 6: Average fitness in 500 generations, HC problems, population size of 50

Problem Simple Mixed Hetero Herm Best

hc50 0.946 0.946 0.946 0.945 hetero
hc60 0.946 0.945 0.944 0.945 simple
hc70 0.944 0.944 0.944 0.944 hetero
hc80 0.943 0.944 0.944 0.943 hetero
hc90 0.943 0.943 0.944 0.945 herm
hc100 0.943 0.943 0.943 0.943 mixed
hc110 0.945 0.944 0.944 0.945 simple
hc120 0.943 0.943 0.944 0.944 herm
hc130 0.943 0.943 0.943 0.942 simple
hc140 0.94 0.941 0.942 0.942 herm
hc150 0.946 0.946 0.942 0.945 simple

more often than for small populations. This confirms some empirical observa-
tions from nature where small populations that reproduce with two separated
sexes have more difficulties than hermaphrodite species under the same condi-
tions, but for large populations, this reproduction type is quite successful.

Table 10 summarizes the results presented in the previous tables, by counting
the number of times that each scheme results in the best average performance
for each class of problem (the columns marked by average) for the two values
we have chosen for the population size. This table suggests that the gender-
separated model performs better than the others, especially for the larger pop-
ulation size, which reinforces the hypothesis that it is the better fitness that has
made this mating type successful in nature, and not the probabilistic expecta-
tions.

4 Population Size and Mating Limitations

In this section we introduce a new experiment designed to simulate geograph-
ically or socially restricted mating options. We also explore the influence of
the population size on the performance of each of our models. For this set of
experiments we have chosen a mutation rate of 0.0005 and a number of gen-
erations equal to 1000. We have found this mutation rate and population size
more suitable for the particular problem (HC) that we have chosen for these
experiments.

4.1 The Population Size

The previous experiments have shown that, in the given conditions, the separa-
tion of genders may be inhibiting the search for the optimal individual. This is
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Table 7: Average fitness in 500 generations, standard test functions, population
size of 100

Function Simple Mixed Hetero Herm Best

F1 0.001 0.001 0.001 0.001 hetero
F2 0.003 0.003 0.003 0.002 hetero
F3 0.3 0.313 0.387 0.353 simple
F4 1.496 1.405 1.504 1.424 mixed
F5 0.729 1.242 0.393 0.854 mixed
F6 0.829 0.8 0.729 0.876 hetero
F7 8.463 9.567 1.357 3.252 hetero
F8 0.338 0.363 0.328 0.358 hetero
F9 0.012 0.012 0.011 0.012 hetero
F10 0.47 0.469 0.467 0.459 herma

Table 8: Average fitness in 500 generations, deception problems, population size
of 100

Problem Simple Mixed Hetero Herm Best

d1 2782.61 2781.79 2717.29 2785.27 hetero
d2 2936.25 2943.2 2929.81 2943.13 mixed
d3 2526.47 2531.55 2440.65 2521.63 mixed
d4 2525.67 2530.32 2442.67 2527.96 mixed
d5 2745.28 2746.77 2713.41 2745.84 mixed
d6 2743.72 2744.59 2711.75 2745.96 hetero
d7 2656.05 2658.49 2595.72 2658.61 hetero
d8 2666.36 2663.76 2631.01 2665.67 simple

19



Table 9: Average fitness in 500 generations, HC problems, population size of
100

Problem Simple Mixed Hetero Herm Best

hc50 0.941 0.937 0.943 0.942 herm
hc60 0.937 0.931 0.937 0.937 simple
hc70 0.934 0.93 0.934 0.935 hetero
hc80 0.935 0.931 0.934 0.935 hetero
hc90 0.939 0.937 0.939 0.939 hetero
hc100 0.94 0.939 0.94 0.94 hetero
hc110 0.946 0.945 0.946 0.946 herma
hc120 0.95 0.948 0.95 0.95 simple
hc130 0.95 0.949 0.95 0.95 simple
hc140 0.952 0.95 0.952 0.952 herm
hc150 0.961 0.959 0.961 0.961 hetero

Table 10: Number of problems for which each model has been the best on
average and for the optimal run

standard deception HC Total
pop size 50 100 50 100 50 100

Simple 4 1 1 1 4 3 14
Mixed 1 2 3 4 1 0 11
Hetero 4 5 0 3 3 5 20
Herm 1 2 4 0 3 3 13

20



Table 11: Average fitness in 1000 generations with no mating restrictions

Population size Simple Hetero Herm Best

50 0.966 0.966 0.967 Herm
60 0.970 0.971 0.971 Herm
70 0.973 0.973 0.973 Hetero
80 0.974 0.974 0.974 Hetero
90 0.975 0.975 0.975 Simple
100 0.975 0.975 0.975 Simple

probably due to the fact that a given individual can only mate with half of the
individuals in the population. Thus, the best individuals found so far may not
be available for mating because they are of the same gender as the first parent
selected for reproduction.

In natural habitats, populations are, in general, much larger than the ex-
perimental size for the GAs. When the population size increases, and provided
that there is a balanced distribution of the two genders in the population, it is
more likely for an individual to find an individual of high fitness among those
of the opposite sex.

Our hypothesis is that the mating restriction inherent to the gender sepa-
ration presents a significant disadvantage only in the situation where the pop-
ulation size is small. In the following experiments we analyze the impact of
population size on the gender separation model and on the hermaphrodite, non
self-mating, model.

We performed these experiments using a HC problem based on a graph with
150 vertices. This problem presents an interesting challenge because the size of
the individual is around 3000 genes, based on the number of edges in the graph.

Table 11 shows the performance of simple self-fertilization, gender separa-
tion, and hermaphrodite model with avoidance of the self-reproduction. The
best result on each row is displayed in bold. From this table, we can see that in
general, for a difficult problem, avoiding the self-fertilization can help the GA
in finding fitter individuals. This table also shows that in this case there is no
significant difference between the three models we have considered.

4.2 Mating Restrictions

In the previous section we have seen that the difference between a heterosexual
and a hermaphrodite population decreases with the population size, and that
for a sufficiently large number of individuals, the difference is insignificant. In
nature the populations are, in general, very large compared to these simulations,
but the mating process is limited by geographical constraints for most species.
Thus, an individual can only mate another individual that is within a reasonable
distance from its spatial location.
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Moreover, for humans, these limitations are also of a social nature. Thus,
an individual will generally look for a mate with common social, cultural, often
religious, or ethnic background. This also reduces the number of potential
candidates for reproduction. In simulation, this background can be translated
to a degree of adaptation to the problem, or to similarity in the fitness value of
the individual.

In the following experiment we simulate mating limitations by imposing a
geographical distance (range) within which the potential mate can be found.
We compute the performance of each reproduction type depending on the pop-
ulation size and on the mating restrictions.

In this model, for each crossover operation the first parent is chosen at
random with a probability proportionate to its fitness. Next, the second parent
is chosen within a given distance from the first individual.

Since the population is sorted in ascending order by fitness, the mating
range has two effects. First, it simulates a geographical limitation, and second,
it insures that the mating process will choose parents of similar performance.
The latter constraint simulates social mating limitations.

We performed our experiments with a fixed range of 10 and 25 individuals,
followed by a range equal to 10% and 25% of the population. We have tested
the influence of this factor on the performance of each of the three reproduction
schemes: common asexual, hermaphrodite avoiding the self-reproduction, and
with gender separation. The population size varies between 50 and 100.

Tables 12 and 13 show the results obtained by each of these schemes for a
fixed mating radius and for a radius representing a percentage of the population
respectively. Each entry represents the average over 50 trials of the best fitness
in the last generation. The best result in each situation is displayed in bold.
The number of generations is limited to 1000, and the mutation rate is 0.0005.
For this experiment we have chosen a graph with 150 nodes and 3136 edges
representing the number of genes in each individual. The results are displayed
in order of the population size.

The first observation that we can make based on these results is that a small
population radius has a beneficial effect on the performance of the algorithm.
This can be explained by noting that the individuals in a given range around the
first parent possesses a fitness that is closer to it than outside this radius. Thus,
if the first parent is already selected based on its fitness, it is likely to be one
of the individuals of high performance and the mating radius enforces this first
choice. The result is a fitness-based selection that favors the best individuals
more than the simple fitness-proportionate one.

The second observation is that for a relatively small population, the hermaphrodite
model produced better results than the gender-separated one. However, when
the population size increases, the difference between the two models becomes
insignificant. Moreover, both of the schemes that avoid the self-reproduction,
show better results than the simple model.

A second set of experiments explored the model in the case where the pop-
ulation is not sorted. We would expect these restrictions to lead the algorithm
to less fit solutions, since this is a weaker fitness-based selection. In this case
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Table 12: Average fitness in 1000 generations with a fix mating radius of 10 and
25, sorted population

Mating radius
10 25

Population size Simple Hetero Herm Simple Hetero Herm

50 0.963 0.964 0.966 0.961 0.961 0.962
60 0.970 0.970 0.970 0.968 0.968 0.968
70 0.973 0.973 0.974 0.971 0.971 0.972
80 0.975 0.975 0.976 0.974 0.973 0.973
90 0.976 0.977 0.977 0.975 0.975 0.975
100 0.977 0.977 0.977 0.976 0.976 0.976

Table 13: Average fitness in 1000 generations with a mating radius of 10% and
25% of the population, sorted population

Mating radius
10% 25%

Population size Simple Hetero Herm Simple Hetero Herm

50 0.962 0.964 0.966 0.963 0.965 0.967
60 0.969 0.970 0.971 0.969 0.971 0.972
70 0.973 0.974 0.974 0.972 0.974 0.974
80 0.975 0.976 0.976 0.974 0.975 0.976
90 0.976 0.977 0.977 0.975 0.977 0.977
100 0.977 0.978 0.977 0.976 0.977 0.977
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Table 14: Average fitness in 1000 generations with a mating radius of 10 and
25, unsorted population

Mating radius
10 25

Population size Simple Hetero Herm Simple Hetero Herm

50 0.962 0.962 0.962 0.962 0.962 0.963
60 0.964 0.963 0.964 0.964 0.964 0.963
70 0.964 0.964 0.964 0.964 0.964 0.964
80 0.965 0.964 0.964 0.965 0.964 0.964
90 0.965 0.964 0.965 0.965 0.965 0.965
100 0.966 0.964 0.965 0.966 0.965 0.965

the first parent is chosen by fitness-proportionate selection, while the second
one is chosen proportional to fitness within a given radius around the first. If
the population is not sorted according to the fitness values, this means that
the second parent will be chosen within a sample of the original population,
and that the best individuals for reproduction may not be available in the close
neighborhood of the first parent.

In this second experiment, we also note that individuals resulting from one
crossover operation are placed by the algorithm next to each other in the pop-
ulation, so the geographical closeness also means some sort of genealogical link
between the parents selected for crossover. Thus, individuals that are close to
each other in the population are more likely to have some common ancestors.

Tables 14 and 4.2 show the same experiment performed for a population
that is not sorted. The best result in each experiment is displayed in bold.

These tables indicate that the performance in each situation where the pop-
ulation is not sorted hass deteriorated as compared to a sorted population.
The mating restriction to a given radius has the effect of enhancing the fitness-
proportionate selection in the case of a sorted population and of reducing it for
an unsorted population.

In this experiment we note that for smaller populations, the hermaphrodite
mating scheme seems to perform better than the others, while for larger popu-
lations it’s the simple reproduction form with no gender definition that is better
than the others, although the difference in performance between all the results
obtained by various mating schemes are not significant.

For a visual comparison of these various mating schemes and restrictions,
we have plotted the performance of a population of 50 and 100 individuals
respectively with a mating restricted to 10 individuals as shown in Figures 5
and 6. The horizontal marks represent, respectively, the sorted population with
a mating radius of 10, the unsorted population with the same mating radius,
and the original model with no mating restrictions, in which case the sorted or
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Table 15: Average fitness in 1000 generations with a mating radius of 10% and
25% of the population, unsorted population

Mating radius
10% 25%

Population size Simple Hetero Herm Simple Hetero Herm

50 0.962 0.960 0.963 0.967 0.967 0.969
60 0.963 0.963 0.963 0.967 0.970 0.968
70 0.963 0.963 0.964 0.969 0.971 0.970
80 0.964 0.964 0.965 0.968 0.969 0.969
90 0.965 0.964 0.965 0.971 0.968 0.968
100 0.966 0.965 0.965 0.970 0.969 0.968

unsorted populations should perform about the same. The noticeable difference
between these categories indicate that sorting the population and the restricting
the mating choices to a radius have a much larger influence on the performance
of the algorithm than the choice between the three mating schemes.

Figure 5: Average fitness for the 3 mating schemes for a population of size 50

Sorting the population could relate to two biological phenomena. A sorted
population is comparable to the process by which some specialized species of
animals and plants are artificially created through a supervised mating. This
enhances the specific features of that plant or animal that are interesting to the
human cultivator, such as the color of the flowers or the resistance to disease or
parasites.

On the other hand, the mating restrictions in an unsorted population resem-
bles the situation encountered by endangered species like the panda bear, for
which limitations in the geographical availability of other individuals for mat-
ing can deteriorate the genetic material and increase the frequency of genetic

25



Figure 6: Average fitness for the 3 mating schemes for a population of size 100

diseases.

5 Conclusions

In this report we have introduced several models simulating a variety of mating
schemes related to gender separation. We have also explored the influence of
social factors such as the size of the population and mating restrictions on the
potential population adaptation.

We simulated several reproduction models including hermaphrodite and sep-
arate genders competing for dominance in the same population. Our exper-
iments show that the particular features associated with individuals of high
fitness tend to become dominant in the population and can override the sim-
ple probabilistic expectations, as seen in Section 2. This could have been a
contributing mechanism through which gender separation initially occurred in
nature.

Section 3 compared the general performance of parallel populations that have
the same genetic representation, but different reproduction modes. From our
experiences we can infer that hermaphrodite populations have a better chance
of finding good solutions and that encouraging the biodiversity by preventing
of self-reproduction (or cloning) is benefic to performance.

Finally, in Section 4we studied the influences of social factors like population
size and geographical or social mating restrictions on the performance of the
population. From our experiments we observe that these factors have a much
larger impact on the quality of the evolved solutions than the reproduction type
itself. Moreover, the differences in the average fitness between the populations
with various mating schemes decrease with the population size such that for
large enough populations, the reproduction mode becomes insignificant.
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