
Games Programming in Computer Science Education

D. Vrajitoru1, P. Toprac2
1Department of Computer and Information Sciences, Indiana University South Bend, IN, USA

2Department of Computer Science, University of Texas at Austin, TX, USA

Abstract – In this paper, we investigated the role of content

and processes as they relate to games and programming in

post-secondary computer science courses. Our examination

found themes that can help computer science instructors teach

both introductory and advanced programming topics. Our

analysis was focused primarily on the theoretical and

practical subject matter that is taught in game programming

classes and, secondarily, in how game-based programming

projects and assignments can help students learn core

computer science concepts and improve coding skills.

Keywords: game programming, curriculum design

1 Introduction

Game programming has been a popular topic in

computer science education for many years. The popularity of

game programming with computer science students is due to

two causes. First, programmers and potential computer

science majors are often passionate about playing games and

participating in the game culture and related media, including

literature, film, conventions, live action role-playing, and so

on. Thus, they are driven by a desire to create games and be

recognized within the gaming community. Second, the game

development industry provides significant job opportunities,

which also fuels students’ interest in the field. Job

opportunities are present for those who are interested in

working for established, relatively stable, game companies, as

well as for those who would rather work as independent

freelancers or for small entrepreneurial startups.

Although game programming courses are often offered

as electives for computer science majors, there are a large

number of universities that offer entire degrees or programs in

game programming. Such programs include the Bachelor’s of

Science in Computer Game Development from DePaul

University in Chicago, IL, the Certificate of Computer

Science in Game Development from the University of Texas

at Austin, and the Bachelor’s of Science in Game Design &

Development from the Rochester Institute of Technology,

NY. Moreover, computer science departments offer game

design and development courses and programs in

collaboration with departments or schools of fine arts, and

even English departments.

Several studies have examined the curriculum of game

programming courses based on their syllabi. The typical

purpose is to help instructors of these courses design their

assigned classes more effectively. For instance, [1] examines

what topics are appropriate for game courses, what would be

the best choice of language/API considering the class level,

and various ways to find useful resources. In [2], the authors

survey a range of game courses and describe how digital

games can support the learning process in computer science

education. In [8], the authors discuss how content related to

computer hardware can be learned by means of a digital

game. The study presented in [11] illustrates the use of game

development for teaching problem solving techniques. Our

paper examines in more detail some of the aspects mentioned

in [2], particularly those regarding game courses in computer

science at different levels of student expertise.

In [4], the authors discuss how active learning as a tool

to teach critical thinking and problem solving is attractive to

computer science students. The paper also touches on the

issue of retention of computer science majors and how active

learning methods can improve it. Our paper also discusses the

course CSCI-B100 Tools for Computing mentioned in [4].

In the papers [3] and [10], the authors examine the

interdisciplinary nature of some of the upper-level game

development classes, which we will also discuss in Section 4

of this paper. As part of the interdisciplinary nature of game

development courses, managing teams is discussed in [7].

Studies can also be found on using games or other

entertaining topics in introductory computer science classes,

such as Gothic novels [5], role-playing games [6], and

gamification techniques in [7] and [9]. Our paper also

discusses the use of games in early programming classes.

This paper is organized as follows. Section 2 examines

introductory programming classes, as well as core course

following them. Section 3 discusses middle level courses with

specialized content in game development, while Section 4

takes a look at upper level courses. We finish the paper with

some conclusions.

2 Early Programming Classes

Let us start by examining programming classes that take

place early in students’ computer science track, such as the

CSCI-B100 Tools for Computing, taught at Indiana

University South Bend (IUSB). Typically these are the first or

second programming classes taken by students.

The goal of such classes is to introduce both major and

non-major students to programming and possibly attract

undecided students to computer science. These classes

typically employ simple programming languages, such as

Visual Basic or Processing, because they are easier to learn

without prior experience in coding. The advantage of these

programming languages is that they come with visual tools

that can teach basic programing concepts without requiring

students to learn the strict syntax of coding using text. Using

visual programming tools lessen cognitive load and can

improve motivation and learning over coding using text.

Another technique that is often employed to improve

motivation and learning is using project-based learning. That

is, students must complete practical mini-projects throughout

the semester in a lab environment under instructor

supervision.

Game development projects can also be used in

introductory courses to improve learning and motivation,

because students can quickly see that basic data structures and

programming concepts are necessary in these projects. The

game development process affords immediate visual feedback

of progress during programming. In addition, games provide

an element of fun and entertainment, making it easier to

engage students in the task at hand and making them more

invested in the outcome of their programming assignments.

For example, a game of Pong [12] can teach beginner

programmers about variables – notably the two paddles and

the ball. Pong presents a problem requiring the solution to an

iterative process where the ball moves in the stage area with a

given speed and direction. In order to solve the problem,

students are introduced to the idea of conditionals by

checking for collisions of the ball with the stage boundaries

or walls and performing a bouncing operation when this

occurs.

More advanced concepts, such as functions, can be

introduced through many different games. For example, in a

game of Tic-Tac-Toe, a function can be written to verify the

winning condition. The concept of simple arrays and string

manipulation can be taught through a game of Hangman.

Here, a string is needed to hold the word to be guessed. A

Boolean array is used in the background to mark the letters in

the word that were guessed correctly so far.

More advanced core courses can also benefit from using

games as programming projects. Games provide practical

applications for data structures and object-oriented

programming, and are more fun and appealing to the students.

For example, game assignments can be used in courses such

as CSCI-C243 Data Structures taught at IUSB, which serves

as a prerequisite for and gateway to most of the upper-

division core and elective courses. This class teaches major

data structures, including tables, trees, and graphs, and

algorithms. It is important for students in this class to not only

learn and understand data structures but also grasp their

pervasive importance in all areas of computer science. The

latter can be achieved both by providing lists of applications

for each data structure, and by assigning practical

programming tasks that make use of the abstract data

structures that are introduced.

For instance, two-dimensional arrays serving as tables

can be explained through arcade-style games such as PacMan

[13] or Sokoban [14]. In these games, the world is two

dimensional with discrete coordinates and can be represented

as a 2D array or matrix of integers. An even better approach

would be to define an enumerated type for the stage

components, containing constants for walls, spaces, food, and

other game elements. Then, the matrix representing the game

area would use it as the base type for the cells.

A game of Breakout [15] can teach the concepts of

boundary checking in data structures, as well as navigation.

As a ball bounces against the walls, conditions of being

within the boundaries of the arena must be checked every

time. In the classic version of the game, the player destroys

bricks by bouncing a ball against them, which is represented

as a 2D array. Breakout also teaches students the complex

relationships between integer coordinates in the table and real

coordinates in the arena, in order to display the bricks

properly. This leads to the concept of type conversion from a

higher precision data type to a lower precision one.

More complex data structures, such as stacks and

queues, can be somewhat abstract and difficult to grasp for

the students. Card games are ideal applications for making

abstract concepts more concrete. For example, a shuffled deck

can be stored in a stack or a queue, depending on its purpose

in the game. In the classic version of Klondike Solitaire, the

game starts with eight “tableau” piles of cards facing down.

Only the top cards can be turned face up and played from

each of the piles. Other cards can be placed on top of the piles

in descending order and in alternating color. Thus, tableaus

can be represented as stacks. To win the game, all the cards

must be moved to four foundation piles by suit and in

ascending order. Again, cards can only be added to the

foundations on top, which also means that they are best

represented as stacks. Finally, the deck of playable cards can

be recycled, so that when the cards are exhausted, playing

starts over. To accomplish this, either a pair of stacks or a

queue can be used, the latter being better suited for the

purpose of the class.

Binary trees are also challenging for students to learn,

and, again, games can make this subject less abstract. For

example, one can show, in a game of Tic-Tack-Toe, how the

current state of the game can be expanded into a tree where

each branch is a possible move leading to another state. This

can lead to explaining how artificial intelligent (AI) agents

could use this tree to play the game. Even though AI is

probably too early for students to implement at the time, the

discussion helps to effectively introduce the concept, which

can be built upon latter in the curriculum.

Object Oriented Programming (OOP) is often taught in

the second or third semester of programming courses within

the computer science curriculum. Developing games can help

improve the students’ comprehension and retention of OOP.

Game projects showcase well-structured hierarchies of

classes, some of them with storage purposes, such as stacks

and queues, and others with more operational purposes, such

as an interface class. A game project typically contains a

Game Master or Manager class that oversees all the game

objects, rules, and goals. This helps students understand not

only the individual purpose of each class, but also the need

for an overall structure. Incidentally, the term Game Master is

also used when playing role-playing games. So, students who

play these types of games may intuitively understand the

topic better and also feel increased engagement with the

subject.

3 Medium Level Classes

In this section, we will examine courses that are taken in

students’ sophomore or junior years. These are typically

elective courses in a general computer science undergraduate

degree program, or foundation or core courses in a degree

program specialized in game development. Examples of such

courses include the CSCI-C490 Games Programming and

Design taught at IUSB and GAM 374 Fundamentals of Game

Programming I taught at DePaul University, Chicago, IL.

Students in these classes have already completed many

core courses, as well as probably rigorous algorithms and data

structures courses. Although instructors typically find these

students to be capable programmers, students still need to

practice and extend their coding skills. At the same time,

these courses train and hone students’ programming skills and

give them a solid game development experience.

These game programming electives usually teach

students fundamental concepts in game development, relevant

algorithms, design topics, and game-specific program

structures. Examples of typical game algorithms include fair

shuffling methods for card games, efficient randomized

content generation, and kinematics-based object movement.

Collision detection is another important topic that requires a

significant amount of time during the semester to cover.

Another focus is the various game loops for different types of

games.

Students better appreciate the importance of algorithms

when applied in concrete applications. For instance, Prim’s

algorithm is at the core of procedurally generated content,

which allows the instructor to create a connection between

game development and graph theory. Other graph algorithms

have applications to games, notably path-finding algorithms

for maze-like structures.

In terms of design, these courses emphasize strong

program structure and object-oriented design. They also

contain many topics related to game design, such as the

mechanics, dynamics, and aesthetics analysis of games. In the

C490 class at IUSB, students typically must write a midterm

paper examining a game of their choosing from several points

of view, such as genre, theme, rules and mechanics, reasons

for failure or success, as well as the social context of the

game. By performing class presentations of their papers,

students train their communication skills while either sharing

their enthusiasm for their favorite game or warning peers of

bad decisions made by some game creators.

These higher-level courses are very likely to be

intensive in terms of their use of libraries or APIs. These may

not be entirely new concepts for the students, but they have

not worked with them extensively before. A large part of the

instruction may be dedicated to getting students more

comfortable with using specialized game libraries or engines.

For example, some classes may be taught in C++ or Java with

direct use of OpenGL. As an alternative, an API such as Flash

/ ActionScript may be used, or even a game engine such as

Unity or Unreal. The challenge in this case is to understand

the tools provided by the game engine and how best to make

use of them in the development process. Although it takes

extra effort to learn how to use theses libraries, the gain is in

being able to focus on higher-level game aspects by letting

the libraries take care of lower level tasks.

An important aspect of the mid-level classes is that they

are programming-intensive. As mentioned previously,

although students have a good programming background,

they still need to develop and improve their coding skills by

working on real-world projects. In lower level classes

students see programming as a goal in itself, the task to be

accomplished to earn a good grade. Mid-level classes allow

students to move towards seeing programming as a tool to

accomplish something specific. Students are not focused

anymore on just the algorithms for their own sake, but are

solving a complex problem that requires solving many other

smaller ones.

Furthermore, students get to experience how much of a

challenge creating a good game can be and how important

debugging is for the development process. Since many games

are intended to be played over and over, any coding or design

flaws are more likely to be revealed over time than in other

programs that students may have written previously. Thus,

students learn to appreciate the need for good programming

practices and for extensive testing techniques. Students can

also better understand their instructor’s insistence on efforts

to improve program performance. Generally, correctness of

the program is a major goal for any coding activity, but

efficiency may seem to beginner programmers as a lower

priority. When working on games, students can see first-hand

how an efficient algorithm performs better for their purpose

than a weaker one. Good program structure and programming

practices are thus seamlessly integrated into their learning

objectives.

4 Advanced Level Classes

In this section, we examine advanced courses taken by

students who are seniors, but may be juniors. An example of

such a course is CS 354T Game Development Capstone: 3D

Games taught at the University of Texas at Austin.

The focus of these courses is game development in

terms of interdisciplinary teamwork, project management,

and relatively complex software system development of

significant size. The teams can be between 3 and 7 students,

with bigger teams providing a working experience closer to

that of the game industry. Oftentimes, these courses are open

to students from various majors: computer science, fine arts,

music, and others. The team composition reflects the variety

of specialties and interests that creates a balance of the skills

necessary to produce a game that approximates those in the

real world.

While in the early game programming courses the

instructor typically emphasize programming skills and OOP

program organization, the advanced courses are used as a

platform for training software engineering skills. The teams

typically work on a single project for the entire semester,

which requires the students to manage their time and make

critical decisions during the development process. Team

communication is crucial and specialized tools, such as

TeamSpeak and Slack, must be learned and used throughout

the semester. Source code control and sharing software, such

as GitHub, TortoiseSVN, or Perforce, are necessary even for

small teams. Students may apply general software

engineering concepts that they learned in another class and, in

addition, learn some that are specific to game development.

In earlier classes, students’ efforts are concentrated on

making their games work. In later classes, their assignments

begin with the design process. Students must start by making

design decisions about the game they want to make, such as

the genre, theme, and scope of content creation. They must

choose, adjust, and justify all the game aspects, from basic

mechanics to storyline. Students must design an interface and

choose from different ways of delivering narrative text or

tutorial help. They learn to pitch their game to an audience

and change plans based on feedback. Moreover, students

must balance the time they have with the skills they share

collectively to decide how much they can accomplish in one

semester.

Along the way, students learn a considerable amount of

content related to the entire game development process from

concept to delivery. If the class is using the agile development

methodology, as most do, students must deliver and present

iterations of the game on a regular basis, as well as important

milestones for the game, including the first playable version,

alpha, beta, and final release by the end of the semester.

Students are confronted with feedback about their games

when their games are being playtested by participants with

different levels of player expertise and different preferences,

from the team members themselves to classmates to possibly

complete strangers. The instructor must also rely on peer

feedback from team members about themselves, each other,

and the project in order to assign grades. This feedback must

reflect not only the overall achievement of the project, but

also the contribution of each team member to the effort.

These kinds of courses help students transition from

solo programmers to team members and even project

managers. Students learn collaborative and leadership skills

that they will need later in the workplace.

5 Conclusions

In this paper we examined various ways in which game

development content can help achieve learning objectives in a

computer science program as students progress through the

curriculum. We started with beginner courses where writing

small games can make learning to code more fun and

attractive. In more advanced early core classes, game

programming can be used as concrete examples for many of

the algorithms or data structures that students must learn.

Medium level courses are where students learn fundamental

concepts related to games while improving their

programming skills through challenging practical exercises.

Finally, advanced game development classes teach

collaboration, project management, and software engineering

skills. Thus, game programming can improve computer

science education at all levels with content that is attractive

and motivating for students.

6 References

[1] Ian Parberry, "Challenges and Opportunities in the

Design of Game Programming Classes for a Traditional

Computer Science Curriculum", Journal of Game Design and

Development Education, Vol. 1, pp. 1-17, 2011.

[2] U. Wolz, T. Barnes, I. Parberry, M. Wick, "Digital

Gaming as a Vehicle for Learning" In Proceedings of the

2006 ACM Technical Symposium on Computer Science

Education, pp. 394-395, Houston, TX, Mar. 1-5, 2006..

[3] H. Bourdreaux, J. Etheridge, and A. Kumar, “Evolving

Interdisciplinary Collaborative Groups in a Game

Development Course”; Journal of Game Design and

Development Education, Vol. 1, pp. 25-37, 2011.

[4] H. Hakimzadeh, R. Adaikkalavan, and J. Wolfer, “CS0:

A Project Based, Active Learning Course”, International

Transaction Journals of Engineering Management and

Applied Sciences and Technologies,

http://www.tuengr.com/Vol 2(5), 2011.

[5] H. Bort, D. Brylow, M. University; and M. Czarnik,

“Introducing Computing Concepts to Non-Majors: A Case

Study in Gothic Novels”, Proceedings of the Special Interest

Group in Computer Science Education Conference (SIGCSE

2015), Kansas City, 2015.

[6] D. Toth and M. Kayler, “Integrating Role-Playing

Games into Computer Science Courses as a Pedagogical

Tool”, Proceedings of the Special Interest Group in

Computer Science Education Conference (SIGCSE 2015),

Kansas City, 2015.

[7] C. Latulipe, N. B. Long, C. E. Seminario, “Structuring

Flipped Classes with Lightweight Teams and Gamification”,

Proceedings of the Special Interest Group in Computer

Science Education Conference (SIGCSE 2015), Kansas City,

2015.

[8] M. Sanchez-Elez and S. Roman, “Learning Hardware

Design by Implementing Student's Video-Game on a FPGA”,

Frontiers in Education: Computer Science and Computer

Engineering, Las Vegas, NE, July 27-30, 2015.

[9] M. Mejias, K. Jean-Pierre, Q. Knox, E. Ricks, L. Burge,

III, and A. N. Washington, “Meaningful Gamification of

Computer Science Departments: Considerations and

Challenges”, Frontiers in Education: Computer Science and

Computer Engineering, Las Vegas, NE, July 27-30, 2015.

[10] D. Rosca, J. Kostiou, and C. Locke, “Video Games to

Motivate a Multi-disciplinary Capstone Experience”,

Frontiers in Education: Computer Science and Computer

Engineering, Las Vegas, NE, July 27-30, 2015.

[11] E. Bachu and M. Bernard, “Visualizing Problem Solving

in a Strategy Game for Teaching Programming”, Frontiers in

Education: Computer Science and Computer Engineering,

Las Vegas, NE, July 21-24, 2014.

[12] Pong, Atari, http://www.ponggame.org/.

[13] PacMan, Namco Bandai Games,

http://www.bandainamcoent.com/game/pac-man.html.

[14] Sokoban, Thinking Rabbit, http://sokoban.info/.

[15] Breakout, Atari, www.atari.com/arcade.

