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Abstract – In this paper, we are studying the application of a 

neural network to a problem related to autonomous car driving. 

In particular, we are interested in the correlation between noise 

in the data and the average error that can be achieved by the 

neural network, and study the issue using several data 

collections. We propose a measure of the noise that can indicate 

issues in the collected data and can help improve the learning 

process. We are also interested in ways to use symmetry in the 

data for this particular problem and analyze how we can take 

advantage of it for a better training of the network.  

Keywords: neural networks, noise measurement, symmetry 

 

1 Introduction 

In this paper we propose a study of the correlation 

between noise in the data and error in artificial neural networks 

(NN). For this, we use a problem where a NN is applied to 

predict the steering angle for an autonomous car driver. This 

problem presents an interesting challenge for the NN because 

of the size of the data - about 1000 data points after filtering - 

and because of the complex nature of car driving rules. We 

started from a previous research that was published in [1] and 

[2], and used the data collected for the Master’s thesis in the 

experiments. 

Autonomous car driving is a very relevant topic at the 

moment. Significant progress is made all the time and self-

driving cars are currently being tested on the road. More and 

more, car companies provide assistive driving technologies, 

such as parallel parking and accident prevention. While it may 

be hard for academic research to keep up with the industrial 

pace, this still represents an interesting and challenging 

problem for us and an ideal test case for learning algorithms. 

Our interest in the subject is in seeing how well NNs can help 

with the driving problem.  

Noise is a fascinating subject with many applications in 

computer science. In computer graphics in particular, noise 

generation plays a big role in procedural content generation for 

special effects and games. One of the popular methods is that 

of Perlin Noise [8]. It can be used to generate realistic-looking 

clouds, rocks, wood, and other textures. More complex 

methods such as the M-Noise [10] using several noise octaves 

were developed from it later.  

Noise was also used in conjunction with the study of NNs 

and other related systems. For example, [5] proposes a method 

using NNs to reduce background noise for a better performance 

of speech-recognition systems. In [6], Bayesian networks are 

being used to analyze noisy biological data and uncover key 

biological features in cellular interaction. In [9], the authors use 

Short-Time Fourier Transform, self-organizing maps, and NNs 

to analyze the integrity of audio signals and their noise 

composition. Some studies [11] are concerned with developing 

NN-based systems that are robust with respect to the noise in 

the data. In [12], the authors use a NN to filter Monte Carlo 

noise from images.  

In this paper, we continue the research started in [1, 2, 4] 

and examine the robustness of the NN when learning the data 

for this problem and how the variation of the average error with 

respect to the structure of the NN’s hidden layers. Then we 

examine how to take advantage of symmetry in the data. 

Finally, we look at ways to visualize the amount of noise in the 

data and how the noise measure can be used as a tool to explain 

the average error of the NN. 

2 Autonomous Car Driving and NN 

The research in this paper is a continuation of the projects 

described in [1], [2], and [4]. These previous papers describe a 

Fuzzy-Logic car pilot called Epic that was capable of learning 

by hill-climbing techniques. Next, a system called Gazelle 

improved on various aspects of Epic, added more learning 

components, and implemented a unit to deal with opponents.  

Moreover, in Gazelle we introduced the idea of collecting 

driving data from the procedural pilot and training a NN with 

it. The experiments showed that the road performance of the 

NN is not necessarily better than that of the procedural pilot, 

but it can improve some aspects such as road stability while 

reducing damage.  

Both Gazelle and Epic drive a car procedurally in a car 

race simulation environment called TORCS. This software 

provides several pilots available for racing in a graphical 

environment and allows the user to compete with them. The 

user has the option to either by driving a car manually, or to 

program their own pilot and integrate it in the system. For the 

latter option, TORCS provides a CarState class with road 

information such as the free distance ahead, position of the car 

on the road, angle with the centerline, opponents present in a 

100m radius around the car, and others. The program must 



respond with changes to the steering wheel, the gas or brakes, 

and the gear. All of them are assembled into an object of the 

CarControl class, which is returned to the TORCS race 

server. Figure 1 shows a racing track available in TORCS and 

the controlled car driving on it.  

 

Fig. 1. The Alpine2 track (left) and a snapshot of a driving car 

on it (right) 

The procedural pilot that we wrote for Epic and 

subsequently improved for Gazelle contains several control 

units. We start by determining the target angle for steering, 

which is the most important element of driving, as it establishes 

the trajectory. An opponent modifier unit may change this 

target angle based on opponents’ presence. Next, a target speed 

is chosen so that the car can achieve a turn by the target angle, 

while also trying to maximize the speed based on a given limit. 

This speed change is translated into acceleration or braking and 

can also be changed by the opponent modifier unit. The gear is 

adjusted in the last place. 

These pilots contain other units to deal with special 

situations. A module is taking care of the car being outside of 

the road, and strives to get it back on track. Another module 

drives the car in reverse when it is stuck facing the wrong way 

on the road. A learning unit can adjust the speed from one lapse 

of the track to another based on the amount of damage 

experienced so far. Another learning unit remembers trouble 

spots such as sharp turns in the road so that the speed can be 

adjusted the next time we approach them. 

The current research continues our previous work in 

several directions. First, we investigate the best settings for the 

NN that can allow it to learn the function governing the 

steering angle. Second, we look at a better way to exploit the 

available data by using properties of symmetry. Third, we 

analyze the connection between the noise in the data and the 

average error of the trained NN.  

In the model we used to apply the NN to this problem, 

we chose 5 input variables that have significant influence on 

the steering decisions. The output value is the steering angle. 

In [2], data was collected by running the procedural driver on 

five tracks chosen from the available ones. A filtering process 

was also used to ensure a balanced distribution of the data in 

terms of output values.  

Figure 2 shows an example of the filtering process: 

unfiltered and unbalanced data distribution in the upper part, 

and more balanced data distribution in the lower part. The 

intervals represent a discretization of the target output value in 

intervals of 0.1 length, going from -0.6 radians at the bottom to 

0.6 radians at the top, and the number 8 marking a special 

interval  (-0.01, 0.01]. The filtering process was intended to 

insure that the NN is not over-trained on some regions of the 

output target value range. For example many data points of the 

initial collection were very close to the value 0, because those 

would occur on any stretches of the road that are almost 

straight.  

 

Fig. 2. Filtering the training data for the Forza track 

Figure 3 shows a car with the road borders outlined and 

the input values that we have chosen to feed the NN, labeled 

from 1 to 5. The first, labeled 1, is the current angle of the car 

with the road centerline. Variable 2 is the lateral track position 

of the car and varies from -1 on the left border to 1 on the right 

border. Values outside of this range signify that the car has 

exited the road. Variable 3 represents the free distance ahead 

of the car. Variables 4 and 5 are the differences between the 

distance ahead and the free distance at 10o angles left and right 

from the car direction. In this figure, the parameter 5 should 

have a negative value. 

We selected three tracks that the data was collected for in 

[2] to perform our current experiments on, Alpine2, ETrack5, 

and Forza. We selected a fourth track, ERoad, to test the trained 

NN with new data that was not used for training.  

 



 

Fig. 3. Car state and five NN input variables 

3 Using Problem Symmetry 

Some functions by their very nature present some 

intrinsic symmetries. Depending on the way the data collection 

is done, these may or may not be present in the training data.  

In our case the problem we are trying to solve is spatially 

symmetrical. Figure 4 shows a mirror of Figure 3 along the 

vertical axis. If the situation was thus reversed, the target 

output value for steering the car should be the negative of the 

target output value in Figure 3.  

 

Fig. 4. Mirror situation of Figure 3 

Thus, to mirror the problem, we need to multiply the first 

two variables and the target output value by -1. Then the values 

of the 4th and 5th variables must be swapped. The value of the 

third variable remains the same. By performing this operation 

on each data point that was collected, we can train the NN with 

data that accurately reflects the symmetrical nature of the 

problem, in hopes to achieve better driving performance. 

4 NN Experimental Results 

In this section we present the experimental results of 

training the NN with the data from each of the three tracks, 

with and without symmetry. For each track, we present the 

resulting average error both during the training process and for 

testing the trained NN on the data obtained from the fourth 

track, ERoad. The error is defined as the average difference 

between the NN’s output and the target value for each data 

point, as follow: 
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Tables 1, 2, and 3 summarize the results for the tracks 

Alpine2, ETrack5, and Forza respectively. In all three tables, 

the training and testing results represent 1000 training 

iterations where the NN learns all the data points in the file by 

back-propagation. For all the tables, the testing data was 

obtained using data from the ERoad track. In all three tables, 

the NN contains four layers. The first one is the input layer and 

always contains 5 neurons. The number of layers in the second 

and third layers, denoted by HL1 and HL2 (for hidden layer), 

varies in the tables and is marked in the first two columns. The 

last layer is the output one and always contains a single neuron.  

Table 1. Training and testing results for the Alpine2 data in 

1000 iterations 

  No Symmetry Symmetry 

HL1 HL2 

Train 

Error 

Test 

Error 

Train 

Error 

Test 

Error 

8 3 0.154 0.139 0.164 0.143 

10 5 0.135 0.179 0.156 0.206 

12 5 0.136 0.181 0.156 0.141 

15 6 0.140 0.198 0.156 0.185 

 

Table 2. Training and testing results for the ETrack5 data in 

1000 iterations 

  No Symmetry Symmetry 

HL1 HL2 

Train 

Error 

Test 

Error 

Train 

Error 

Test 

Error 

8 3 0.082 0.200 0.110 0.177 

10 5 0.081 0.174 0.088 0.156 

12 5 0.089 0.207 0.087 0.159 

15 6 0.109 0.233 0.111 0.182 

 

 

 

 



Table 3. Training and testing results for the Forza data in 1000 

iterations 

  No Symmetry Symmetry 

HL1 HL2 

Train 

Error 

Test 

Error 

Train 

Error 

Test 

Error 

8 3 0.046 0.149 0.042 0.145 

10 5 0.044 0.154 0.045 0.149 

12 5 0.044 0.161 0.049 0.142 

15 6 0.057 0.165 0.046 0.143 

 

From Table 1 we can see that for the Alpine2 track, the 

best configuration for the training data both with and without 

symmetry is that of 10 + 5 hidden neurons. For the test data, 

the best configuration is that of 8 + 3 hidden neurons without 

symmetry. The track ERoad is not a very symmetrical one in 

terms of turns, so for future research we will be looking for a 

track that has both left and right turns for more accurate testing.  

Even though the ERoad track is not symmetrical, we can 

see that for a larger number of neurons, 12 and 15 on HL1, 

using data symmetry has resulted in a better average error on 

the test data.  

From Table 2 we can see that for the ETrack5 data, the 

models of 10 + 5 and 12 + 5 neurons provide the best training 

error without and with the use of symmetry respectively. For 

the test data, the best result is shown by the 10 + 5 neurons 

configuration with the use of symmetry. In this case, using 

symmetry is consistently better for the test data. This can be 

explained by the fact that the ETrack5 track contains less turns 

in the road in both directions than the Alpine2 track.  

It is interesting to note that the error in the test data is 

generally higher for the ETrack5 than it is for Alpine2, even 

though the error on the training data is lower. This can be 

explained by the fact that the Alpine2 track being more 

complex, it provides more opportunities for the NN to train 

well to calibrate its output for a larger variety of situations.  

Looking at Table 3, it seems that the training error is 

substantially lower than for Alpine2 and for ETrack5. The best 

result in this case was obtained by the 8 + 3 neurons model with 

symmetry. For the test error the best result was obtained by the 

12 + 5 neurons model, also with symmetry. Since this is a 

simpler track than the first two, the overall error is lower and 

the symmetry seems to help lower the error consistently, 

especially on the test data. 

We can also wonder if more training iterations could have 

led to different results. Figures 5 and 6 show a plot of the 

different models we used over 5000 iterations for the ETrack5 

data with symmetry for the training and testing cases 

respectively.  

 

 

Fig. 5. Training error on the ETrack5 data with symmetry 

 

Fig. 6. Testing error on the ETrack5 data with symmetry 

 

From these two figures we can see that for some of the 

models (10 + 5 and 12 + 5), training past the initial 1000 

iterations led to very little change in the error both for training 

and for testing. For the 8 + 3 model, there is a substantial 

decrease of the error both in training and testing modes around 

3000 iterations, followed by another increase. For the 15 + 6 

model, the back-propagation seems to increase its efficiency 

after 3000 iterations and the error continues to decrease after 

that, although between 4000 and 5000 iterations the learning 

process slows down. 

These figures show that smaller NNs are likely to learn 

faster, so 1000 iterations might be sufficient for the model 8 + 

3 neurons. Larger NNs are likely to learn more slowly, and in 

this case a larger number of iterations must be tried to give the 

back-propagation algorithm a chance to work. However, the 

overall results do not suggest that larger networks always have 

a chance to achieve a better error than smaller ones, and 

experiments can help calibrate the appropriate size of the 

layers.  



5 Noise Analysis 

In this section we are analyzing the noise in the collected 

data for the three tracks we chose for training: Alpine2, 

ETrack5, and Forza.  

5.1 Noise Measurement Function 

Noise can be defined in a variety of ways. It is a fuzzy 

notion that indicates that adjacent data points in an area, mostly 

of visual or audio nature, differs in random, unpredictable, or 

unexpected ways. The idea of entropy is often connected to it, 

for which Boltzmann’s and Gibb’s equations are available as 

forms of measurement [3]. These equations are related to the 

noise measurements ideas of noise figure and noise factor used 

in acoustics and radio engineering. These do not directly apply 

to the analysis we are trying to perform. Usually logarithmical 

averaging methods are used for analyzing large collections of 

data, but those do not represent the picture we want to look at 

for our problem.  

The idea in the noise measurement function we propose 

here is to be able to showcase how the amount of difference in 

the values of the output varies as a function of the amount of 

difference in the input. The kind of situation that is most 

interesting to us is where some input values are very close to 

each other, but the output values associated with them are quite 

different. This is likely to cause some difficulties for the NN in 

the training process. So we define here a function N connecting 

the difference in the input values to the difference in the output 

values. 

Let x1 and x2 be two input data points or vectors. In our 

case, each of them contains 5 values for the 5 input parameters 

we chose for training the NN. Let Δx = d(x1, x2) be the simple 

Euclidian distance between the two points. Let y1 = f(x1) and 

y2=f(x2) be the target output values for each of these input 

points, and Δy = |y1 - y2|. Then as a measure of noise in the data 

we chose to examine the shape of the two dimensional function 

 Δy = N(Δx)  (1) 

If the initial data collection contains 1000 points, then 

plotting the function N would result in a surface of 1,000,000 

points. We decided to reduce the analysis to those points for 

which either Δx or Δy is less than ε = 0.1 and we sorted them 

by Δx. Figure 7 shows the function N plotted this way for the 

data collection Alpine2.  

For a better understanding of this image, we plotted a 

second figure zooming in on the first part by looking at noise 

points for which Δx <= 0.5. Figure 8 shows this second plot. 

For the ETrack5 and Forza data, the right side part of the 

plot is very similar to Alpine2 in Figure 7. Thus, we show here 

only the zoomed-in plots where Δx <= 0.5. Figure 9 shows the 

noise function for the ETrack5 file, while Figure 10 shows the 

plot for Forza.  

 

 

 

Fig. 7. Noise plot for Alpine2 

 

 

Fig. 8. Noise plot for Alpine2 with Δx <= 0.5 

 

Fig. 9. Noise plot for ETrack5 with Δx <= 0.5 



 

Fig. 10. Noise plot for Forza with Δx <= 0.5 

 

5.2 Noise Analysis 

Looking at Figure 7, we can distinguish two major 

artifacts, a visible spike on the left-hand side and a long plateau 

on the right-hand side. Figure 8 zooms in on the first part of the 

graph to show more details of this spike.  

The interpretation of the spike is that we have input data 

points with a distance less than 0.1 for which the difference in 

the output is between 0.4 and 0.5. We can even spot some 

points closer than 0.02 with this kind of difference in the target 

output value. This spike will make it difficult for the NN to 

provide an accurate output value for all of these points, and will 

increase the value of the observed error.  

Examining possible sources of this kind of spike, it is 

conceivable that the data are issued from a noisy source to 

begin with. If the data were collected from a human driving a 

car, various factors could have caused him or her to make 

different steering decisions in similar situations. The level of 

stress, fatigue, or distraction can be of influence and can cause 

slightly different reactions. Even when the data are collected 

from a procedural driver, the variety of algorithms used to 

address situations on the road can also cause the observed 

differences. 

However, the spike can also mean that the data collection 

might have been incomplete. It is possible that external 

parameters that were not observed during the data collection 

also have an influence on the outcome and should be taken into 

consideration. If at all possible, the researcher can go back to 

the input parameters definition to see if more variables can be 

added. For this study, this is a possible future research track. 

In our case, the noise analysis shows that the largest 

amount of noise, represented by the left-size spike in the three 

images, is present in the Alpine2 track, due to its complex 

nature. Looking back at the training error, this track resulted in 

the largest training error values of the three, between 0.13 and 

0.15 in 1000 iterations. The second track in terms of noise is 

ETrack5, which also happens to be the median track in terms 

of training error, between 0.08 and 0.11. The track data 

collection showing the least amount of noise, Forza, is also the 

one with the smallest value of training error, between 0.04 and 

0.06. However, in terms of test error, the best results were 

shown by the Alpine2 track, probably also due to its complex 

nature. From this analysis it seems pretty clear that there is a 

correlation between the amount of noise in the data, such as 

defined by the function N, and the average error of the trained 

NN. Thus, noise is a useful tool for understanding the capacity 

of learning of this method.  

Let us examine the second artifact, the long plateau on 

the right side of Figure 7 for Alpine2. The same plateau is 

observed in the full plot for the two other tracks. This plateau 

means that we have data points that are increasingly distant - 

close to 300 for Alpine 2 - for which the difference in the target 

output value is less than or equal to 0.1. This occurrence in 

itself does not constitute a problem for the NN and is not likely 

to contribute to the average error. However, it can also indicate 

some improvements that can be made to the data collection. It 

could be caused by the nature of the function we are trying to 

learn, such as a periodical function, for example. However, 

another possibility is that some of the input variables chosen to 

feed the NN are redundant or do not contribute much to the 

output value. The researcher can examine the set of variables 

to see if some reduction of them is possible. Methods such as 

the ones proposed in [7] can be used for this purpose. 

In our case, none of our variables are redundant. It is 

more likely that extra variables could provide more precision 

for the NN. However, some of our procedural driving 

algorithms have a Fuzzy Logic nature. For example, one of the 

rules says that if the free distance ahead is larger than a given 

threshold, we can consider the road to be almost straight and 

keep driving in the same direction. This means that in terms of 

this input variable, increasing its value above the threshold will 

not cause an observable difference in the output. This can be a 

possible cause for the observed plateau. 

6 Conclusions 

In this paper we presented an application of neural 

networks to a problem of autonomous car driver, in particular, 

to determining the steering angle. We used data collected on 

three tracks to train the NN and data collected from a fourth 

track for testing. We introduced an idea of using intrinsic 

symmetry of the problem to improve the NN training. We also 

proposed a method for visualizing noise issues in the data that 

can help with better understanding the results. 

The experimental results presented in Section 4 show that 

using the problem’s symmetry is beneficial to the training and 

testing results. The best configuration of the NN for our 

problem seems to be that of 10 neurons on the first hidden layer 

and 5 on the second. Even though the training error is generally 

lower for a simpler track such as Forza, the best error on the 

training data was obtained by using data from the Alpine2 

track, which is more complex and challenging. Our 



experiments also show that larger NNs do not always lead to 

better performance, although training them longer can improve 

their performance more than for smaller ones.  

Section 5 introduced a noise measurement function and a 

method for visualizing the relevant part of it to study the noise 

present in the data. We have shown that data collections that 

present less noise are more likely to lead to lower average error 

for the NN. We also discussed how the analysis of the noise 

function can indicate better ways to collect the data for a 

problem. Thus, the noise analysis is an informative method for 

a learning algorithm.  
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