
Noise and Error Prediction for Neural Networks

D. Vrajitoru1 and K. Albelihi2
1Department of Computer and Information Sciences, Indiana University South Bend, South Bend, IN, USA

Abstract – In this paper, we are studying the application of a

neural network to a problem related to autonomous car driving.

In particular, we are interested in the correlation between noise

in the data and the average error that can be achieved by the

neural network, and study the issue using several data

collections. We propose a measure of the noise that can indicate

issues in the collected data and can help improve the learning

process. We are also interested in ways to use symmetry in the

data for this particular problem and analyze how we can take

advantage of it for a better training of the network.

Keywords: neural networks, noise measurement, symmetry

1 Introduction

In this paper we propose a study of the correlation

between noise in the data and error in artificial neural networks

(NN). For this, we use a problem where a NN is applied to

predict the steering angle for an autonomous car driver. This

problem presents an interesting challenge for the NN because

of the size of the data - about 1000 data points after filtering -

and because of the complex nature of car driving rules. We

started from a previous research that was published in [1] and

[2], and used the data collected for the Master’s thesis in the

experiments.

Autonomous car driving is a very relevant topic at the

moment. Significant progress is made all the time and self-

driving cars are currently being tested on the road. More and

more, car companies provide assistive driving technologies,

such as parallel parking and accident prevention. While it may

be hard for academic research to keep up with the industrial

pace, this still represents an interesting and challenging

problem for us and an ideal test case for learning algorithms.

Our interest in the subject is in seeing how well NNs can help

with the driving problem.

Noise is a fascinating subject with many applications in

computer science. In computer graphics in particular, noise

generation plays a big role in procedural content generation for

special effects and games. One of the popular methods is that

of Perlin Noise [8]. It can be used to generate realistic-looking

clouds, rocks, wood, and other textures. More complex

methods such as the M-Noise [10] using several noise octaves

were developed from it later.

Noise was also used in conjunction with the study of NNs

and other related systems. For example, [5] proposes a method

using NNs to reduce background noise for a better performance

of speech-recognition systems. In [6], Bayesian networks are

being used to analyze noisy biological data and uncover key

biological features in cellular interaction. In [9], the authors use

Short-Time Fourier Transform, self-organizing maps, and NNs

to analyze the integrity of audio signals and their noise

composition. Some studies [11] are concerned with developing

NN-based systems that are robust with respect to the noise in

the data. In [12], the authors use a NN to filter Monte Carlo

noise from images.

In this paper, we continue the research started in [1, 2, 4]

and examine the robustness of the NN when learning the data

for this problem and how the variation of the average error with

respect to the structure of the NN’s hidden layers. Then we

examine how to take advantage of symmetry in the data.

Finally, we look at ways to visualize the amount of noise in the

data and how the noise measure can be used as a tool to explain

the average error of the NN.

2 Autonomous Car Driving and NN

The research in this paper is a continuation of the projects

described in [1], [2], and [4]. These previous papers describe a

Fuzzy-Logic car pilot called Epic that was capable of learning

by hill-climbing techniques. Next, a system called Gazelle

improved on various aspects of Epic, added more learning

components, and implemented a unit to deal with opponents.

Moreover, in Gazelle we introduced the idea of collecting

driving data from the procedural pilot and training a NN with

it. The experiments showed that the road performance of the

NN is not necessarily better than that of the procedural pilot,

but it can improve some aspects such as road stability while

reducing damage.

Both Gazelle and Epic drive a car procedurally in a car

race simulation environment called TORCS. This software

provides several pilots available for racing in a graphical

environment and allows the user to compete with them. The

user has the option to either by driving a car manually, or to

program their own pilot and integrate it in the system. For the

latter option, TORCS provides a CarState class with road

information such as the free distance ahead, position of the car

on the road, angle with the centerline, opponents present in a

100m radius around the car, and others. The program must

respond with changes to the steering wheel, the gas or brakes,

and the gear. All of them are assembled into an object of the

CarControl class, which is returned to the TORCS race

server. Figure 1 shows a racing track available in TORCS and

the controlled car driving on it.

Fig. 1. The Alpine2 track (left) and a snapshot of a driving car

on it (right)

The procedural pilot that we wrote for Epic and

subsequently improved for Gazelle contains several control

units. We start by determining the target angle for steering,

which is the most important element of driving, as it establishes

the trajectory. An opponent modifier unit may change this

target angle based on opponents’ presence. Next, a target speed

is chosen so that the car can achieve a turn by the target angle,

while also trying to maximize the speed based on a given limit.

This speed change is translated into acceleration or braking and

can also be changed by the opponent modifier unit. The gear is

adjusted in the last place.

These pilots contain other units to deal with special

situations. A module is taking care of the car being outside of

the road, and strives to get it back on track. Another module

drives the car in reverse when it is stuck facing the wrong way

on the road. A learning unit can adjust the speed from one lapse

of the track to another based on the amount of damage

experienced so far. Another learning unit remembers trouble

spots such as sharp turns in the road so that the speed can be

adjusted the next time we approach them.

The current research continues our previous work in

several directions. First, we investigate the best settings for the

NN that can allow it to learn the function governing the

steering angle. Second, we look at a better way to exploit the

available data by using properties of symmetry. Third, we

analyze the connection between the noise in the data and the

average error of the trained NN.

In the model we used to apply the NN to this problem,

we chose 5 input variables that have significant influence on

the steering decisions. The output value is the steering angle.

In [2], data was collected by running the procedural driver on

five tracks chosen from the available ones. A filtering process

was also used to ensure a balanced distribution of the data in

terms of output values.

Figure 2 shows an example of the filtering process:

unfiltered and unbalanced data distribution in the upper part,

and more balanced data distribution in the lower part. The

intervals represent a discretization of the target output value in

intervals of 0.1 length, going from -0.6 radians at the bottom to

0.6 radians at the top, and the number 8 marking a special

interval (-0.01, 0.01]. The filtering process was intended to

insure that the NN is not over-trained on some regions of the

output target value range. For example many data points of the

initial collection were very close to the value 0, because those

would occur on any stretches of the road that are almost

straight.

Fig. 2. Filtering the training data for the Forza track

Figure 3 shows a car with the road borders outlined and

the input values that we have chosen to feed the NN, labeled

from 1 to 5. The first, labeled 1, is the current angle of the car

with the road centerline. Variable 2 is the lateral track position

of the car and varies from -1 on the left border to 1 on the right

border. Values outside of this range signify that the car has

exited the road. Variable 3 represents the free distance ahead

of the car. Variables 4 and 5 are the differences between the

distance ahead and the free distance at 10o angles left and right

from the car direction. In this figure, the parameter 5 should

have a negative value.

We selected three tracks that the data was collected for in

[2] to perform our current experiments on, Alpine2, ETrack5,

and Forza. We selected a fourth track, ERoad, to test the trained

NN with new data that was not used for training.

Fig. 3. Car state and five NN input variables

3 Using Problem Symmetry

Some functions by their very nature present some

intrinsic symmetries. Depending on the way the data collection

is done, these may or may not be present in the training data.

In our case the problem we are trying to solve is spatially

symmetrical. Figure 4 shows a mirror of Figure 3 along the

vertical axis. If the situation was thus reversed, the target

output value for steering the car should be the negative of the

target output value in Figure 3.

Fig. 4. Mirror situation of Figure 3

Thus, to mirror the problem, we need to multiply the first

two variables and the target output value by -1. Then the values

of the 4th and 5th variables must be swapped. The value of the

third variable remains the same. By performing this operation

on each data point that was collected, we can train the NN with

data that accurately reflects the symmetrical nature of the

problem, in hopes to achieve better driving performance.

4 NN Experimental Results

In this section we present the experimental results of

training the NN with the data from each of the three tracks,

with and without symmetry. For each track, we present the

resulting average error both during the training process and for

testing the trained NN on the data obtained from the fourth

track, ERoad. The error is defined as the average difference

between the NN’s output and the target value for each data

point, as follow:

����� = �∑ (�	
�	
(�
 −
����
(�

�� �� ���� #��
��

Tables 1, 2, and 3 summarize the results for the tracks

Alpine2, ETrack5, and Forza respectively. In all three tables,

the training and testing results represent 1000 training

iterations where the NN learns all the data points in the file by

back-propagation. For all the tables, the testing data was

obtained using data from the ERoad track. In all three tables,

the NN contains four layers. The first one is the input layer and

always contains 5 neurons. The number of layers in the second

and third layers, denoted by HL1 and HL2 (for hidden layer),

varies in the tables and is marked in the first two columns. The

last layer is the output one and always contains a single neuron.

Table 1. Training and testing results for the Alpine2 data in

1000 iterations

 No Symmetry Symmetry

HL1 HL2

Train

Error

Test

Error

Train

Error

Test

Error

8 3 0.154 0.139 0.164 0.143

10 5 0.135 0.179 0.156 0.206

12 5 0.136 0.181 0.156 0.141

15 6 0.140 0.198 0.156 0.185

Table 2. Training and testing results for the ETrack5 data in

1000 iterations

 No Symmetry Symmetry

HL1 HL2

Train

Error

Test

Error

Train

Error

Test

Error

8 3 0.082 0.200 0.110 0.177

10 5 0.081 0.174 0.088 0.156

12 5 0.089 0.207 0.087 0.159

15 6 0.109 0.233 0.111 0.182

Table 3. Training and testing results for the Forza data in 1000

iterations

 No Symmetry Symmetry

HL1 HL2

Train

Error

Test

Error

Train

Error

Test

Error

8 3 0.046 0.149 0.042 0.145

10 5 0.044 0.154 0.045 0.149

12 5 0.044 0.161 0.049 0.142

15 6 0.057 0.165 0.046 0.143

From Table 1 we can see that for the Alpine2 track, the

best configuration for the training data both with and without

symmetry is that of 10 + 5 hidden neurons. For the test data,

the best configuration is that of 8 + 3 hidden neurons without

symmetry. The track ERoad is not a very symmetrical one in

terms of turns, so for future research we will be looking for a

track that has both left and right turns for more accurate testing.

Even though the ERoad track is not symmetrical, we can

see that for a larger number of neurons, 12 and 15 on HL1,

using data symmetry has resulted in a better average error on

the test data.

From Table 2 we can see that for the ETrack5 data, the

models of 10 + 5 and 12 + 5 neurons provide the best training

error without and with the use of symmetry respectively. For

the test data, the best result is shown by the 10 + 5 neurons

configuration with the use of symmetry. In this case, using

symmetry is consistently better for the test data. This can be

explained by the fact that the ETrack5 track contains less turns

in the road in both directions than the Alpine2 track.

It is interesting to note that the error in the test data is

generally higher for the ETrack5 than it is for Alpine2, even

though the error on the training data is lower. This can be

explained by the fact that the Alpine2 track being more

complex, it provides more opportunities for the NN to train

well to calibrate its output for a larger variety of situations.

Looking at Table 3, it seems that the training error is

substantially lower than for Alpine2 and for ETrack5. The best

result in this case was obtained by the 8 + 3 neurons model with

symmetry. For the test error the best result was obtained by the

12 + 5 neurons model, also with symmetry. Since this is a

simpler track than the first two, the overall error is lower and

the symmetry seems to help lower the error consistently,

especially on the test data.

We can also wonder if more training iterations could have

led to different results. Figures 5 and 6 show a plot of the

different models we used over 5000 iterations for the ETrack5

data with symmetry for the training and testing cases

respectively.

Fig. 5. Training error on the ETrack5 data with symmetry

Fig. 6. Testing error on the ETrack5 data with symmetry

From these two figures we can see that for some of the

models (10 + 5 and 12 + 5), training past the initial 1000

iterations led to very little change in the error both for training

and for testing. For the 8 + 3 model, there is a substantial

decrease of the error both in training and testing modes around

3000 iterations, followed by another increase. For the 15 + 6

model, the back-propagation seems to increase its efficiency

after 3000 iterations and the error continues to decrease after

that, although between 4000 and 5000 iterations the learning

process slows down.

These figures show that smaller NNs are likely to learn

faster, so 1000 iterations might be sufficient for the model 8 +

3 neurons. Larger NNs are likely to learn more slowly, and in

this case a larger number of iterations must be tried to give the

back-propagation algorithm a chance to work. However, the

overall results do not suggest that larger networks always have

a chance to achieve a better error than smaller ones, and

experiments can help calibrate the appropriate size of the

layers.

5 Noise Analysis

In this section we are analyzing the noise in the collected

data for the three tracks we chose for training: Alpine2,

ETrack5, and Forza.

5.1 Noise Measurement Function

Noise can be defined in a variety of ways. It is a fuzzy

notion that indicates that adjacent data points in an area, mostly

of visual or audio nature, differs in random, unpredictable, or

unexpected ways. The idea of entropy is often connected to it,

for which Boltzmann’s and Gibb’s equations are available as

forms of measurement [3]. These equations are related to the

noise measurements ideas of noise figure and noise factor used

in acoustics and radio engineering. These do not directly apply

to the analysis we are trying to perform. Usually logarithmical

averaging methods are used for analyzing large collections of

data, but those do not represent the picture we want to look at

for our problem.

The idea in the noise measurement function we propose

here is to be able to showcase how the amount of difference in

the values of the output varies as a function of the amount of

difference in the input. The kind of situation that is most

interesting to us is where some input values are very close to

each other, but the output values associated with them are quite

different. This is likely to cause some difficulties for the NN in

the training process. So we define here a function N connecting

the difference in the input values to the difference in the output

values.

Let x1 and x2 be two input data points or vectors. In our

case, each of them contains 5 values for the 5 input parameters

we chose for training the NN. Let Δx = d(x1, x2) be the simple

Euclidian distance between the two points. Let y1 = f(x1) and

y2=f(x2) be the target output values for each of these input

points, and Δy = |y1 - y2|. Then as a measure of noise in the data

we chose to examine the shape of the two dimensional function

 Δy = N(Δx) (1)

If the initial data collection contains 1000 points, then

plotting the function N would result in a surface of 1,000,000

points. We decided to reduce the analysis to those points for

which either Δx or Δy is less than ε = 0.1 and we sorted them

by Δx. Figure 7 shows the function N plotted this way for the

data collection Alpine2.

For a better understanding of this image, we plotted a

second figure zooming in on the first part by looking at noise

points for which Δx <= 0.5. Figure 8 shows this second plot.

For the ETrack5 and Forza data, the right side part of the

plot is very similar to Alpine2 in Figure 7. Thus, we show here

only the zoomed-in plots where Δx <= 0.5. Figure 9 shows the

noise function for the ETrack5 file, while Figure 10 shows the

plot for Forza.

Fig. 7. Noise plot for Alpine2

Fig. 8. Noise plot for Alpine2 with Δx <= 0.5

Fig. 9. Noise plot for ETrack5 with Δx <= 0.5

Fig. 10. Noise plot for Forza with Δx <= 0.5

5.2 Noise Analysis

Looking at Figure 7, we can distinguish two major

artifacts, a visible spike on the left-hand side and a long plateau

on the right-hand side. Figure 8 zooms in on the first part of the

graph to show more details of this spike.

The interpretation of the spike is that we have input data

points with a distance less than 0.1 for which the difference in

the output is between 0.4 and 0.5. We can even spot some

points closer than 0.02 with this kind of difference in the target

output value. This spike will make it difficult for the NN to

provide an accurate output value for all of these points, and will

increase the value of the observed error.

Examining possible sources of this kind of spike, it is

conceivable that the data are issued from a noisy source to

begin with. If the data were collected from a human driving a

car, various factors could have caused him or her to make

different steering decisions in similar situations. The level of

stress, fatigue, or distraction can be of influence and can cause

slightly different reactions. Even when the data are collected

from a procedural driver, the variety of algorithms used to

address situations on the road can also cause the observed

differences.

However, the spike can also mean that the data collection

might have been incomplete. It is possible that external

parameters that were not observed during the data collection

also have an influence on the outcome and should be taken into

consideration. If at all possible, the researcher can go back to

the input parameters definition to see if more variables can be

added. For this study, this is a possible future research track.

In our case, the noise analysis shows that the largest

amount of noise, represented by the left-size spike in the three

images, is present in the Alpine2 track, due to its complex

nature. Looking back at the training error, this track resulted in

the largest training error values of the three, between 0.13 and

0.15 in 1000 iterations. The second track in terms of noise is

ETrack5, which also happens to be the median track in terms

of training error, between 0.08 and 0.11. The track data

collection showing the least amount of noise, Forza, is also the

one with the smallest value of training error, between 0.04 and

0.06. However, in terms of test error, the best results were

shown by the Alpine2 track, probably also due to its complex

nature. From this analysis it seems pretty clear that there is a

correlation between the amount of noise in the data, such as

defined by the function N, and the average error of the trained

NN. Thus, noise is a useful tool for understanding the capacity

of learning of this method.

Let us examine the second artifact, the long plateau on

the right side of Figure 7 for Alpine2. The same plateau is

observed in the full plot for the two other tracks. This plateau

means that we have data points that are increasingly distant -

close to 300 for Alpine 2 - for which the difference in the target

output value is less than or equal to 0.1. This occurrence in

itself does not constitute a problem for the NN and is not likely

to contribute to the average error. However, it can also indicate

some improvements that can be made to the data collection. It

could be caused by the nature of the function we are trying to

learn, such as a periodical function, for example. However,

another possibility is that some of the input variables chosen to

feed the NN are redundant or do not contribute much to the

output value. The researcher can examine the set of variables

to see if some reduction of them is possible. Methods such as

the ones proposed in [7] can be used for this purpose.

In our case, none of our variables are redundant. It is

more likely that extra variables could provide more precision

for the NN. However, some of our procedural driving

algorithms have a Fuzzy Logic nature. For example, one of the

rules says that if the free distance ahead is larger than a given

threshold, we can consider the road to be almost straight and

keep driving in the same direction. This means that in terms of

this input variable, increasing its value above the threshold will

not cause an observable difference in the output. This can be a

possible cause for the observed plateau.

6 Conclusions

In this paper we presented an application of neural

networks to a problem of autonomous car driver, in particular,

to determining the steering angle. We used data collected on

three tracks to train the NN and data collected from a fourth

track for testing. We introduced an idea of using intrinsic

symmetry of the problem to improve the NN training. We also

proposed a method for visualizing noise issues in the data that

can help with better understanding the results.

The experimental results presented in Section 4 show that

using the problem’s symmetry is beneficial to the training and

testing results. The best configuration of the NN for our

problem seems to be that of 10 neurons on the first hidden layer

and 5 on the second. Even though the training error is generally

lower for a simpler track such as Forza, the best error on the

training data was obtained by using data from the Alpine2

track, which is more complex and challenging. Our

experiments also show that larger NNs do not always lead to

better performance, although training them longer can improve

their performance more than for smaller ones.

Section 5 introduced a noise measurement function and a

method for visualizing the relevant part of it to study the noise

present in the data. We have shown that data collections that

present less noise are more likely to lead to lower average error

for the NN. We also discussed how the analysis of the noise

function can indicate better ways to collect the data for a

problem. Thus, the noise analysis is an informative method for

a learning algorithm.

7 References

[1] K. Albelihi, D. Vrajitoru, “An Application of Neural

Networks to an Autonomous Car Driver”, The 17th

International Conference on Artificial Intelligence, July 27-30,

Las Vegas, 716-722, 2015.

[2] K. Albelihi, “The Gazelle Adaptive Racing Car Pilot,”

Master’s Thesis, Indiana University South Bend, 2014.

[3] E. T. Jaynes, “Gibbs vs Boltzmann entropies”, American

Journal of Physics, 33, 391-8, 1965.

[4] C. Guse and D. Vrajitoru, “The epic adaptive car pilot,”

in Proceedings of the Midwest Artificial Intelligence and

Cognitive Science Conference, South Bend, IN, April 17-18

2010, 30–35.

[5] M. Trompf, "Building Blocks for a Neural Noise

Reduction Network for Robust Speech Recognition",

Proceedings of EUSIPCA 1992, Brussels, Belgium, Aug. 24-

27, 1992.

[6] N. Friedman , M. Linial , and I. Nachman, “Using

Bayesian networks to analyze expression data”, Journal of

Computational Biology, Vol. 7, 601-620, 2000.

[7] A. Hyvärinen, Survey on Independent Component

Analysis, Neural Computing Surveys, Vol. 2, 94-128, 2001.

[8] K. Perlin, Ken, “An Image Synthesizer”, Proceedings of

SIGGRAPH Computer Graphics, 19 (0097-8930): 287-296,

July 1985.

[9] W. Satney, A. Carrington, T. Scantlebury-Manning, and

A. Als, “Determining Signal Source Integrity Using a Semi-

supervised Pattern Classification System”, The 17th

International Conference on Artificial Intelligence, July 27-30,

Las Vegas, 629-635, 2015.

[10] M. Olano, “Modified Noise for Evaluation on Graphics

Hardware”, ACM SIGGRAPH/Eurographics Graphics

Hardware, 2006.

[11] B. Li and K. Chai Sim, “A spectral masking approach to

noise-robust speech recognition using deep neural networks”,

IEEE/ACM Transactions on Audio, Speech and Language

Processing (TASLP), Volume 22 Issue 8, August 2014.

[12] N. Khademi Kalantari, S. Bako, and P. Sen, “A machine

learning approach for filtering Monte Carlo noise”, ACM

Transactions on Graphics (TOG) - Proceedings of ACM

SIGGRAPH 2015, Volume 34 Issue 4, August 2015.

