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ABSTRACT 

In this paper, we present a project aiming to improve the path of 
an autonomous vehicle on a race track in terms of speed and 
amount of turning. In this part of the study, we use global 
information about the track to compute an optimized trajectory. 
This trajectory uses known turning strategies for cars in road 
curves minimizing the amount of turning. Then we use sample 
information from the computed path to train a neural network 
using only local information available to the driver in real-time as 
input. The goal is to study how well global information can be 
inferred from local information.  
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1. INTRODUCTION 
In this paper, we present a project that is part of developing 
autonomous vehicles. Our work uses the TORCS system that 
simulates a car race. Our current aim is to improve the path of the 
controlled vehicle on a race track in terms of time taken to 
complete the race and amount of turning that the vehicle does 
over the whole track.  

In this part of the study, we continue the work from [1] where 
global information about the track’s geometry is used to compute 
an optimized trajectory. Here, we collect local information 
characterizing the computed trajectory in each frame of the race. 
Then we use this information to train a neural network (NN) to 
compute the car’s trajectory using only local information as input. 
The goal of this project is to study whether local information is 
sufficient in some circumstances to compute a trajectory as well 
as using global information. 

Autonomous vehicles have been generating significant interest in 
the research community for a good number of years. Recent 
industrial and academic advances have made it closer now to 
becoming an everyday reality. Thus, a future where such cars will 
be commonplace on our roads is not far away. It is important to 
develop and document good algorithms for these vehicles.  We 
hope that they will contribute to increase traffic safety, reduce the 
stress of commuting, and increase traffic efficiency in general. 

 

Our system extends work started with the EPIC car controller [2] 
and continued with Gazelle [3]. It was developed in the TORCS 
(The Open Racing Car Simulator) framework [4] that simulates 
car races with a variety of available tracks, in a realistic visual 
environment. The current iteration of our car controller is called 
Meep.  

Several approaches can be found in the literature for track 
prediction aiming to optimize the performance. For example, in 
the track segmentation approach, the track is divided into 
fragments that are classified as pre-defined types of polygons. 
Then the controller reconstructs a full track model from these 
polygons, as presented in [5]. Another controller based on the 
track segmentation principle is proposed by Onieva et al. [6], 
which includes a fuzzy system working as an opponent modifier 
unit. A more recent work [7] introduces a driving controller called 
AUTOPIA, one of the most successful competitors in the 
simulated racing car competition. These algorithms are also 
related to map-matching algorithms such as can be found in [15]. 

Our work on trajectory calculation is related to [8] in that the 
trajectory for the car is computed for a track situation in both 
cases, with the goal of optimizing the required time. In their 
approach, however, they pre-compute safe zones for the car on the 
road and use them to speed up computation of the trajectory in 
real time. Incidentally, the shape of the trajectories presented in 
their paper is consistent with ours. A major difference comes from 
the fact that in their system, the geometry of the track in known in 
advance, while in ours, we must infer it from measurements 
provided at runtime by TORCS. 

The driving method employed in Meep uses the pre-computed 
trajectory as a target and makes decision to steer towards it. This 
presents some similarity to methods of following a moving target, 
such as a second car, as presented in [9] and [10], even though the 
purpose of our research is quite different. 

Other approaches to trajectory calculation include the use of 
evolutionary algorithms. In [11], the authors propose an 
evolutionary approach called EVOR that computes the trajectory 
at race time using a fitness aiming to keep the car on the track. 
This approach uses a pre-constructed model of the track using a 
method similar to ours. A related approach is presented in [5] 
where the controller uses an evolutionary learning system to plan 
the path ahead for the car. 

Optimal paths within road constraints can be found in several 
papers. In this work, we are using the curve shapes computed in 
[12], which present similarities with the trajectory presented in 
[8]. 

Neural networks have been used widely for robot guidance 
systems and even for pilots trained under the TORCS system. For 
example, in [13], a NN is used to decide on an appropriate speed 
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for an autonomous car pilot. In [14], the authors use a NN to 
mimic a trajectory chosen by a human pilot.  

The paper is organized in the following way. Section 2 starts with 
definitions and general purpose settings for our research. Section 
3 describes our model, the environment, and the methodology 
used in our research. Section 4 presents experimental results with 
the neural network. The paper ends with conclusions. 

2. General Settings 
In this section, we introduce notations and definitions that are 
necessary in the description of our model. We also describe the 
TORCS application and the general settings of our project.  

2.1 The TORCS Environment 
TORCS attracts a wide community of developers and users, and it 
is the platform for popular competitions organized every year as a 
part of various international conferences [2].  The program is 
organized as a server which implements races combining multiple 
cars on a variety of tracks. A client module can be written by the 
user returning the actions of a controlled car. The server provides 
information about the track, the car, and the opponents [7]. The 
client can control the steering wheel ([-1, +1]), the gas pedal ([0, 
+1]), the brake pedal ([0, +1]); and the gearbox (-1 through 6) [2]. 

The application provides multiple race tracks of various length 
and difficulty. We have chosen four tracks for this particular 
research: Alpine 2, E-Road, E-Track4, and E-Track5. The first 
one is the most difficult track, with several points of sharp turns 
presenting a challenge even at low speeds. E-track 5 is the shortest 
and easiest, and chosen initially to calibrate the path generating 
algorithm. Figure 1 shows a screenshot of the Alpine 2 track at a 
difficult point where the road enters a tunnel at a very sharp right 
angle. We can also see the TORCS dashboard with various 
indicators and the mini-map in the top right corner.  

 

Figure 1. The Alpine 2 track in TORCS 

2.2 Notations and Definitions 
TORCS provides information about the car state, including a 
lateral position of the car on the road. If we draw a perpendicular 
to the centerline of the road from the car center, that we call a 
transversal line or vector, the lateral position shows how far we 
are on this line from the center of the road. Thus, a value of 0 
represents the center of the road, while positions of 1 and -1 
represent the borders of the road on each side, as shown in Figure 
2. 

We define a trajectory for the car as a function r(t) returning a 
value in the interval [-1, 1] for each point of the track’s centerline 
t, representing the target lateral position of the car on a 
perpendicular line to the centerline. Figure 2 illustrates this 
definition. 

 

Figure 2. Road and trajectory definition 

The function r(t) can take values out of the interval [-1, 1] if the 
car exits the road, but we assume that this is not a desirable trait in 
such a target function.  

Theoretically, the trajectory is a continuous function. Practically, 
it is discretized on the set of points of the centerline where the car 
is found in each frame of the application. One constraint that 
arises from the particular setting of this problem is that the 
trajectory should be fast to compute. Thus, it must allow the car’s 
pilot to communicate with the race server quickly enough for the 
car not to exit the road or crash against a hard shoulder.  

A trajectory computed on the spot by a NN of modest size is not 
computationally expensive and can be used directly in the race. 
However, a pre-computed trajectory that is too dense can both 
require too much memory and slow down the pilot too much 
through the search process. To alleviate these issues, we only 
store a reasonably dense trajectory and interpolate the values in 
between key points. 

The notion of curvature of a curve is used extensively through the 
paper. For a continuous curve s(t) defined in a space with more 
than one dimension, the first derivative s’(t) is the tangent to the 
curve, while the second derivative s’’(t), is called the curvature, 
and is normal to the curve. If the curve represents the motion of an 
object, the first derivative is the velocity, while the second one is 
the acceleration. For the current project, the curvature is not of 
great interest as a vector. The relevant parts, in our case, are the 
norm of the vector and the orientation.  

In our model, the centerline of the road can be used as the curve, 
as well as either of the two borders of the road. However, since 
this is a simulated environment, the curve is not continuous, but 
composed of a sequence of small line segments. We have used the 
change of slope between adjacent line segments as a measure of 
the curvature of the road. As the segments are not directly 
available, we compute the angle between observed adjacent road 
segments through the sensors available in TORCS.  

3. Algorithms Description 
In this section, we will describe our approach to the problem and 
the different stages in the implementation of our model. 

3.1 The Meep and Gazelle Pilots 
Let us first introduce the outline of the autonomous pilots used in 
this research.  

The Gazelle pilot [3] continues and improves the ideas used for 
the Epic controller [2]. It has two modes: the first one is 



procedural, using the measurements from the TORCS sensors to 
compute a target direction and speed, and the second one uses a 
trained NN for the direction unit. In this study, we have only used 
the procedural part of Gazelle to compare with the current model, 
and from it, only the direction unit. The experiments presented in 
this paper all use constant speed.  

The procedural pilot that we wrote for Epic and subsequently 
improved for Gazelle contains several control units. We start by 
determining the target angle for steering, which is the first 
element of driving, as it establishes the trajectory. An opponent 
modifier unit may change this target angle based on opponents’ 
presence. Next, a target speed is chosen so that the car can achieve 
a turn by the target angle, while also trying to maximize the speed 
based on a given limit. This speed change is translated into 
acceleration or braking and can also be changed by the opponent 
modifier unit. The gear is adjusted in the last place. 

TORCS provides 19 distance sensors in each frame of the race, 
centered on the car’s direction of movement and spawning in both 
directions by increments of 10 degrees. Each of them returns the 
free distance ahead to the border of the road in their respective 
direction. These measurements are capped to a maximum of 
100m.  

The target direction in Gazelle is obtained starting from the 
central sensor  that points in the car’s direction of movement, and 
scanning left or right using the sensors provided by TORCS, 
towards the direction where the distance is increasing. The last 
sensor before the free distance starts decreasing is returned as the 
target direction. Based on it, the steering value is equal to the 
target angle divided by maxAngle, the maximum turning angle 
available for the vehicle. Figure 3 illustrates this idea. 

 

Figure 3. Gazelle steering unit 

The driving method employed in Meep uses a target trajectory 
that can be either a pre-computed trajectory, or one calculated on 
the spot, and makes a decision to steer towards it. This presents 
some similarity to methods of following a moving target, such as 
a second car, as presented in [9] and [10], even though the 
purpose of our research is quite different. In addition, Meep 
inherits the Gazelle recovery behavior for cases where the car has 
exited the road, or got stuck at an inconvenient angle after 
bumping against the road shoulder. 

The target direction unit of Meep is used primarily in this 
research. The pilot requires a target value for the trajectory in the 
interval [-1, 1], representing an objective value for the lateral 

position of the car on the road in each frame of the race. The 
steering value is computed using two measurements: the current 
lateral position of the car on the road, and the current angle 
between the car’s axis and the centerline of the road. Both of these 
are provided by TORCS.  

Thus, the target steering angle is calculated first by reversing the 
current angle with the road centerline, to align the car with the 
road. Then, we add the difference between the current lateral 
position on the road and its target value, multiplied by a 
parameter. To avoid turning too sharply when the road position is 
far off, we use the square root of the difference if its absolute 
value is larger than 1. For the same reason, we cap this difference 
at 2.5. The resulting steering value is computed the following 
way, then clamped to the interval [-1, 1]: 

deltaTraj = max(-2.5, min(2.5, targetTraj – currentTraj)); 

if (|deltaTraj|>1) 

 deltaTraj = deltaTraj / √(deltaTraj); 

steer = (roadAngle + kt*deltaTraj)/maxAngle; 

where targetTraj is the target trajectory, currentTraj is the current 
lateral position of the car on the road, roadAngle is the current 
angle of the car with the road centerline, and kt is an adjustable 
parameter.  

3.2 Computing the Global Trajectory 
To compute an optimized trajectory based on global information, 
we started by mapping the curvature of the tracks. The curvature 
is computed locally based on sensor data provided by TORCS. 
We ran the pilot on a constant trajectory at a constant speed 
through each of the tracks and recorded the values of the 
curvature at regular intervals. 

The first step is to compute the curvature of the road using the 
distance sensors in TORCS. Figure 4 illustrates this process. First, 
we draw a line from the car’s position C perpendicular to the road 
centerline until it crosses the road’s border in A. The direction of 
this line is based on the angle of the car with the road. The angle 
between this line and the car’s direction is equal to 90o-car angle. 
Then, we use the closest values from the sensors, marked in the 
figure as distance probes, to map the triangle ABC, connecting the 
car with A and with the intersection point B of the next sensor line 
with the border of the road. This allows us to compute the 
curvature angle as marked in the figure. 

 

Figure 4. Curvature mapping 



Once the curvature is mapped, a trajectory is computed using 
these stored values. We used the shape of curves that optimizes 
the overall time it take to go through a curve, as computed in [12] 
and shown in Figure 5 on the left. 

 

Figure 5. Optimal trajectory through a curve minimizing the 

time (left) and maximizing the exit velocity (right) 

The trajectory is computed in three phases which are described 
more in detail in [1]. Phase one goes through the entire track and 
assigns values of 0 to all the long stretches where the track is 
almost straight, and 0.8 and -0.8 respectively to all the long 
stretches where the road turns in the same direction. The value 0.8 
was chosen based on the width of the car, so that the side closest 
to the border is still inside the track. These values are assigned 
leaving a buffer zone of a few meters at the beginning and end of 
each continuous stretch. 

Phase 2 goes through the entire trajectory again and patches the 
pieces of the track between those assigned during Phase 1. This 
part uses a linear interpolation of the trajectory values between the 
end of one stretch and the beginning of the next one. Phase 3 
smooths the resulting trajectory even more by using anti-aliasing 
techniques. 

Multiple experiments were done with the trajectory calculating 
algorithm and variations of parameters such as the value of the 
curvature for which the road can be considered almost straight or 
the length of the buffer zones between the different stretches of 
constant trajectory. These results are presented in [1], and 
summarized in Section 4.1. 

3.3 Neural Network Training 
We proceeded to collect training data for a neural network to learn 
to compute the car trajectory. For this, we ran the Meep pilot 
using the pre-computed trajectory based on curvature mapping on 
each of the four selected tracks. For each frame of the race, we 
recorded as potential input values, the current values of the 
distance sensors, the current road angle or the car, current lateral 
position (or trajectory value), and the current value of the 
curvature, and as output value, the computed trajectory for the 
location.  

In terms of organizing the data into training and testing sets, we 
used the cross-validation method. Thus, for each individual track, 
we used the data collected from the other three tracks for training 
purposes, and the data collected from the track itself for testing 
purposes. This way, we also examine whether data collected from 
one or more tracks can be used on new tracks.  

The first set of experiments we did involve using the curvature 
only as input for the NN. We experimented with two settings, of 
one hidden layer of 3 neurons, and of two hidden layers with 5 
and 3 neurons respectively. After extracting the curvature and 
trajectory coordinates from the data and removing duplicates, the 

size of the data turned out small enough to be used for training 
without further filtering. The data set was shuffled after each 
training pass. Experiments where the data set is not shuffled have 
led to a lower performance of the NN.  

For the second set of experiments, we added one more variable as 
input. To choose the second parameter, we computed a statistic of 
how much the input values for each of the distance sensors vary 
when the values of the curvature are constant but not the value of 
the trajectory. Thus, we computed the sum of the absolute 
difference of the value of the sensor coordinate for all the pairs of 
data x and y for which the value of the curvature is the same but 
the value of the trajectory is different: 

Σ{(x,y)|curv(x)=curv(y), traj(x)≠traj(y)} |sensori(x)-sensori(y)| 

This measure is meant to show which of the sensors’ values is the 
most significant in describing why the output varies if the input 
used so far does not. The central sensor, following the direction of 
the car’s axis, returned the highest value for this measure for all 
the tracks. Thus, for this experiment, we used two input variables, 
the curvature and the central sensor, and one output variable. For 
this part, we used a network topology with two hidden layers, of 5 
and 3 neurons respectively. Experiments with larger networks did 
not improve the performance.  

For the second set of experiments, the data turned out to be of a 
too large size to be used efficiently for training directly. For this 
part, we have filtered the data using intervals of 0.1 size for the 
output value, and selecting a representative subset of data in each 
interval. Through the filtering process, for each such interval we 
capped the selected number of data points to a constant. Through 
this process, we aimed to have a uniform distribution of the data 
points over the interval of output values. This technique is similar 
to the data filtering described in [3].  

For these experiments, the testing has been done on unfiltered 
data, for a better comparison with the other results. Even so, the 
numbers are not directly comparable because the test sets are 
larger when we extract two input parameters instead of one. 

Table 1 and Table 2 show the results of training and testing the 
NN for each of the tracks. We performed 5000 training iterations 
in each case and selected the best average error obtained in each 
case. 

Table 1. Best training error for the NN 

Track 1Input 1L 1Input 2L  2Input 2L 

Alpine2 0.2004 0.3269 0.3961 

E-Road 0.2189 0.2669 0.3915 

E-Track4 0.1733 0.2020 0.3846 

E-Track5 0.2093 0.2580 0.3911 

 

Table 2. Best test error for the NN 

Track 1Input 1L 1Input 2L  2Input 2L 

Alpine2 0.0025 0.0023 0.0042 

E-Road 0.0039 0.0038 0.0080 

E-Track4 0.0043 0.0030 0.0055 

E-Track5 0.0042 0.0041 0.0113 



These tables show that the network with one input and two hidden 
layers generally performs better than the one with one single 
layer. The testing error is generally smaller than the training one 
because the data set it is calculated on is smaller. We also note 
from these results that a lower training error does not always 
correspond to a lower test error due to the fact that the data sets 
used in these cases come from different tracks. However, there is 
an overall correlation of the results.  

As we will see in Section 4.2, the network with two input 
parameters and two hidden layers consistently converges towards 
calculating a constant trajectory. This network is minimizing the 
error by producing values in a very small interval around a 
median value for the trajectory. It would be interesting to study 
for future research why the extra parameter causes this to happen 
and if a larger network might solve this problem. Another avenue 
for future research consists in finding different methods of 
choosing the extra parameter(s) and seeing how that choice can 
influence the outcome.  

4. Experiments in Race Setting 
In this section, we present the experiments performed with the 
trained neural network as used to pilot the car in race conditions 
and compare it with other pilots previously used in our project. 

4.1 Benchmark Data 
Let us start by introducing the pilots that we will use for 
benchmark in these experiments, as well as their performance on 
the chosen tracks. Thus, in this subsection, we present some of the 
results that we will use to compare with the performance of the 
new model. More elaborate results are presented in [1]. We ran 
the experiments on the four selected tracks in TORCS, as 
mentioned in Section 2. The curvature of the road was mapped for 
each of them and an optimized trajectory was computed based on 
this information. The shape of the trajectory was chosen based on 
known trajectories minimizing the amount of turning done while 
traversing the curves, such as found in [8] and [12].  

For each of these tracks, we summarize the best results obtained 
by the computed trajectories in terms of time (seconds) required to 
complete one lapse of the track and total amount of turning 
(radians) done by the car. Since the object of this research is 
optimizing the trajectory, we kept the speed constant in these 
experiments. We performed three runs for each setting, of speeds 
50 km/h, 80 km/h, and 120 km/h respectively.  

We also present here the results obtained by the “simple pilot” 
provided by TORCS, named here the “constant pilot” because its 
aim is to keep the car in the middle of the track at all times. In our 
notations, this corresponds to a target trajectory equal to 0 over 
the entire track. Finally, a third benchmark pilot is used, which is 
the pilot called Gazelle, presented in [3], for which we have used 
the steering component only.  

Table 3 through Table 6 show the results of the benchmark pilots 
on the four tracks. The pilots are listed in the order: constant pilot, 
the pilot using the trajectory computed using global information, 
and Gazelle. For each of them, we show the total time in seconds 
to complete one lapse and the total amount of turning in radians 
done by the car in that situation. For the global trajectory pilot we 
used the results obtained with the best settings for each track, as 
presented in [1].  

From these results we can see that the global trajectory 
outperforms both the constant trajectory pilot and Gazelle in most 
situations and for all the tracks. It consistently finishes the race in 

a shorter time than both of the other pilots. The total amount of 
turning that the pilot does is also almost always lower than for the 
other pilots. 

Table 3. Benchmark pilots for Alpine 2 

Speed  Const Global Trj. Gazelle 

50 Time 278.01 271.39 271.97 

 Turn 821.28 795.67 814.24 

80 Time 201.21 171.61 172.23 

 Turn 624.12 592.56 611.51 

120 Time 233.27 231.31 260.17 

 Turn 1794.01 2920.52 2227.01 

 

Table 4. Benchmark pilots for E-Road 

Speed  Const Global Trj. Gazelle 

50 Time 241.31 232.35 232.63 

 Turn 936.92 794.01 824.96 

80 Time 151.97 146.27 146.55 

 Turn 605.13 521.01 527.34 

120 Time 164.65 100.15 112.10 

 Turn 975.09 698.24 522.33 

 

Table 5. Benchmark pilots for E-Track4 

Speed  Const Global Trj. Gazelle 

50 Time 512.91 505.30 507.81 

 Turn 590.45 558.36 621.24 

80 Time 321.81 317.07 318.57 

 Turn 388.82 370.76 414.44 

120 Time 216.11 212.92 213.87 

 Turn 304.96 294.73 327.26 

 

Table 6. Benchmark pilots for E-Track5 

Speed  Const Global Trj. Gazelle 

50 Time 121.87 115.93 116.13 

 Turn 337.62 288.68 429.43 

80 Time 76.79 73.42 73.60 

 Turn 231.17 199.73 262.63 

120 Time 52.67 50.43 50.65 

 Turn 182.18 155.58 172.72 

 

For some of the tracks, we notice that it often takes more time to 
complete the track at 120 km/h than at 80 km/h Alpine 2. The 
reason why this happens is because the tracks have several 



locations that are hard to go through safely at high speed, resulting 
in the vehicle crashing into the shoulder and exiting the road. This 
causes a momentary loss of speed and requires extra time for 
recovery maneuvers.  

4.2 Experimental Results with the NN 
We used a classic NN with perceptron neurons using the tanh 
function and trained it with backpropagation. In all cases, we ran 
5000 iterations of training the NN with the entire set of data, and 
we selected the set of weights minimizing the error on the test 
data. We used the best result obtained from multiple runs with 
different seeds for the random number generator. This is used in 
assigning the initial weights in the network randomly. 

Table 7 through Table 10 show the results of the pilot using a 
trajectory with a trained NN. The models we have used are 
marked in the tables by the number of input variables and the 
number of hidden layers (L). The speed is in km/h, the time in 
seconds, and the turn in radians.  

For all three models, the current or local curvature of the road is 
used as an input variable. For the third model, we added a second 
input variable with the distance to the road border measured in 
TORCS by the central sensor, which is aligned with the center 
axis of the car. The model with one hidden layer uses three 
neurons in this layer. The models with two hidden layers use 5 
and 3 neurons in these layers respectively. The output of the NN 
in all cases is a single value representing the target trajectory. This 
value should ideally be in the interval [-1, 1]. 

Table 7. NN trajectory pilots for Alpine 2 

Speed  1Input 1L 1Input 2L  2Input 2L 

50 Time 275.23 273.53 277.87 

 Turn 1692.44 1156.77 816.15 

80 Time 221.69 173.01 206.97 

 Turn 2105.53 936.32 651.32 

120 Time 280.71 236.49 231.81 

 Turn 1706.88 1261.78 1219.14 

 

Table 8. NN trajectory pilots for E-Road 

Speed  1Input 1L 1Input 2L  2Input 2L 

50 Time 234.53 234.97 240.69 

 Turn 1245.47 1180.16 951.56 

80 Time 148.17 148.31 151.59 

 Turn 911.35 841.97 619.22 

120 Time 102.53 103.96 138.35 

 Turn 1029.69 917.16 837.24 

 

From these tables, we can see that the NN topology with one input 
parameter (the curvature) and two hidden layers performs the best 
of the three models we’ve tried. For the Alpine 2 and E-Track4 
tracks, the time taken by this pilot to complete the race is the 
lowest of the three pilots except at the highest speed, where 
bumps against the road shoulder caused it to lose some time. For 
E-Road and E-Track5, the two topologies with one input 

performed very similarly to each other and better than the third 
pilot. These two tracks are in fact easier than the other two, and 
the pilots are able to complete them without incident even at the 
high speed.  

Table 9. NN trajectory pilots for E-Track4 

Speed  1Input 1L 1Input 2L  2Input 2L 

50 Time 511.05 507.91 512.01 

 Turn 1015.09 1115.39 613.13 

80 Time 320.61 318.87 321.25 

 Turn 724.24 831.91 411.36 

120 Time 215.63 223.99 215.75 

 Turn 661.12 867.01 328.33 

 

Table 10. NN trajectory pilots for E-Track5 

Speed  1Input 1L 1Input 2L  2Input 2L 

50 Time 116.70 116.79 119.93 

 Turn 389.57 388.19 313.33 

80 Time 73.97 74.02 75.95 

 Turn 276.68 275.75 207.69 

120 Time 50.83 50.87 52.13 

 Turn 233.59 235.00 158.72 

 

The performance of the model with two input parameters and two 
hidden layers is very similar to the benchmark pilot called 
constant, which keeps the car in the center of the road through the 
entire race. This is because the NN with this topology had 
consistently converged to a setting of weights giving an output in 
a very small range, making it almost constant.  

Comparing the performance of the pilots using a NN with the 
benchmark pilots, we did not expect the new system to perform 
better than the pilot based on the computed trajectory. The goal is 
to obtain a close performance. For all the tracks and most of the 
settings, the best NN pilot was faster than the constant pilot and 
almost as good as Gazelle and the computed trajectory pilot. In 
these cases, it is only about half a second to two seconds behind 
the benchmark pilots. This means that the NN can learn to 
replicate pretty close the behavior of the pilot using the 
precomputed trajectory. 

As a future direction of research, we intend to apply trajectory 
optimization methods to improve the pre-computed path even 
more. Then a NN can be used to learn to mimic such a trajectory 
on new tracks without mapping them beforehand. 

5. Conclusions 
In this paper, we presented a model where we first computed an 
optimized trajectory based on a mapping of the road, then we 
collected local data describing this trajectory, and then trained a 
NN to compute a trajectory from local track data. We used cross-
validation to examine whether the system can be trained from data 
collected from some tracks and then applied successfully to a new 
track.  



Our experiments show that with a careful choice of parameters, 
the NN can be trained to choose a car trajectory similar to the 
precomputed one and display a performance close to it. This 
means that the global information used to compute the trajectory 
can be translated with close accuracy into the local information 
used by the NN to compute the trajectory. 

As future research, we intend to focus on trajectory 
optimization methods to improve the pre-computed 
trajectory before training the NN to replicate it. 
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