
Global to Local for Path Decision using Neural Networks
Dana Vrajitoru

Indiana University South Bend
1700 Mishawaka Ave
South Bend, IN, USA

dvrajito@iusb.edu

ABSTRACT

In this paper, we present a project aiming to improve the path of
an autonomous vehicle on a race track in terms of speed and
amount of turning. In this part of the study, we use global
information about the track to compute an optimized trajectory.
This trajectory uses known turning strategies for cars in road
curves minimizing the amount of turning. Then we use sample
information from the computed path to train a neural network
using only local information available to the driver in real-time as
input. The goal is to study how well global information can be
inferred from local information.

CCS Concepts

• Computing methodologies~Machine learning

Keywords

autonomous vehicles; path optimization, neural networks

1. INTRODUCTION
In this paper, we present a project that is part of developing
autonomous vehicles. Our work uses the TORCS system that
simulates a car race. Our current aim is to improve the path of the
controlled vehicle on a race track in terms of time taken to
complete the race and amount of turning that the vehicle does
over the whole track.

In this part of the study, we continue the work from [1] where
global information about the track’s geometry is used to compute
an optimized trajectory. Here, we collect local information
characterizing the computed trajectory in each frame of the race.
Then we use this information to train a neural network (NN) to
compute the car’s trajectory using only local information as input.
The goal of this project is to study whether local information is
sufficient in some circumstances to compute a trajectory as well
as using global information.

Autonomous vehicles have been generating significant interest in
the research community for a good number of years. Recent
industrial and academic advances have made it closer now to
becoming an everyday reality. Thus, a future where such cars will
be commonplace on our roads is not far away. It is important to
develop and document good algorithms for these vehicles. We
hope that they will contribute to increase traffic safety, reduce the
stress of commuting, and increase traffic efficiency in general.

Our system extends work started with the EPIC car controller [2]
and continued with Gazelle [3]. It was developed in the TORCS
(The Open Racing Car Simulator) framework [4] that simulates
car races with a variety of available tracks, in a realistic visual
environment. The current iteration of our car controller is called
Meep.

Several approaches can be found in the literature for track
prediction aiming to optimize the performance. For example, in
the track segmentation approach, the track is divided into
fragments that are classified as pre-defined types of polygons.
Then the controller reconstructs a full track model from these
polygons, as presented in [5]. Another controller based on the
track segmentation principle is proposed by Onieva et al. [6],
which includes a fuzzy system working as an opponent modifier
unit. A more recent work [7] introduces a driving controller called
AUTOPIA, one of the most successful competitors in the
simulated racing car competition. These algorithms are also
related to map-matching algorithms such as can be found in [15].

Our work on trajectory calculation is related to [8] in that the
trajectory for the car is computed for a track situation in both
cases, with the goal of optimizing the required time. In their
approach, however, they pre-compute safe zones for the car on the
road and use them to speed up computation of the trajectory in
real time. Incidentally, the shape of the trajectories presented in
their paper is consistent with ours. A major difference comes from
the fact that in their system, the geometry of the track in known in
advance, while in ours, we must infer it from measurements
provided at runtime by TORCS.

The driving method employed in Meep uses the pre-computed
trajectory as a target and makes decision to steer towards it. This
presents some similarity to methods of following a moving target,
such as a second car, as presented in [9] and [10], even though the
purpose of our research is quite different.

Other approaches to trajectory calculation include the use of
evolutionary algorithms. In [11], the authors propose an
evolutionary approach called EVOR that computes the trajectory
at race time using a fitness aiming to keep the car on the track.
This approach uses a pre-constructed model of the track using a
method similar to ours. A related approach is presented in [5]
where the controller uses an evolutionary learning system to plan
the path ahead for the car.

Optimal paths within road constraints can be found in several
papers. In this work, we are using the curve shapes computed in
[12], which present similarities with the trajectory presented in
[8].

Neural networks have been used widely for robot guidance
systems and even for pilots trained under the TORCS system. For
example, in [13], a NN is used to decide on an appropriate speed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
PRAI 2018, August 15–17, 2018, Union, NJ, USA © 2018 Association
for Computing Machinery. ACM ISBN 978-1-4503-6482-
9/18/08…$15.00 https://doi.org/10.1145/3243250.3243269

for an autonomous car pilot. In [14], the authors use a NN to
mimic a trajectory chosen by a human pilot.

The paper is organized in the following way. Section 2 starts with
definitions and general purpose settings for our research. Section
3 describes our model, the environment, and the methodology
used in our research. Section 4 presents experimental results with
the neural network. The paper ends with conclusions.

2. General Settings
In this section, we introduce notations and definitions that are
necessary in the description of our model. We also describe the
TORCS application and the general settings of our project.

2.1 The TORCS Environment
TORCS attracts a wide community of developers and users, and it
is the platform for popular competitions organized every year as a
part of various international conferences [2]. The program is
organized as a server which implements races combining multiple
cars on a variety of tracks. A client module can be written by the
user returning the actions of a controlled car. The server provides
information about the track, the car, and the opponents [7]. The
client can control the steering wheel ([-1, +1]), the gas pedal ([0,
+1]), the brake pedal ([0, +1]); and the gearbox (-1 through 6) [2].

The application provides multiple race tracks of various length
and difficulty. We have chosen four tracks for this particular
research: Alpine 2, E-Road, E-Track4, and E-Track5. The first
one is the most difficult track, with several points of sharp turns
presenting a challenge even at low speeds. E-track 5 is the shortest
and easiest, and chosen initially to calibrate the path generating
algorithm. Figure 1 shows a screenshot of the Alpine 2 track at a
difficult point where the road enters a tunnel at a very sharp right
angle. We can also see the TORCS dashboard with various
indicators and the mini-map in the top right corner.

Figure 1. The Alpine 2 track in TORCS

2.2 Notations and Definitions
TORCS provides information about the car state, including a
lateral position of the car on the road. If we draw a perpendicular
to the centerline of the road from the car center, that we call a
transversal line or vector, the lateral position shows how far we
are on this line from the center of the road. Thus, a value of 0
represents the center of the road, while positions of 1 and -1
represent the borders of the road on each side, as shown in Figure
2.

We define a trajectory for the car as a function r(t) returning a
value in the interval [-1, 1] for each point of the track’s centerline
t, representing the target lateral position of the car on a
perpendicular line to the centerline. Figure 2 illustrates this
definition.

Figure 2. Road and trajectory definition

The function r(t) can take values out of the interval [-1, 1] if the
car exits the road, but we assume that this is not a desirable trait in
such a target function.

Theoretically, the trajectory is a continuous function. Practically,
it is discretized on the set of points of the centerline where the car
is found in each frame of the application. One constraint that
arises from the particular setting of this problem is that the
trajectory should be fast to compute. Thus, it must allow the car’s
pilot to communicate with the race server quickly enough for the
car not to exit the road or crash against a hard shoulder.

A trajectory computed on the spot by a NN of modest size is not
computationally expensive and can be used directly in the race.
However, a pre-computed trajectory that is too dense can both
require too much memory and slow down the pilot too much
through the search process. To alleviate these issues, we only
store a reasonably dense trajectory and interpolate the values in
between key points.

The notion of curvature of a curve is used extensively through the
paper. For a continuous curve s(t) defined in a space with more
than one dimension, the first derivative s’(t) is the tangent to the
curve, while the second derivative s’’(t), is called the curvature,
and is normal to the curve. If the curve represents the motion of an
object, the first derivative is the velocity, while the second one is
the acceleration. For the current project, the curvature is not of
great interest as a vector. The relevant parts, in our case, are the
norm of the vector and the orientation.

In our model, the centerline of the road can be used as the curve,
as well as either of the two borders of the road. However, since
this is a simulated environment, the curve is not continuous, but
composed of a sequence of small line segments. We have used the
change of slope between adjacent line segments as a measure of
the curvature of the road. As the segments are not directly
available, we compute the angle between observed adjacent road
segments through the sensors available in TORCS.

3. Algorithms Description
In this section, we will describe our approach to the problem and
the different stages in the implementation of our model.

3.1 The Meep and Gazelle Pilots
Let us first introduce the outline of the autonomous pilots used in
this research.

The Gazelle pilot [3] continues and improves the ideas used for
the Epic controller [2]. It has two modes: the first one is

procedural, using the measurements from the TORCS sensors to
compute a target direction and speed, and the second one uses a
trained NN for the direction unit. In this study, we have only used
the procedural part of Gazelle to compare with the current model,
and from it, only the direction unit. The experiments presented in
this paper all use constant speed.

The procedural pilot that we wrote for Epic and subsequently
improved for Gazelle contains several control units. We start by
determining the target angle for steering, which is the first
element of driving, as it establishes the trajectory. An opponent
modifier unit may change this target angle based on opponents’
presence. Next, a target speed is chosen so that the car can achieve
a turn by the target angle, while also trying to maximize the speed
based on a given limit. This speed change is translated into
acceleration or braking and can also be changed by the opponent
modifier unit. The gear is adjusted in the last place.

TORCS provides 19 distance sensors in each frame of the race,
centered on the car’s direction of movement and spawning in both
directions by increments of 10 degrees. Each of them returns the
free distance ahead to the border of the road in their respective
direction. These measurements are capped to a maximum of
100m.

The target direction in Gazelle is obtained starting from the
central sensor that points in the car’s direction of movement, and
scanning left or right using the sensors provided by TORCS,
towards the direction where the distance is increasing. The last
sensor before the free distance starts decreasing is returned as the
target direction. Based on it, the steering value is equal to the
target angle divided by maxAngle, the maximum turning angle
available for the vehicle. Figure 3 illustrates this idea.

Figure 3. Gazelle steering unit

The driving method employed in Meep uses a target trajectory
that can be either a pre-computed trajectory, or one calculated on
the spot, and makes a decision to steer towards it. This presents
some similarity to methods of following a moving target, such as
a second car, as presented in [9] and [10], even though the
purpose of our research is quite different. In addition, Meep
inherits the Gazelle recovery behavior for cases where the car has
exited the road, or got stuck at an inconvenient angle after
bumping against the road shoulder.

The target direction unit of Meep is used primarily in this
research. The pilot requires a target value for the trajectory in the
interval [-1, 1], representing an objective value for the lateral

position of the car on the road in each frame of the race. The
steering value is computed using two measurements: the current
lateral position of the car on the road, and the current angle
between the car’s axis and the centerline of the road. Both of these
are provided by TORCS.

Thus, the target steering angle is calculated first by reversing the
current angle with the road centerline, to align the car with the
road. Then, we add the difference between the current lateral
position on the road and its target value, multiplied by a
parameter. To avoid turning too sharply when the road position is
far off, we use the square root of the difference if its absolute
value is larger than 1. For the same reason, we cap this difference
at 2.5. The resulting steering value is computed the following
way, then clamped to the interval [-1, 1]:

deltaTraj = max(-2.5, min(2.5, targetTraj – currentTraj));

if (|deltaTraj|>1)

 deltaTraj = deltaTraj / √(deltaTraj);

steer = (roadAngle + kt*deltaTraj)/maxAngle;

where targetTraj is the target trajectory, currentTraj is the current
lateral position of the car on the road, roadAngle is the current
angle of the car with the road centerline, and kt is an adjustable
parameter.

3.2 Computing the Global Trajectory
To compute an optimized trajectory based on global information,
we started by mapping the curvature of the tracks. The curvature
is computed locally based on sensor data provided by TORCS.
We ran the pilot on a constant trajectory at a constant speed
through each of the tracks and recorded the values of the
curvature at regular intervals.

The first step is to compute the curvature of the road using the
distance sensors in TORCS. Figure 4 illustrates this process. First,
we draw a line from the car’s position C perpendicular to the road
centerline until it crosses the road’s border in A. The direction of
this line is based on the angle of the car with the road. The angle
between this line and the car’s direction is equal to 90o-car angle.
Then, we use the closest values from the sensors, marked in the
figure as distance probes, to map the triangle ABC, connecting the
car with A and with the intersection point B of the next sensor line
with the border of the road. This allows us to compute the
curvature angle as marked in the figure.

Figure 4. Curvature mapping

Once the curvature is mapped, a trajectory is computed using
these stored values. We used the shape of curves that optimizes
the overall time it take to go through a curve, as computed in [12]
and shown in Figure 5 on the left.

Figure 5. Optimal trajectory through a curve minimizing the

time (left) and maximizing the exit velocity (right)

The trajectory is computed in three phases which are described
more in detail in [1]. Phase one goes through the entire track and
assigns values of 0 to all the long stretches where the track is
almost straight, and 0.8 and -0.8 respectively to all the long
stretches where the road turns in the same direction. The value 0.8
was chosen based on the width of the car, so that the side closest
to the border is still inside the track. These values are assigned
leaving a buffer zone of a few meters at the beginning and end of
each continuous stretch.

Phase 2 goes through the entire trajectory again and patches the
pieces of the track between those assigned during Phase 1. This
part uses a linear interpolation of the trajectory values between the
end of one stretch and the beginning of the next one. Phase 3
smooths the resulting trajectory even more by using anti-aliasing
techniques.

Multiple experiments were done with the trajectory calculating
algorithm and variations of parameters such as the value of the
curvature for which the road can be considered almost straight or
the length of the buffer zones between the different stretches of
constant trajectory. These results are presented in [1], and
summarized in Section 4.1.

3.3 Neural Network Training
We proceeded to collect training data for a neural network to learn
to compute the car trajectory. For this, we ran the Meep pilot
using the pre-computed trajectory based on curvature mapping on
each of the four selected tracks. For each frame of the race, we
recorded as potential input values, the current values of the
distance sensors, the current road angle or the car, current lateral
position (or trajectory value), and the current value of the
curvature, and as output value, the computed trajectory for the
location.

In terms of organizing the data into training and testing sets, we
used the cross-validation method. Thus, for each individual track,
we used the data collected from the other three tracks for training
purposes, and the data collected from the track itself for testing
purposes. This way, we also examine whether data collected from
one or more tracks can be used on new tracks.

The first set of experiments we did involve using the curvature
only as input for the NN. We experimented with two settings, of
one hidden layer of 3 neurons, and of two hidden layers with 5
and 3 neurons respectively. After extracting the curvature and
trajectory coordinates from the data and removing duplicates, the

size of the data turned out small enough to be used for training
without further filtering. The data set was shuffled after each
training pass. Experiments where the data set is not shuffled have
led to a lower performance of the NN.

For the second set of experiments, we added one more variable as
input. To choose the second parameter, we computed a statistic of
how much the input values for each of the distance sensors vary
when the values of the curvature are constant but not the value of
the trajectory. Thus, we computed the sum of the absolute
difference of the value of the sensor coordinate for all the pairs of
data x and y for which the value of the curvature is the same but
the value of the trajectory is different:

Σ{(x,y)|curv(x)=curv(y), traj(x)≠traj(y)} |sensori(x)-sensori(y)|

This measure is meant to show which of the sensors’ values is the
most significant in describing why the output varies if the input
used so far does not. The central sensor, following the direction of
the car’s axis, returned the highest value for this measure for all
the tracks. Thus, for this experiment, we used two input variables,
the curvature and the central sensor, and one output variable. For
this part, we used a network topology with two hidden layers, of 5
and 3 neurons respectively. Experiments with larger networks did
not improve the performance.

For the second set of experiments, the data turned out to be of a
too large size to be used efficiently for training directly. For this
part, we have filtered the data using intervals of 0.1 size for the
output value, and selecting a representative subset of data in each
interval. Through the filtering process, for each such interval we
capped the selected number of data points to a constant. Through
this process, we aimed to have a uniform distribution of the data
points over the interval of output values. This technique is similar
to the data filtering described in [3].

For these experiments, the testing has been done on unfiltered
data, for a better comparison with the other results. Even so, the
numbers are not directly comparable because the test sets are
larger when we extract two input parameters instead of one.

Table 1 and Table 2 show the results of training and testing the
NN for each of the tracks. We performed 5000 training iterations
in each case and selected the best average error obtained in each
case.

Table 1. Best training error for the NN

Track 1Input 1L 1Input 2L 2Input 2L

Alpine2 0.2004 0.3269 0.3961

E-Road 0.2189 0.2669 0.3915

E-Track4 0.1733 0.2020 0.3846

E-Track5 0.2093 0.2580 0.3911

Table 2. Best test error for the NN

Track 1Input 1L 1Input 2L 2Input 2L

Alpine2 0.0025 0.0023 0.0042

E-Road 0.0039 0.0038 0.0080

E-Track4 0.0043 0.0030 0.0055

E-Track5 0.0042 0.0041 0.0113

These tables show that the network with one input and two hidden
layers generally performs better than the one with one single
layer. The testing error is generally smaller than the training one
because the data set it is calculated on is smaller. We also note
from these results that a lower training error does not always
correspond to a lower test error due to the fact that the data sets
used in these cases come from different tracks. However, there is
an overall correlation of the results.

As we will see in Section 4.2, the network with two input
parameters and two hidden layers consistently converges towards
calculating a constant trajectory. This network is minimizing the
error by producing values in a very small interval around a
median value for the trajectory. It would be interesting to study
for future research why the extra parameter causes this to happen
and if a larger network might solve this problem. Another avenue
for future research consists in finding different methods of
choosing the extra parameter(s) and seeing how that choice can
influence the outcome.

4. Experiments in Race Setting
In this section, we present the experiments performed with the
trained neural network as used to pilot the car in race conditions
and compare it with other pilots previously used in our project.

4.1 Benchmark Data
Let us start by introducing the pilots that we will use for
benchmark in these experiments, as well as their performance on
the chosen tracks. Thus, in this subsection, we present some of the
results that we will use to compare with the performance of the
new model. More elaborate results are presented in [1]. We ran
the experiments on the four selected tracks in TORCS, as
mentioned in Section 2. The curvature of the road was mapped for
each of them and an optimized trajectory was computed based on
this information. The shape of the trajectory was chosen based on
known trajectories minimizing the amount of turning done while
traversing the curves, such as found in [8] and [12].

For each of these tracks, we summarize the best results obtained
by the computed trajectories in terms of time (seconds) required to
complete one lapse of the track and total amount of turning
(radians) done by the car. Since the object of this research is
optimizing the trajectory, we kept the speed constant in these
experiments. We performed three runs for each setting, of speeds
50 km/h, 80 km/h, and 120 km/h respectively.

We also present here the results obtained by the “simple pilot”
provided by TORCS, named here the “constant pilot” because its
aim is to keep the car in the middle of the track at all times. In our
notations, this corresponds to a target trajectory equal to 0 over
the entire track. Finally, a third benchmark pilot is used, which is
the pilot called Gazelle, presented in [3], for which we have used
the steering component only.

Table 3 through Table 6 show the results of the benchmark pilots
on the four tracks. The pilots are listed in the order: constant pilot,
the pilot using the trajectory computed using global information,
and Gazelle. For each of them, we show the total time in seconds
to complete one lapse and the total amount of turning in radians
done by the car in that situation. For the global trajectory pilot we
used the results obtained with the best settings for each track, as
presented in [1].

From these results we can see that the global trajectory
outperforms both the constant trajectory pilot and Gazelle in most
situations and for all the tracks. It consistently finishes the race in

a shorter time than both of the other pilots. The total amount of
turning that the pilot does is also almost always lower than for the
other pilots.

Table 3. Benchmark pilots for Alpine 2

Speed Const Global Trj. Gazelle

50 Time 278.01 271.39 271.97

 Turn 821.28 795.67 814.24

80 Time 201.21 171.61 172.23

 Turn 624.12 592.56 611.51

120 Time 233.27 231.31 260.17

 Turn 1794.01 2920.52 2227.01

Table 4. Benchmark pilots for E-Road

Speed Const Global Trj. Gazelle

50 Time 241.31 232.35 232.63

 Turn 936.92 794.01 824.96

80 Time 151.97 146.27 146.55

 Turn 605.13 521.01 527.34

120 Time 164.65 100.15 112.10

 Turn 975.09 698.24 522.33

Table 5. Benchmark pilots for E-Track4

Speed Const Global Trj. Gazelle

50 Time 512.91 505.30 507.81

 Turn 590.45 558.36 621.24

80 Time 321.81 317.07 318.57

 Turn 388.82 370.76 414.44

120 Time 216.11 212.92 213.87

 Turn 304.96 294.73 327.26

Table 6. Benchmark pilots for E-Track5

Speed Const Global Trj. Gazelle

50 Time 121.87 115.93 116.13

 Turn 337.62 288.68 429.43

80 Time 76.79 73.42 73.60

 Turn 231.17 199.73 262.63

120 Time 52.67 50.43 50.65

 Turn 182.18 155.58 172.72

For some of the tracks, we notice that it often takes more time to
complete the track at 120 km/h than at 80 km/h Alpine 2. The
reason why this happens is because the tracks have several

locations that are hard to go through safely at high speed, resulting
in the vehicle crashing into the shoulder and exiting the road. This
causes a momentary loss of speed and requires extra time for
recovery maneuvers.

4.2 Experimental Results with the NN
We used a classic NN with perceptron neurons using the tanh
function and trained it with backpropagation. In all cases, we ran
5000 iterations of training the NN with the entire set of data, and
we selected the set of weights minimizing the error on the test
data. We used the best result obtained from multiple runs with
different seeds for the random number generator. This is used in
assigning the initial weights in the network randomly.

Table 7 through Table 10 show the results of the pilot using a
trajectory with a trained NN. The models we have used are
marked in the tables by the number of input variables and the
number of hidden layers (L). The speed is in km/h, the time in
seconds, and the turn in radians.

For all three models, the current or local curvature of the road is
used as an input variable. For the third model, we added a second
input variable with the distance to the road border measured in
TORCS by the central sensor, which is aligned with the center
axis of the car. The model with one hidden layer uses three
neurons in this layer. The models with two hidden layers use 5
and 3 neurons in these layers respectively. The output of the NN
in all cases is a single value representing the target trajectory. This
value should ideally be in the interval [-1, 1].

Table 7. NN trajectory pilots for Alpine 2

Speed 1Input 1L 1Input 2L 2Input 2L

50 Time 275.23 273.53 277.87

 Turn 1692.44 1156.77 816.15

80 Time 221.69 173.01 206.97

 Turn 2105.53 936.32 651.32

120 Time 280.71 236.49 231.81

 Turn 1706.88 1261.78 1219.14

Table 8. NN trajectory pilots for E-Road

Speed 1Input 1L 1Input 2L 2Input 2L

50 Time 234.53 234.97 240.69

 Turn 1245.47 1180.16 951.56

80 Time 148.17 148.31 151.59

 Turn 911.35 841.97 619.22

120 Time 102.53 103.96 138.35

 Turn 1029.69 917.16 837.24

From these tables, we can see that the NN topology with one input
parameter (the curvature) and two hidden layers performs the best
of the three models we’ve tried. For the Alpine 2 and E-Track4
tracks, the time taken by this pilot to complete the race is the
lowest of the three pilots except at the highest speed, where
bumps against the road shoulder caused it to lose some time. For
E-Road and E-Track5, the two topologies with one input

performed very similarly to each other and better than the third
pilot. These two tracks are in fact easier than the other two, and
the pilots are able to complete them without incident even at the
high speed.

Table 9. NN trajectory pilots for E-Track4

Speed 1Input 1L 1Input 2L 2Input 2L

50 Time 511.05 507.91 512.01

 Turn 1015.09 1115.39 613.13

80 Time 320.61 318.87 321.25

 Turn 724.24 831.91 411.36

120 Time 215.63 223.99 215.75

 Turn 661.12 867.01 328.33

Table 10. NN trajectory pilots for E-Track5

Speed 1Input 1L 1Input 2L 2Input 2L

50 Time 116.70 116.79 119.93

 Turn 389.57 388.19 313.33

80 Time 73.97 74.02 75.95

 Turn 276.68 275.75 207.69

120 Time 50.83 50.87 52.13

 Turn 233.59 235.00 158.72

The performance of the model with two input parameters and two
hidden layers is very similar to the benchmark pilot called
constant, which keeps the car in the center of the road through the
entire race. This is because the NN with this topology had
consistently converged to a setting of weights giving an output in
a very small range, making it almost constant.

Comparing the performance of the pilots using a NN with the
benchmark pilots, we did not expect the new system to perform
better than the pilot based on the computed trajectory. The goal is
to obtain a close performance. For all the tracks and most of the
settings, the best NN pilot was faster than the constant pilot and
almost as good as Gazelle and the computed trajectory pilot. In
these cases, it is only about half a second to two seconds behind
the benchmark pilots. This means that the NN can learn to
replicate pretty close the behavior of the pilot using the
precomputed trajectory.

As a future direction of research, we intend to apply trajectory
optimization methods to improve the pre-computed path even
more. Then a NN can be used to learn to mimic such a trajectory
on new tracks without mapping them beforehand.

5. Conclusions
In this paper, we presented a model where we first computed an
optimized trajectory based on a mapping of the road, then we
collected local data describing this trajectory, and then trained a
NN to compute a trajectory from local track data. We used cross-
validation to examine whether the system can be trained from data
collected from some tracks and then applied successfully to a new
track.

Our experiments show that with a careful choice of parameters,
the NN can be trained to choose a car trajectory similar to the
precomputed one and display a performance close to it. This
means that the global information used to compute the trajectory
can be translated with close accuracy into the local information
used by the NN to compute the trajectory.

As future research, we intend to focus on trajectory
optimization methods to improve the pre-computed
trajectory before training the NN to replicate it.

6. REFERENCES
[1] Vrajitoru, D. 2018. Optimal Curves in Trajectory Calculation

for Autonomous Cars. Submitted to the International Journal

of Modelling and Simulation.

[2] Guse, C. and Vrajitoru, D. 2010. The Epic adaptive car pilot,
Proc. Midwest Artificial Intelligence and Cognitive Science

Conference, South Bend, IN, 30–35.

[3] Albelihi, K. and Vrajitoru, D. 2015. An application of neural
networks to an autonomous car driver, Proc. The 17th

International Conference on Artificial Intelligence, Las
Vegas, NV, 716–722.

[4] Wymann, B., Dimitrakakis, C., Sumner, A., Espié, E.
Guionneau, C., and Coulom, R. 2013. TORCS, The Open
Racing Car Simulator, v1.3. http://www.torcs.org.

[5] J. Quadflieg, J. and Preuss, M. 2010. Learning the track and
planning ahead in a racing car controller, Proc. IEEE

Conference on Computational Intelligence and Games

(CIG10), Copenhagen, Denmark, 395–402.

[6] Onieva, E., Pelta, D. A., Alonso, J., Milans, V., and Prez, J.
2009. A modular parametric architecture for the TORCS
racing engine, Proc. IEEE Symposium on Computational

Intelligence and Games, 256–262.

[7] Onieva, E. and Pelta, D. A. 2012. An evolutionary tuned
driving system for virtual racing car games: The AUTOPIA

driver, International Journal of Intelligent Systems, 27(3),
217–241.

[8] Liniger, A. and Lygeros, J. 2015. A viability approach for
fast recursive feasible finite horizon path planning of

autonomous RC cars, Proc. 18th International Conference

on Hybrid Systems: Computation and Control, (HSCC ’15),
New York, NY, USA, 1–10.

[9] Nippold, R. and Wagner, P. 2012. Calibration of car-
following models with single- and multi-step approaches,
Proc. Winter Simulation Conference, (WSC ’12), 410:1–
410:11.

[10] Zeyu, J. et. al, 2016. Calibrating car-following model with
trajectory data by cell phone, Proc. Second ACM

SIGSPATIAL International Workshop on the Use of GIS in

Emergency Management, (EM-GIS ’16), New York, NY,
USA, 12:1–12:6.

[11] Nallaperuma, S., Neumann, F., Bonyadi, M. R., and
Michalewicz, Z. 2014. EVOR: An online evolutionary
algorithm for car racing games, Proc. Genetic and

Evolutionary Computation Conference (GECCO ’14), New
York, NY, USA, 317–324.

[12] Velenis, E. and Tsiotras, P. 2005. Minimum time vs
maximum exit velocity path optimization during cornering,
Proc. 2005 IEEE International Symposium on Industrial

Electronics, Dubrovnik, Croatia, 355–360.

[13] Kim, K.-J., Seo, J.-H., Park, J.-G., Na, J.C. 2012.
Generalization of TORCS car racing controllers with
artificial neural networks and linear regression analysis.
Neurocomputing 88 (2012) 87–99.

[14] Mun᷉oz, J., Gutierrez, G., Sanchis, A. 2010. A human-like
TORCS controller for the Simulated Car Racing
Championship. Proc. of IEEE Symposium on Computational

Intelligence and Games (CIG), Dublin, Ireland, 473-480.
[15] S. S. Rathour, S.S., Boyali, A., Zheming, L., Mita, S., and

John, V. 2017. A Map-based Lateral and Longitudinal
DGPS/DR Bias Estimation Method for Autonomous Driving.
International Journal of Machine Learning and Computing,
Vol. 7, No. 4, August 2017, 67-71.

Authors’ background
Your Name Title* Research Field Personal website

Dana
Vrajitoru

Associate
professor

Intelligent
systems,
computer
graphics

www.cs.iusb.edu/~dvrajito

*This form helps us to understand your paper better, the form itself will not be published.

*Title can be chosen from: master student, Phd candidate, assistant professor, lecture, senior lecture, associate
professor, full professor

