
Asynchronous Multi-Threaded Model for Genetic Algorithms

Dana Vrajitoru
Indiana University South Bend

Computer and Information Sciences
South Bend, IN 46617

Abstract

In this paper we present a parallel implementation of
genetic algorithms using a shared memory model de-
signed to take advantage of multi-core processor plat-
forms. Our algorithm divides the problems into sub-
problems as opposed to the usual approach of dividing
the population into niches. We propose an approach
where the threads do not have to synchronize their evo-
lution at any level and compare it with a synchronized
model. We experiment with the timing and with the
achieved fitness on a several platforms.

1. Introduction

As CPU speed seems to have reached a peak in its devel-
opment, the hardware industry is currently shifting towards
multiple CPUs to continue to improve performance. Thus,
dual core architectures have become commonplace in the in-
dustry and even quad core computers are now available to
the large public. The issue we are now facing is taking ad-
vantage of such platforms and writing programs that make
use efficiently of these multiple CPU cores.

The shared-memory genetic and evolutionary computing
algorithms follow similar implementation patterns to the
parallel and distributed models. The parallelization tech-
niques can be ported from one type of architecture to the
other, with the difference being the APIs being used. Each
architecture and library can offer unique opportunities for
the optimization of the execution time. A survey of these al-
gorithms can be found in (Cantú-Paz 1998), (Dozier 2003).

Parallel and distributed versions of the genetic and evo-
lutionary algorithms are popular and diverse. The sim-
plest parallel models are function-based where the evalu-
ation of the fitness function is distributed among the pro-
cesses. The most popular parallel models are population-
based where the population itself is distributed in niches
(Alba and Tomassini 2002), (Harvey and Pettey 1999),
(Llorà et al. 2007), (Sekaj and Oravec 2009). Such mod-
els require a periodic migration of individuals between the
sub-populations, and the influence of migration patterns has
also been an object of study (Cantú-Paz 2001), (Z. Skolicki
2005).

Our model is based on a division at the genotype level of
the population into several agents or processes. Each pro-
cess then receives a partial chromosome to evolve. All the

genetic operations are then restricted to this subset of genes.
For evaluation purposes, a template is kept by every process
containing information about the best genes found by all of
the other processes up to that point. A periodic exchange
procedure keeps this information up to date.

Similar ideas to our parallel model of genetic algorithms
have been used in (Sastry, Goldberg, and Llorà 2007) to dis-
tribute the compact genetic algorithm in a message-passing
architecture. The model proposed in (Kim et al. 2007) also
distributed the chromosome another the processes, and com-
bined this with a temporal distribution of the solutions.

Multiple cores have started to be used in genetic and evo-
lutionary computations as well. For example, (Baker, Carter,
and Dozier 2009) distributes the evolutionary operations
themselves among threads executed on four cores, while the
population remains whole and is shared by the threads with-
out distribution.

2. Multi-Threaded Model

Our model for parallel genetic algorithms follows a similar
idea to the one described in (Vrajitoru 2001). The differ-
ence is that the current model is implemented for a shared
memory architecture as opposed to a Beowulf cluster, and
the experiments use a different fitness landscape.

2.1 Problem Division

According to the most popular approach to parallel genetic
algorithms, which is the nested one, the population is de-
composed in several nests or niches, each of them evolving
in parallel. In such a model, the evolution in each population
is self-contained, and the only thing that makes it a unified
process is an occasional migration of individuals between
the nests.

In the approach proposed in this paper, all of the chromo-
somes are divided among the processes, such that the task of
each process consists in evolving part of the chromosome.
Figure 1 illustrates this concept. In some cases, the fitness
function is of such nature that the problem to be solved can
also be divided into several sub-units conceptually, while in
other cases this division is purely artificial. We do not make
a distinction between the two situations in our model.

All the genetic operators are applied just as usual, except
that they are restricted to a subset of the genes that was as-
signed to each process. Since the evaluation of the fitness



Figure 1: The division of the chromosome among the pro-
cesses or agents

function usually requires the entire set of genes, the process
will have access to a template set for the part of the chromo-
some that is not under its control. This template is periodi-
cally exchanged between the processes. Figure 2 illustrates
this idea.

Figure 2: A template for the population evolved by one of
the agents

The idea behind this parallel model is that the problem
to be solved is divided into several tasks. Each task is then
assigned to a different agent that will focus on it while ex-
changing information with the other agents. The multi-agent
approach is one that has been proved efficient for many ap-
plications before, in a variety of contexts.

Let n be the size of the chromosome, with the indexes for
the genes going from 0 to n − 1. Let us suppose that we
have p processes. Each process will receive a part of the
chromosome of size np = n/p. Then the process number id
will be in charge of the genes between the indexes (id−1)∗
np and id ∗ np − 1.

2.2 Fitness Evaluation

In the literature on genetic algorithms there are a good num-
ber of examples where the fitness function can be nicely
divided into several sub-problems such that the evaluation
of each of them can be accomplished independently. Our
model does not focus on these types of problems specifi-
cally. It is designed in a general way such that it can be
applied to any fitness function. However, the evaluation pro-
cedure can be sped up for these special cases and a greater
performance can be achieved in terms of execution time and

use of each CPU core. This might be the subject of future
research.

We start from the assumption that to evaluate the fitness
function for any combination of genes, we need a full set
spanning from 0 to n − 1. Thus, to evaluate a partial chro-
mosome, we need to complete it with a sample of the genes
that it does not contain. We call this sample a template, and
each process will hold one in its memory. The evaluation
consists of plugging the partial chromosome into the com-
mon template, and then passing this complete individual to
the fitness function.

An exchange procedure insures that the template is kept
reasonably up to date with respect to the latest best perform-
ing genes obtained by each. During the exchange phase,
each process copies the genes of the best chromosome found
so far in terms of fitness to a common “best chromosome”
which is shared by all the processes. After all of the pro-
cesses have finished this update, each of them makes a local
copy of the genes in the best chromosome belonging to all
the other agents. This becomes then the new template for
each process. Keeping the template as a local copy for each
process even though the information is redundant allows the
process to use it without a need to protect the read and write
operations.

2.3 Synchronous vs Asynchronous Exchange

The main part of the communication between the processes
happens during these exchange procedure. This is also the
fundamental difference between the two models that we
compare here. Let us suppose that the communication pe-
riod is 10 generations. In both cases the exchange will con-
sist of a writing phase and a reading phase.

In the synchronous model, every 10 generations every pro-
cess proceeds to the writing phase, then gets into a Barrier.
Thus, before they can continue to the read phase, all of the
processes must finish the exact same number of generations
and supply the best chromosome they have found at that
point. Thus, the evolution of each subpopulation proceeds
relatively in synch with all of the others. Since the execu-
tion time required by a call to the fitness evaluation function
can vary quite a great deal in our case, this means that every
10 generations all the processes must wait for the slowest of
them to catch up. This can impact the overall speedup from
parallelizing the algorithm.

In the asynchronous model, after each 10 generations,
each process first writes its best chromosome into the com-
mon memory, and then proceeds to retrieve the information
supplied by all the other processes from the same common
place without having to wait. Thus, the best common chro-
mosome might contain at any moment the best genes found
by each process after a completely different number of gen-
erations. Since no waiting is required, we expect the com-
putational time to improve, as well as the speedup on multi-
core architectures. The main question that we try to answer
in this paper is whether this discrepancy between the pro-
cesses will impact the achieved fitness in a negative way.

The exchange procedure is shown in Figure 4 in C++
based pseudocode. In this algorithm we assume that the in-
dexes in the partial chromosome are kept consistent with the



position of the genes in the complete chromosome. Just to
make the procedure easier to understand, the proc id of the
process is used as an index for the best partial chromosome
and for the template. Practically, our implementation is ob-
ject oriented, the exchange function is a class method, and
these objects are class attributes.

void Synch_Exchange(int proc_id) {

np = chromosome_size/ number_of_proc;

for (i=(id-1)*np; i<id*np; i++)

best_chrom[i] =

best_partial_chr[id][i];

Barrier(number_of_proc);

for (i=0; i<(id-1)*np; i++)

template[id][i] = best_chrom[i];

for (i=id*np; i<n; i++)

template[id][i] = best_chrom[i];

}

Figure 3: Synchronous exchange procedure for the best
chromosome

In the algorithm in Figure 4, the memory locations used
for the exchange do not need to be protected. As it happens,
before the barrier each process is writing information in its
own part of the best chromosome and they do not interfere
with each other. After the barrier several threads need to
read from the same location, but we have adopted the as-
sumption that multiple simultaneous read operations can be
allowed. Practical tests have shown that these operations are
performed correctly indeed. The Barrier separates the write
phase from the read phase, and no extra memory protection
is necessary.

void Asynch_Exchange(int proc_id) {

np = chromosome_size/ number_of_proc;

// Write phase

Lock(&mutex);

for (i=(id-1)*np; i<id*np; i++)

best_chrom[i] =

best_partial_chr[id][i];

Unlock(&mutex);

// Read phase

Lock(&mutex);

for (i=0; i<(id-1)*np; i++)

template[id][i] = best_chrom[i];

for (i=id*np; i<n; i++)

template[id][i] = best_chrom[i];

Unlock(&mutex);

}

Figure 4: Asynchronous exchange procedure for the best
chromosome

In this version of the exchange procedure, the Barrier has
been removed, and instead the memory is protected by a
common mutual exclusion semaphore both in the reading
phase and in the writing phase. The lock can be applied ei-
ther to each read and write operation individually, or to the

entire block of read or write operations for each process. The
model shown here has the disadvantage that only one pro-
cess can read or write at a time. This could be optimized by
having a dedicated semaphore for each portion of the chro-
mosome belonging to each process. Given the fact that the
exchange does not happen very often, and the complexity of
our fitness function, this detail would not impact the timing
in any visible way.

The population is initialized for each process randomly, as
it is usually the case. The template is initialized by calling
the function exchange before the evolution process starts.

3. Motorcycle Driving Problem

We have chosen a complex problem to test our parallel
model where the evaluation of the fitness is computationally
expensive and requires a non-uniform amount of time. For
this kind of problem we need some additional steps to mea-
sure the speedup accurately in the multi-core environment.

The problem consists in optimizing the parameters defin-
ing a pilot for a simulated motorcycle. For this problem, the
evaluation requires significantly more computations than the
genetic operators, and thus it will allow us to observe the im-
provement in performance in that respect. Furthermore, the
complexity of evaluating a chromosome is not uniform, but
can vary significantly from one individual to the next. This
constitutes an additional challenge for the parallel model.

In this section we introduce the details of the simulated
vehicle and its autonomous pilot, as well as the application
of genetic algorithms to its configuration.

3.1 Simulated Motorcycle

The physical model of the motorcycle has been more exten-
sively described in (Vrajitoru and Mehler 2005) and is close
to (Getz 1994). The motorcycle or STV (single-track vehi-
cle), is modeled as a system composed of several elements
with various degrees of freedom that can be driven through
several control units. Figure 5 shows the components of the
physical model for a motorcycle.

1 Wheels

2 Handlebar

3 Saddle

4 Chain

5 Brakes

6 Engine

7 Steering

8 Leaning

9 Suspension

10 Wheel spin

11 Contact line

1

2

5

3

4

2

f

3

5

6

7

7

8

8

9

9

10 10

4
1

1

1

11
b

x

y

z

Figure 5: A motorcycle with control units and degrees of
freedom

An STV is a non-holonomic dynamic system with six de-
grees of freedom: the rotation of the wheels around an axis
parallel to Oz, the rotation of the handlebar and of the front



wheel around the fork axis (steering), the front and back
translation along the suspension axis, and the rotation of the
whole vehicle around the Ox axis in a system of coordinates
relative to the motorcycle where the origin is in the center of
the vehicle, on the ground level. A human or artificial driver
can control the vehicle through five inputs: the handlebar
steering, leaning the vehicle laterally, the throttle, and the
two brakes, front and back.

The STV is modeled as a reduced state system of contin-
uous variables. The generalized coordinates of the vehicle
at a particular moment are given by

q = (s, α, θ)
T

(1)

where s(t) = (x(t), z(t)) represents the spatial position of
the STV, α the leaning angle, and θ the orientation angle
determining the direction of movement d = (cos θ, sin θ).

The vertical component of both s and d is determined by
the altitude and by the slope of the road considering the cur-
rent position and orientation of the vehicle. The altitude is
considered low enough that the gravitational acceleration is
the constant g = 9.8 m/s2. Let σ(s, d) be the angle made
by the contact line of the vehicle with the horizontal plane
(x, z).

The driver’s input into the system is defined by the tuple
u = (τ, βf , βr, φ, α) where τ is the component of the accel-
eration tangent to the direction of movement d and βf , βr

represent the front and rear brakes respectively. This driver
can be either a human player or an autonomous agent con-
trolling the vehicle.

Let v = s′ be the momentary speed or velocity in the
direction of movement, and a = v′ = s′′ the momentary ac-
celeration in the direction of movement. The motion of the
vehicle is modeled using Newtonian mechanics. The posi-
tion and velocity of the vehicle at t + ∆t are defined by

s(t + ∆t) = s(t) + ∆s, v(t + ∆t) = v(t) + ∆v (2)

where:

∆s = d

(

v · ∆t + a
∆t2

2

)

, ∆v = a · ∆t (3)

The acceleration is defined by the gravity, the friction, the
drag, and the throttle. The brakes do not act as a simple
negative acceleration, but contribute to the friction force in-
stead.

3.2 The Autonomous Pilot

In this subsection we present the multi-agent autonomous
pilot for our motorcycle and the perceptual information it
uses.

The autonomous pilot uses perceptual information to
make decisions about the vehicle driving. This informa-
tion is inspired from the perceptual cues that a human driver
would also be paying attention to while driving a vehicle. In
this application, the pilot is aware of the following measures:

The visible front distance, denoted by front, is defined
as the distance to the border of the road from the current
position in the direction of movement, scaled by the length
of the vehicle, or horizon.

The front probes, denoted by frontl and frontr, are de-
fined as the distances to the border of the road from the cur-
rent position of the vehicle in directions rotated left and right
by a small angle from the direction of movement.

The lateral distances, denoted by leftd and rightd, are
measures of the lateral distance from the vehicle to the bor-
der of the road, at a short distance ahead of the vehicle, simu-
lating what the pilot might be aware of without turning their
head to look.

The slope is a perceptual version of σ, quantized to sim-
ulate the intuitive notion of road inclination that a human
driver would have, approximated by the values almost flat,
slightly inclined up or down, or highly inclined up or down.
This simulates the fact that a human pilot is not aware of the
precise value of σ.

Figure 6 shows an example of the geometrical definition
of these measures.

Figure 6: Perceptual information used by the autonomous
pilot

The motorcycle is driven by several control units (CUs).
Each of them is controlled by an independent agent with a
probabilistic behavior. The agents are not active during the
computation of each new frame simulating the evolution of
the vehicle on the road, but only once in a while in a non-
deterministic manner. This simulates the behavior or a hu-
man driver that may not be able to respond instantly to the
road situation and requires some reaction time.

The current control units focus on the gas (throttle), the
brakes, the handlebar/leaning. Each of these CUs is inde-
pendently adjusted by an agent whose behavior is intended
to drive the motorcycle safely in the middle of the road at a
speed close to a given limit. In our case, the agents control-
ling the throttle and the handlebar are in general more active
than the agent controlling the brakes.

The agents behave based on a set of equations relating the
road conditions to action. The full set of equations is de-
scribed in (Vrajitoru and Mehler 2005). Here we will briefly
describe each of the agents. The equations comprise a fair
number of coefficients and thresholds. The configuration of
each agent uses independent values for the coefficients.

The Throttle. This agent controls the amount of gas sup-
plied to the engine and thus the speed of the vehicle.

The agent uses a minimal speed threshold vlow, a maximal
speed threshold over which the speed is considered unsafe,
and the given speed limit vlimit. The agent aims to keep the



vehicle speed above vlow and below the maximal one, and
also close below the vlimit.

The agent detects a turn in the road by testing leftd and
rightd and if needed, cuts the gas to allow for a safe turn.
A similar rule is applied to the visible distance in front of
the driver: a low value for front indicates an unsafe road
situation requiring a reduced speed. In any other situation it
attempts to keep the speed close to vlimit.

The Brakes. The agent controlling the brakes presents a
similar behavior to the throttle agent but can only decrease
the speed. This agent acts when a more dramatic change is
necessary.

The Steering / Leaning Agent. The motorcycle can
achieve a change in direction either by steering using the
handlebar, or by leaning. The autonomous pilot can be
tested under three conditions: when the motorcycle is driven
entirely by steering, when the motorcycle is driven entirely
by leaning, and a combined strategy, consisting of steering at
low speed (bellow a threshold) and leaning at a speed above
the threshold. This emulates the general strategy employed
by human drivers. We use the combined learning/steering
approach for this experiment.

Alerting Agent. Beside all the agents that are in direct
control of the motorcycle, the pilot comprises a fourth agent
that does not perform any action on the vehicle. While the
other agents are active only occasionally, this agent is prob-
ing the vehicle and road conditions for every new frame and
is capable of activating one of the other agents if the situ-
ation requires special attention. Such situations include the
speed of the vehicle being too high or too low, or the visible
front distance being too short.

These agents are defined within the context of the motor-
cycle pilot and they are not directly related to the division of
the chromosome between the threads or processes. For the
research presented in this paper, the total number of parame-
ters to be optimized and thus represented in a chromosome is
such that a perfect distribution of these variables among the
processes is possible. Thus, each variable belongs entirely
to one single process.

However, the same thing cannot be said about the pilot
agents because each of them has a different number of pa-
rameters it requires to function. The division into processes
does not take this aspect into consideration, but it can defi-
nitely be considered for future research.

3.3 Pilot Configuration by Genetic Algorithms

All of the agents composing the autonomous pilot are gov-
erned by equations comprising a set of thresholds and con-
stants that can be configured to adjust its behavior and opti-
mize its performance.

To apply the GAs to this problem, we chose a represen-
tation where each configurable coefficient is assigned 10 bi-
nary genes, and the chromosome results by concatenating
all of the coefficients. Thus, we worked with 36 coefficients
because the pilot combines the leaning and steering modes.
This means that the chromosome is of a length of 360.

We used the one-point crossover for our experiments with
a probability of 0.8 and a probability of mutation of 0.01.

Table 1: Technical specifications of the platforms used for
testing

Label CPU Make CPU Speed Core OS

U1 Intel Pentium 4 2.8 GHz 1 Ub

M2 Intel Core 2 Duo 2.4 Ghz 2 OsX

X4 Intel Quad Core Q6600 2.4 GHz 4 XP

We employed an elitist reproduction preserving the best in-
dividual from each generation to the next.

A chromosome is evaluated by running the motorcycle in
a non-graphical environment once with the pilot configured
based on values obtained by decoding the chromosome over
a test circuit presenting various turning and slope challenges.
To compute the fitness we marked 50 reference points on the
road and counted how many of them the motorcycle passed
by closely enough. The fitness is computed as follows:

F (x) =
dm

dt

+
1

1 + tm
(4)

where dm is the number of points crossed by the motorcycle,
dt is the total number of reference points, and tm is the total
time taken until either the circuit was completed, or until a
failure condition was detected.

Thus the objective fitness reflects both how much of the
circuit the motorcycle completed, and how fast it was capa-
ble of finishing the track. In general, a fitness higher than 1
is an indication of completion of the circuit.

A failed circuit can be caused by one of the following
three situations: a crash due to a high leaning angle, an exit
from the road with no immediate recovery, or crossing the
starting line without having reached all the marks, as when
the vehicle takes a turn of 180 degrees and continues back-
ward.

4. Experimental Results

In this section we present some of the experimental results
testing both the execution time/speedup and the fitness per-
formance.

Table 1 introduces the three platforms that we used for our
computations. In the operating system column, XP stands
for Windows XP, OsX stands for the Mac OsX 10.5.6, and
Ub stands for Ubuntu 8.04. Thus, one platform is single-
cored, one is double-cored, and the third one is a QuadCore.

Table 2 shows the average execution time in number of
seconds over 10 runs for both the synchronous (S in the sec-
ond column) and the asynchronous (A in the second column)
models. The chromosome length is 360, the population is of
size 50, and we have run 1000 generations in all the cases.
The results are averaged over 10 runs. The row with 1 pro-
cess represents the sequential GA used as a baseline. Table 3
shows the number of such calls divided by 104 as an average
over 10 runs.

To compute the speedup for this problem, we need to
compute a baseline of comparison that does not depend on



Table 2: Timing in seconds, 1000 generations, average over
10 runs

#Threads Comm Platform

U1 M2 X4

1 1969.3 1789.7 2081.0

2 S 6488.0 7459.4 3054.7

2 A 11985.9 4381.5 5638.4

4 S 13308.1 8396.22 5452.5

4 A 7140.5 8058.3 5156.4

8 S 32031.9 12882.0 16955.7

8 A 42254.5 5809.2 13561.6

Table 3: Number of moves divided by 104, 1000 genera-
tions, average over 10 runs

#Threads Comm Platform

U1 M2 X4

1 18678.0 1881.98 4051.34

2 S 4180.98 6578.59 7763.57

2 A 7080.79 3732.11 12176.10

4 S 5849.64 7344.52 5942.87

4 A 5009.33 7026.47 5037.21

8 S 11063.75 13074.47 14961.18

8 A 14515.89 10269.06 10394.82

Table 4: Computational time for every 104 moves

#Threads Comm Platform

U1 M2 X4

1 1.05 0.95 0.51

2 S 1.55 1.13 0.39

2 A 1.69 1.17 0.46

4 S 2.28 1.14 0.92

4 A 1.43 1.15 1.02

8 S 2.90 0.99 1.13

8 A 2.91 0.57 1.30

Table 5: Speedup in 1000 generations

#Threads Comm Platform

U1 M2 X4

2 S 67.94% 83.87% 130.55%

2 A 62.28% 81.00% 110.92%

4 S 46.34% 83.19% 55.99%

4 A 73.96% 82.92% 50.18%

8 S 36.41% 96.52% 45.32%

8 A 36.22% 168.10% 39.37%

the number of operations executed for each case. Thus, Ta-
ble 4 computes the average time is seconds for every 104

move operations by dividing the time in Table 2 by the num-
ber of moves in Table 3. Then Table 5 shows the speedup for
this problem by dividing this new timing measure for the se-
quential case by its value for the parallel case. Higher values
for the speedup are preferable and values over 100% show
that the parallel version of the algorithm is faster than the
sequential one.

Finally, Table 6 shows the average and maximum fitness
achieved in 1000 generations over the 10 runs as an aver-
age over the 3 platforms because the fitness is platform-
independent, at least in theory. Higher numbers are better,
and a fitness value over 1.0 is an indication that the motorcy-
cle pilot might have completed the circuit in that case. This
table shows that both parallel models are an improvement
over the sequential one for two processes. For higher num-
bers of processes there is a significant improvement for the
asynchronous model over both the synchronous model and
over the sequential program. This validates our parallel ap-
proach.

5. Conclusions

In this paper we have presented a multi-threaded genetic al-
gorithm dividing the problem and the genes of the chromo-
some among the processes instead of dividing the popula-
tion. The model is designed for multi-core processor archi-



Table 6: Average fitness after 1000 generations over the 3
platforms

Comm #Threads

1 2 4 8

Ave S 0.9213 0.9793 0.8578 0.8886

Max S 1.0000 1.0000 1.1080 1.2000

Ave A 0.9213 0.9682 0.9601 0.9378

Max A 1.0000 1.0000 1.0000 1.3334

tectures. The focus of this paper is on a feature of the algo-
rithm related to communication. We have tried to see how a
lack of synchronization of the threads along the generations
affect the execution time and the fitness.

Section 2 introduced our parallel model and explained the
difference between the synchronized model and the asyn-
chronous one. Section 3 introduced the problem used for
testing the model. Section 4 presented our experimental re-
sults designed to answer our question.

The experimental results indicate that the synchronous
version of the genetic algorithm is more efficient than the
asynchronous one in terms of speedup, which is a rather
surprising result. By looking at the speedup by platform,
there is a clear improvement for the 4 core processor plat-
form with 2 threads, while on the same platform the speedup
for 4 threads does not seem to follow a similar pattern. This
could indicate that the pthread library or the Windows XP
operating system are not yet optimized to take advantage of
the QuadCore architecture. For future research we will re-
peat the experiment on the same platform with the Windows
7 operating system.

In terms of fitness we can see a clear improvement from
the sequential model to both of the parallel ones and a better
performance of the asynchronous model overall, both for the
average and for the maximum fitness.

Overall the parallel model is a good way to take advan-
tage of the extra computational power of these architectures
while improving the performance of the algorithm.

References

Alba, E., and Tomassini, M. 2002. Parallelism and evo-
lutionary algorithms. IEEE Transactions on Evolutionary
Computation 6(5):443–462.

Baker, B.; Carter, C.; and Dozier, G. 2009. Sema: A new
paradigm for distributed genetic and evolutionary compu-
tating. In Kim, B., ed., Proceeding of the Midwest Artificial
Intelligence and Cognitive Science Conference, 35–39.

Cantú-Paz, E. 1998. A survey of parallel genetic algo-
rithms. Calculateurs Paralleles, Reseaux et Systems Repar-
tis 10(2):141–171. Paris: Hermes.

Cantú-Paz, E. 2001. Migration polices, selection pressure,
and parallel evolutionary algorithms. Journal of heuristics
7(4):311–334.

Dozier, G. 2003. A comparison of static and adaptive re-
placement strategies for distributed steady-state evolution-
ary path planning in non-stationary environments. Interna-
tional Journal of Knowledge-Based Intellident Engineer-
ing Systems (KES) 7(1):1–8.

Getz, N. 1994. Control of balance for a nonlinear nonholo-
nomic no-minimum phase model of a bicycle. In American
Control Conference.

Harvey, K., and Pettey, C. 1999. The outlaw method for
solving multimodal functions with split ring parallel ge-
netic algorithms. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, 274–280. Orlando (FL):
Morgan Kaufmann Publishers.

Kim, M.; Aggarwal, V.; O’Reilly, U.; and Médard, M.
2007. A doubly distributed genetic algorithm for network
coding. In Proceedings of the Genetic and Evolutionary
Computation Conference, 1272–1279. London, UK: ACM.

Llorà, X.; Reddy, R.; Matesic, B.; and Bhargava, R.
2007. Towards better than human capability in diagnosing
prostate cancer using infrared spectroscopic imaging. In
Proceedings of the Genetic and Evolutionary Computation
Conference, 2098–2105. London, UK: ACM.

Sastry, K.; Goldberg, D.; and Llorà, X. 2007. Towards
billion-bit optimization via a parallel estimation of distri-
bution algorithm. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, 577–584. London, UK:
ACM.

Sekaj, I., and Oravec, M. 2009. Selected population char-
acteristics of fine-grained parallel genetic algorithms with
re-initialization. In GEC ’09: Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Com-
putation, 945–948. New York, NY, USA: ACM.

Vrajitoru, D., and Mehler, R. 2005. Multi-agent au-
tonomous pilot for single-track vehicles. In Proceedings
of the IASTED Conference on Modeling and Simulation.

Vrajitoru, D. 2001. Parallel genetic algorithms based on
coevolution. In Belew, R., and Juillé, H., eds., Proceedings
of the Genetic and Evolutionary Computation Conference,
Late breaking papers, 450–457.

Z. Skolicki, K. D. J. 2005. The influence of migration
sizes and intervals on island models. In Proceedings of the
Genetic and Evolutionary Computation Conference, 1295–
1302.


