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Abstract

In this paper we introduce an application of multiobjec-
tive optimization with genetic algorithms to the problem
of graph drawing and explore the potential contribution
of the genetic algorithm to solve this particular prob-
lem. Given a weighted graph, we want to find a geo-
metric position of every vertex (layout) consistent with
the weights in the graph. Among the possible solutions
to this problem, we would also like to find one that fol-
lows a particular given shape or that has some geometric
properties. Our paper shows that the genetic algorithms
can help find an optimal solution both in terms of con-
sistency and of shape.

Introduction

The problem we focus on for this study is building consis-
tent graph layouts for weighted graphs, in particular follow-
ing a specified geometric shape. In this paper we explore
the potential use of multiobjective genetic algorithms to this
problem and various implementation aspects related to it.
The graph theory represents an interesting challenge for the
genetic algorithms (GAs) because many of the graph prob-
lems are NP-complete or generally hard to solve. The GAs
can be a viable alternative to more traditional approaches,
allowing the expression of a variety of constraints through
the fitness function, especially when we want to improve on
several criteria at the same time.

Let us start from the assumption that a weighted graph
represents a discretization of a geometrical object with a spe-
cific shape and topological properties. We would like to find
a graph layout that is consistent with the weights in the graph
and that also resembles the original shape of the represented
object.

Extensive work was accomplished on drawing un-
weighted graphs with emphasis on showing the structure
of the graph in the geometrical representation. The best-
known heuristic for generating graph layouts is the spring
algorithm (Di Battista et al. 1999), based on tension forces
in the graph, which is essentially a hill-climbing method.
Among the applications of these algorithms we can cite de-
signing electronic circuits (Di Battista et al. 1999), design-
ing web sites, and visualizing the content of the World Wide
Web (Brandes et al. 2000).

Layouts presenting some aesthetic qualities are also a
stated goal for this problem (Gajer and Kobourov 2002).
Several authors have applied genetic and evolutionary al-
gorithms to solve this problem (Tettamanzi 1998), (Branke,
Bucher, and Schmeck 1997). The criteria used in these pa-
pers are equally aesthetic and can be translated into geomet-
ric constraints similar to those we are currently using in our
research.

Force Based Algorithms

The algorithms presented in this section are described in
more detail in (Vrajitoru and El-Gamil 2006). A graph lay-
out is an assignment of points to the vertices of the graph
such that the edges are represented as line segments. The
first aspect we try to address is finding a layout such that
the length of each edge is equal to the weight of the edge.
The second aspect we are interested in is, given that for
many graphs, there is an infinity of possible solutions for the
first criterion, is it possible can additional constraints help in
finding the shape of the original graph layout?
Problem. Let G = {(V,E), W} be an undirected,

weighted graph where |V | = n, |E| = m, and W is the
weight function. We must find a layout P : V → R

3 such
that

∀ u, v ∈ V, d (Pu, Pv) = W (uv) (1)

A layout with this property will be called a consistent layout
for this graph.

Some graphs have no solution, others that have a single
solution (ignoring isometric transformations), and a large
number of them have an infinity of non-isomorphic solu-
tions. In the case of an infinity of solutions, we would like
to find a particular one resembling a specified shape, as for
example, a regular grid, an ellipsoid, or a torus.

Breadth-First Order Heuristic (BFH)

Let u and v be two adjacent vertices in the graph. Sup-
pose that they were assigned the geometric points Pu and
Pv . Let us denote by erruv the error on the edge uv com-
puted as the difference between the weight of the edge and
the Euclidean distance between the two points erruv =
W (uv) − d(Pu, Pv). This error gives us an estimation of
how much the points are misplaced with respect to each
other if the weight of the edge represents the ideal distance



between them. We would like to find a layout that minimizes
the total absolute error in the graph:

total error =
∑

∀uv∈E

|erruv| (2)

This algorithm follows the ideas from the the spring algo-
rithm and most of the force-oriented methods. It starts with
a random layout that is adjusted in a number of iterations to
obtain one that is consistent. For every iteration, the algo-
rithm repositions one vertex at a time to reduce the error on
an incident edge.

Let u and v be the two adjacent vertices and Pu and Pv

the points assigned to them in the current layout. If the error
on the edge uv is not equal to 0, we will adjust the position
of the vertex v by assigning it a new point P ′

v determined in
the following way:

P ′
v = Pv + ε · unit( ~PuPv), (3)

where ε is a constant, 0 < ε < 1.

An iteration of the BFH modifies the position of all but
one vertex in the graph according to (Equation 3). The al-
gorithm starts with a randomly chosen vertex (origin), and it
adjusts all the other vertices in the graph starting from this
origin in a breadth-first order. The parameter ε allows us to
control the amount of adjustment that is performed at each
step and thus, decide on the convergence rate.

Tension Vector Heuristic (TVH)

Let us suppose that we can construct a physical representa-
tion of the graph using interconnecting springs for the edges,
as in the spring algorithm. Each spring corresponding to an
edge has an initial length equal to the weight of the edge,
and creates a contracting or extending force proportionate to
the amount of deformation that was applied to it.

TVH computes the total deformation forces in each point
of the graph in the current configuration, and then moves
all of the points in one step according to these forces. The
operation is repeated for a number of iterations or until con-
vergence. This will result in an equilibrium solution.

We define the deformation force on the edge uv depends
on the error on this edge, erruv . Then we can define

the deformation force applied to the point Pv as ~Fuv =

erruvunit( ~PuPv). The resulting force applied to the point
A is then defined as:

~Ru =
∑

∀uv∈E

~Fvu (4)

The point Pu is moved to a new location P ′
u defined as

follows:

P ′
A = Pu + ε ~Ru (5)

where ε is a constant, 0 < ε ≤ 1.

Both of these method have been shown to converged to
consistent solutions, but were not successful in retrieving the
original shape of the graph.

Repulsion Vector Heuristic (RVH)

Many studies in graph drawing algorithms also propose to
add repulsion forces to the tension vectors moving the ver-
tices. Given two non-adjacent vertices in the graph, u and
v, the repulsion force between them is given by Equation 6.
The repulsion forces care also be scaled by ε.

Rf (Pu, Pv) =
~PuPv

|PuPV |d(Pu, Pv)p
(6)

In RVH, the repulsion forces are added to the tension
forces defined for TVH. In all the results presented in this
paper we used the value ε = 0.05, which was decided ex-
perimentally.

Genetic Representation and Multiobjective

Fitness

In this section we introduce the genetic representation of the
consistent graph layout problem focusing on the precision of
the solution.

Chromosome Representation and Genetic
Operations

Since a layout is composed of points with real coordinates,
a real-encoded genetic representation is appropriate for this
problem. Several real-encoded models for genetic algo-
rithms have been proposed with more focus on the crossover
operator (Ono and Kobayashi 1997), or the search space
(Thutsui and Goldberg 2001). Our study focuses on a dif-
ferent aspect than these other approaches.

To apply the GAs to our problem, we represent a graph
layout as a chromosome. A layout is a string of Euclidean
3D points. The length of the string is equal to the number
of vertices n. Each of the points is composed of three genes
taking real values. The genes are initially generated ran-
domly in a given boundary depending on the weights in the
graph. We chose the uniform crossover with a swap proba-
bility established experimentally as the value 0.45.

We have used a hybrid mutation for all of the results pre-
sented here. We call this mutation “hybrid” in reference to
the fact that it is using a force based method combined to
the classic genetic mutation. This tension vector mutation
moves the 3 genes of a randomly selected point based on
the tension vector resulting from all edges incident in that
vertex as described in Equation 5, not taking the repulsion
forces into consideration.

Multiobjective Optimization Goals and Fitness

Experiments published in (Vrajitoru and El-Gamil 2006)
have already proved that the GAs in combination with the
force-based heuristics can yield to satisfying results in term
of consistency of the solution with the weights in the graph.
The focus of this paper, however, is on the geometric and
aesthetic properties of the solution.

Most graphs present an infinity of non-isomorphic solu-
tions. It is a difficult task to select among these the ones with
a particular geometric shapes, optimal from a visual point of



view. Preliminary experiments with the force-based heuris-
tics show that even though the solutions are precise in terms
of distances, the shapes are more or less random. More-
over, even though the repulsion vectors seem to improve the
visual qualities of the solution, the shape is still not satisfac-
tory while the precision of the solution decays when adding
this component.

Many of the known geometric shapes present geometric
properties such as maximizing the enclosed surface or vol-
ume, as it is the case for spheres of any dimension. In this
study we add such properties to the fitness function to see
how they change the general shape of the solution.

The first component of the fitness, FE , aims to minimize
the total error in the graph and is computed the following
way:

Ferr =
1

1 + total error
(7)

The following geometric constraints are added to improve
the visual quality of the solution.
Surface constraints consist in maximizing the surface oc-

cupied by the graph. The surface is computed by first se-
lecting the essential cycles incident in each vertex using an
algorithm presented in (Vrajitoru 2007), then by projecting
and scan-converting each of them on a 2D matrix. The re-
sulting measure, FS , is normalized with respect to the largest
bounding box of the graph layouts in the current generation.
Volume constraints are an approximation of the volume

occupied by the graph layout by scan-converting all the
edges in the tree dimensions and multiplying the results.
More precise methods would be too time-consuming, but an
improvement of this measure could be the object of future
research. The resulting measure, FV , is also normalized in
each generation.
Angle constraints are also computed based on the essen-

tial cycles incident in each vertex. The measure aims to min-
imize the absolute difference between the angles in each cy-
cle and the angles of a regular polygon with a number of
edges equal to the cycle length. The total absolute differ-
ence DA is converted to a maximizing value in the interval
[0, 1], FA = 1

1+DA
.

Previous experiments using a simpler constraint of angle
uniformity around a vertex, often cited as an aesthetic crite-
rion, didn’t yield satisfactory results. For example, a vertex
belonging to only two edges resulted in an angle of 180 de-
grees which is not suitable in many cases. The constraint we
chose takes in consideration the local structure of the cycles
incident in the vertex and performs generally better.
Overlap constraints aim to minimize the overlap of the

graph facets, also defined as the essential cycles incident in
each vertex. The process of computing this value is similar
to the surface measure. In this case, once the graph is pro-
jected and scan-converted to a 2D matrix, the algorithm will
count the number of cells that have been hit more than once
as a percentage of the total number. The total percentage of
hits for one graph layout, totalhits is converted to a maxi-
mizing value in the interval [0, 1], FO = 1/(1 + totalhits).

This constraint is closely related to the popular criterion
of minimizing the edge crossing. In the context where this

is computed by a scan-conversion and a discretization, the
scan-conversion of the edges alone can miss some of the in-
tersections because of discretization artifacts. The surface-
based overlap constraint also represents a refinement of the
edge crossing, allowing us to distinguish cases of polygon
overlap that would look the same in terms of border inter-
section.

Aggregate Function

To combine two or more of these measures, first let us recap
that all of them are converted to maximizing values normal-
ized in the interval [0, 1]. The fitness is computed with the
as a linear aggregate function (Jin, Okabe, and Sendhoff )
given by the formula

F =
∑

CkFk, k = E,S, V,A,O (8)

where Ck are control coefficients or weights for each
measure. We chose the coefficients for this study such that∑

Ck = 1.

In the experiments presented in this paper, CE is always
non-zero, so that all of our solutions aim to be consistent
with the weights in the graph. In all of them, the coefficients
are evenly distributed between the measures. For example,
all the experiments involving the error and the surface mea-
sures have CE = 0.5 and CS = 0.5. If three measures are
involved, all their coefficients will be 0.33. Different propor-
tions of each measure could be the object of future research.

In our experiments we built a number of generations of
the GAs, extracted the best solution, and then applied to
it an equal number of iterations of TVH. Technically, the
aggregate fitness function leads to a reasonable solution ac-
cording to all of the criteria for which the coefficients are not
0. TVH that follows it moves the solution further uphill on
the consistency curve from that point. The result is a precise
solution that is also visually better.

Test Problems

We decided to focus our present research on easily recogniz-
able shapes with regular structure. We have used the follow-
ing sets of test problems: regular rectangular grids, regular
polygons of variable number of vertices, the set of Platonic
solids, and a particular 3D projection of the 4D hypercube
or tesseract.

The optimal solution for each of these problems is shown
in Figures 1, 2, and 3.

Figure 1: Regular grids and polygons



Figure 2: Tetrahedron, cube, octahedron

Figure 3: Icosahedron, dodecahedron, hypercube

Experimental Results

In this section we present some of the experimental re-
sults obtained with the force-based algorithms and with their
combination with the GAs. First we discuss the optimal
solution and how well the algorithms achieved it, and then
some of the interesting suboptimal solutions.

Optimal Solution

We have performed two sets of experiments, with and with-
out the GAs. The first one consists in 2000 iterations of the
force-based methods alone. The second set consists in 2000
iterations of the GAs with an aggregate fitness combining
in equal measures one of the geometric constraints and the
total error, followed by 2000 iterations of the tension vector
algorithm. Even though the repulsion forces can improve
the visual quality of the solutions, the tension vector method
is the most efficient one in terms of consistency, which is the
reason why we used it. This insures that the final layout is
consistent with the weights in the graph. For some of the
most difficult graphs we also ran some experiments combin-
ing two of the geometric constraints showing the best results
and the total error. The population size was of 50 or 100, de-
pending on the size of the graph.

Figures 4 to 12 show a visual comparison of the best so-
lution obtained by a force-based method alone with the one
obtained by first applying the GAs.

For the grids in Figures 4 and 5 we notice that while the
solutions found by the force-based algorithms alone are ar-
bitrary, the GAs were able to find an almost perfect solution
for the 4x4 grid and a somewhat recognizable solution for
the 10x10 grid. Larger grid structures, however, would re-
quire a different approach than simply increasing the number
of iterations or the population size.

The GAs were able to steer the solution towards a nearly
optimal regular polygon for almost all of the polygons, as
shown in Figures 6, and 7. Even the largest polygon with
20 vertices was found by the GAs in the form of an ellipse,

Figure 4: 4x4 grid, RVH left versus GA - surface and overlap
right

Figure 5: 10x10 grid, RVH left versus GA - surface and
overlap right

Figure 6: Decagon, RVH left versus GA - volume right

Figure 7: Icosagon, TVH left versus GA - surface right

while the solutions derived by the force-based algorithms are
again random.

We have omitted the tetrahedron from these results be-
cause it is a graph with a unique solution and all the algo-
rithms were able to find it. For the rest of the Platonic solids
presented in Figures 8, 9, 10, and 11, the GAs were able to



Figure 8: Octahedron, RVH left versus GA - surface right

Figure 9: Cube, TVH left versus GA - angles right

Figure 10: Icosahedron, BFH left versus GA - surface and
overlap right

Figure 11: Dodecahedron, TVH (left) versus GA - surface
(right)

find an almost perfect layout for all of them except for the
dodecahedron. Even for the latter, the best layout found by
the GAs is still recognizable. The octahedron was found by
both the force-based methods and by the GAs, but for the
other graphs the force-based methods had a hard time isolat-
ing the optimal solution.

Finally, the hypercube presented in Figure 12 turned out

Figure 12: Hypercube, TVH left versus GA - surface and
angles right

Table 1: Total error for the decagon

S V A O

GA 54.7978 3.5708 15.8573 10.5834

GA + TV 0.0013 0.0001 0.0001 0.0001

BFH TVH RVH

0.0000 0.0000 11.5308

to be more difficult than other shapes, but the solution de-
rived by the GAs is recognizable, while that is hardly the
case for the force-based heuristics alone.

Numerical Results

In terms of consistency of the weights in the graphs with
the distances between the vertices in the resulting layouts,
the force-based heuristics without repulsion forces and the
genetic algorithms combined with the tension vector method
were able to produce solutions with less than 1% error. The
RVH heuristic generally results in a solution that is visually
better than the other force-based methods, but which is not
as precise in terms of error.

To exemplify this, Table 1 presents the total error in the
solution first after applying only the GAs, then after the com-
bination of GAs and the TVH, and then by applying only the
force-based algorithms. From this table we can also notice
that the surface constraint seems to be the most contradic-
tory to the total error, and the opposite stands for the volume
constraint. Even so, by improving the error in a solution that
already has some surface maximization properties, we can
obtain a layout that is optimal from both the point of view of
the error and of the occupied surface.

The quantity of numerical data for our simulations is lim-
ited by the fact that it is difficult to verify the quality of the
solution other than visually. However, we summarize in this
section the percentages of optimal and close to optimal so-
lutions obtained by the GAs for each of our test problems.

Tables 2 and 3 present a numerical interpretation of the
quality of the solutions obtained by the various geometric
constraints on the set of polygons and on the Platonic solids
respectively. In each of these tables, the rows marked by Opt
represent the percentages of optimal solutions, while those
marked by Close, the percentage of solutions that are close



Table 2: Percentage of optimal and close to optimal solu-
tions for the polygons

Vertices S V A O

5 Opt 10 0 20 20

5 Close 50 30 20 30

7 Opt 10 0 20 20

7 Close 80 50 30 20

10 Opt 0 20 0 10

10 Close 60 80 50 50

20 Opt 0 0 0 0

20 Close 40 40 40 30

Table 3: Percentage of optimal and close to optimal solu-
tions for the polygons

Layout S V A O

octahedron Opt 70 40 10 20

octahedron Close 0 0 0 0

cube Opt 0 0 10 0

cube Close 70 30 20 30

icosahedron Opt 0 0 0 0

icosahedron Close 50 10 10 10

dodecahedron Opt 0 0 0 0

dodecahedron Close 40 20 30 30

hypercube Opt 0 0 0 0

hypercube Close 30 10 20 10

to the optimal ones or at least recognizable. Such examples
are Figures 11 and 12. The columns are denoted for the
constraints related to the surface (S), the volume (V), the
angles (A), and the overlap (O).

Since this problem is largely based on a visual compo-
nent, we can also inquire into other interesting shapes result-
ing as suboptimal solutions. The shapes generated by the
GAs are in general more esthetically appealing than those
found by the force-based heuristics alone, and they also
highlight in some cases geometrical properties of the geo-
metrical objects we aimed to reconstruct.

These suboptimal solutions often show interesting prop-
erties of symmetry, as in the examples displayed in Figure
13 or some of esthetically interesting properties as shown in
Figure 14.

Conclusions

In this paper we presented a multiobjective optimization ap-
proach to the graph drawing problem using genetic algo-
rithms. We aimed to design solutions that satisfy both the
consistency of the weights with the distances in the graph

Figure 13: Symmetric suboptimal solutions for the icosahe-
dron (left) and for the heptagon (middle and right)

Figure 14: Suboptimal solutions for the icosagon

layout and geometric constraints. In particular we were in-
terested in extracting from the infinite set of solutions, those
that resembled a given geometric object represented as the
graph. We used a set of regular polygons and grids, the set
of Platonic solids, and the hypercube as test cases for this
study.

The experimental results presented in Section clearly
show that the GAs with the geometric constraints can sig-
nificantly improve the visual quality of the derived solution.
The geometric constraints that produce the best results vary
from case to case. However, overall the best shapes are de-
rived with a constraint maximizing the surface. Some of the
more difficult problems, as for example the icosahedron, re-
quired the combination of two geometric constraints to find
the optimal solution, maximizing the surface and minimiz-
ing the surface overlap.

In terms of scalability, the GAs can also adapt better to
larger problems than the force-based algorithms, as illus-
trated by the cases of regular polygons and grids. Future
work will be conducted on even larger problems.

In conclusion, in terms of simple consistency of the
weight and the distances in the graph, the force-based al-
gorithms are faster and more efficient because the problem
is well-suited for gradient hill-climbing. However, to ob-
tain particular geometric shapes that are visually pleasing or
that present interesting geometric properties, the genetic al-
gorithms are represent a better approach.
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