
Consistent Weighted Graph Layouts

Dana Vrajitoru and Jason DeBoni

Abstract. A graph layout is a geometrical representation of a graph such that
the vertexes are assigned points and the edges become line segments. In this
paper we present two probabilistic algorithms that build layouts for weighted
graphs such that the geometrical distances between the vertexes are consistent
with the weights of the edges. Both methods start with a random layout and
improve it in a number of iterations to decrease the error between the weight
of the edges and the length of the corresponding line segments. Both methods
have been successful in building consistent layouts with high precision.

Mathematics Subject Classification (2000). graph drawing.

Keywords. graph drawing, force-based algorithms.

1. Introduction

Suppose that several hundreds of thousands of years from now some aliens discover
traces of human civilization on Earth and they try to recover our history from
them. Moreover, suppose that the continents have derived from the form that they
have today, and that all that the aliens find is a schedule of an airline company
containing the amount of time that each flight would require to connect a given
city to another. The problem is, can the aliens reconstruct the current map of the
world based on that timetable?

To express this problem in mathematical terms, given an unoriented and
weighted graph, assign a 2D or 3D point to each of the vertexes in the graph, in
other words, a layout, such that for every two vertexes A and B for which there
exists an edge (A, B) in the graph, the distance between the points assigned to
each of them is equal to the weight of the edge.

Extensive work has been done on drawing unweighted graphs with the empha-
sis on the geometrical representation showing the structure of the graph (Battista
et al. [13], Diaz, Petit, and Serna [4]) and also presenting some aesthetic qualities
(Gajer and Kobourov [9], Nesetril [14]). The problem in particularly interesting

This work was supported by the IUSB Faculty Research Grant.

2 Dana Vrajitoru and Jason DeBoni

and challenging when the graphs to be drawn are large (Gajer and Kobourov [9],
Erlingsson and Krishnamoorthy [8], Brandes and Wagner [1]). Another approach
is to build the graph layout according to constraints that can be user-defined
(Dornheim [3], Tamassia [16], He and Marriott [11]).

The best-known heuristic for graph layout is certainly the spring algorithm
(Eades [5]) that regards the edges in the graph as springs connecting the nodes
such that the springs attract the nodes if they are too far apart and repel them if
they are too close. In addition, non-connected nodes repel each other. In the usual
implementation, the edges are expected to have the same length. An interesting
model (Branke, Bucher, and Schmeck [2]) combines this method with the use of
genetic algorithms to take into account other optimization criteria like the number
of edge crossing or the number of different angles in the drawing.

The methods we are presenting in this paper are inspired from the spring
algorithm in which we only consider attraction forces between the vertexes. We
have adapted this method for the goal of creating layouts such that there is a
consistency between the distances between vertexes in the graph and the weights
on the edges. We also introduce an application of genetic algorithm for the same
problem.

Some research has also concentrated on weighted graphs and the best meth-
ods seems to be the force-oriented ones (Battista et al. [13], Eades and Kelly [7]).
In one approach, Eades and Mendonca [6] solve the triangulation conflicts in the
graph by creating copies of certain nodes to obtain not only an equilibrium layout
but also one which is completely tension-free.

The methods we are presenting in this paper can largely be seen as variations
of the spring algorithm (Eades [5]) in which we ignore the repulsion force exerted
by non-adjacent nodes in the graph. The criteria that we are interested in is the
consistency between the distances between vertexes in the graph and the weights
on the edges.

The paper is structured the following way: the first section introduces the
problem. The second one presents our force-based algorithms, and the third one
the application of genetic algorithms to this problem. The next section presents
some experimental results and we end with conclusions and with a discussion on
future work.

2. The Problem

Definition. Let G = {V , E} be a graph where V is the set of vertexes, |V| = n, E is
the set of edges. A layout for the graph is a function P : V → R

p that maps each
vertex v ∈ V to a geometrical point in R

p, where usually p = 2 or 3. The edges
are represented as line segments between the points associated with the vertexes
composing them.

Problem. Let G = {V , E , W} be an unoriented, weighted graph where the
weights of the edges are given by the function W : E → R

+. We must find a layout

Consistent Weighted Graph Layouts 3

P : V → R
3 such that ∀ u, v ∈ V , d (P (u), P (v)) = W (u, v), where W (u, v) is the

weight of the edge connecting the vertexes u and v. A layout with this property
will be called a consistent layout for this graph.

If V = {v1, v2, . . . , vn}, then we must find a set of points {P1, P2, . . . , Pn}
such that if there is an edge between two vertexes vi and vj , {vi, vj} ∈ E , then
the points associated with these vertexes are placed at a distance from each other
equal to the weight of the edge.

d (Pi, Pj) = W (vi, vj) (2.1)

We can express the constraints in Equation 2.1 as a system of m equations of
second degree with 3n variables. Let us denote each of the points as a 3-dimensional
vector Pi = (xi, yi, zi), 1 ≤ i ≤ n, and the weight of the edge {vi, vj} ∈ E by wij .
Then for each edge {vi, vj} ∈ E , we have the following equation:

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 = wij (2.2)

This system of equations has either no solution, or an infinity of them. Any
isometric geometrical transformation, for example, a translation, rotation, or sym-
metry, applied to a consistent layout, transforms it into another consistent one.

This problem has been proved to be NP-hard (Eades and Mendonca [6]).

2.1. Minimal Total Error

The minimal requirements for the graph so that there is a solution are related
to the properties of the geometrical distance. Thus, if the weight of the edges
represent actual distances, then they must fulfill the following conditions:

∀ A, B ∈ V , WAB = WBA (2.3)

∀ A, B, C ∈ V , WAC ≤ WAB + WBC (2.4)

The constraints expressed in Equations 2.3 and 2.4 represent necessary but
not sufficient conditions for the existence of the solution. For example, the following
graph satisfies both of these conditions, but we cannot position this graph such
that the error on each edge is 0.

Figure 1. A graph with no solution

The constraints expressed in Equations 2.3 and 2.4 are a sufficient condition
for the existence of the solution only in the case of a completely connected graph.

4 Dana Vrajitoru and Jason DeBoni

We can rewrite Equation 2.4 such that the two constraints become a sufficient
condition by extending the triangular property to any closed polygon:

∀n ∈ N, n ≥ 3, ∀A1, A2, . . . , An ∈ V ,

WA1An
≤ WA1A2

+ WA2A3
+ . . . WAn−1An

(2.5)

From Equation 2.5, we can remark that a weighted tree can always be suc-
cessfully positioned.

Although an algorithm that verifies the condition 2.5 would be exponential,
it is much easier to generate graphs for which we know that there is a solution. For
this, we can simply assign 3D points to the vertexes in a graph and then assign to
the weights to the edges the value of the distance between the two points that the
edge connects.

The same way, it is easy to generate graphs for which the problem has no
solution. For this, we must generate at least one cycle in the graph, and we can
assign the weights in this cycle such that the constraint 2.5 is not satisfied. This
operation is linear in the selected cycle.

In the case where there is no solution for a given graph, we would like to
find an assignment of points to the vertices that minimizes the total absolute
error in the graph. Let A and B be two vertices in the graph connected by an
edge, and PA = (xA, yA, zA) and PB = (xB , yB, zB) the points currently assigned
to them in the layout. Let us denote by errAB the placement error for the edge
(A, B) computed as the difference between the weight of the edge and the distance
between the two points:

errAB = WAB − d(PA, PB). (2.6)

Then we can express the measure of consistency for a layout as the total error
in the graph computed the following way:

total error =
∑

∀(A,B)∈E

|errAB | (2.7)

3. Force-Based Algorithms

The first category of algorithms that we’re introducing start from the idea that the
graph forms a dynamic system in which each element is attracted or repelled by
its neighbors according to the difference between the distance between the points
assigned to the nodes and the weight of the edge they compose in the graph. If
the nodes are not neighbors in the graph, then they are not directly affected by
each other.

Consistent Weighted Graph Layouts 5

3.1. Breadth-First Based Algorithm

The first algorithm consists in passing from each state of the system to another of
greater probability by doing a transformation that considers only one edge of the
graph at a time. At each iteration, the algorithm chooses a random vertex (origin),
and then it adjusts the other points in the layout following a breadth-first traversal
of the graph starting from this origin. By this method, the direct neighbors of the
origin will be adjusted in the first few steps, then all of their neighbors follow, and
so on. The adjustment is spreading in the graph as a wave starting from the origin.

Let A and B be two vertices in the graph such that the directed or undirected
edge (A, B) is present in the graph with a weight WAB . Let us suppose that the
breadth-first traversal of the graph is now considering the vertex B as a neighbor
of the vertex A and it must adjust its position based on the weight of the edge.
Let PA = (xA, yA, zA) and PB = (xB , yB , zB) be the points currently assigned to
the vertices A and B respectively in the layout. Equation 2.6 allows us to compute
the error on this edge errAB .

This error provides an estimation of how much the points are misplaced with
respect to each other given that the weight of the edge represents the ideal distance
between them. If the error is positive, then the points are too close to each other.
If the error is negative, the points are too far apart.

If the error is not equal to 0, we will adjust the position of the vertex B by
assigning it a new point P ′

B determined in the following way:

P ′
B = PB + ε ·

errAB

d(PA, PB)
· (PB − PA), (3.1)

where 0 < ε < 1. In this formula, if the error is positive, then the point PB

will be moved on the line passing through PA and PB further away from PA. If
the error is negative, the point PB will be moved closer to PA on the same line.

To justify the above formula, let us notice first that the new length of the edge
is closer to the weight of the edge than the previous one. Thus, we can calculate:

d(PA, P ′
B) =

∣

∣

∣

∣

ε ·
errAB

d(PA, PB)
+ 1

∣

∣

∣

∣

· d(PA, PB) = ε · errAB + d(PA, PB)

The new error associated with the edge (A, B) is

err′AB = WAB − d(PA, P ′
B) = (WAB − d(PA, PB))(1 − ε)

= errAB(1 − ε)

Since we know that 0 < ε < 1, we can conclude that

|err′AB | < |errAB |

Thus, the procedure reduces the distance error on this particular edge. More-
over, we can note two things. First, if ε = 1, then the new error will be null:
err′AB = 0. Second, if we iterate the modification of PB that we have described,

6 Dana Vrajitoru and Jason DeBoni

the error is converging to 0 because we multiply it at each iteration with a positive
constant that is less than 1.

The parameter ε allows us to control the amount of adjustment that is done
at each step and thus, decide on the convergence rate.

Here is the pseudocode version of the algorithm that we have just described:

for (i=0; i<number_of_iterations; i++)

queue = empty;

origin = random(number_of_vertices);

queue += origin;

while (queue is not empty)

A = queue--;

for every B, a neighbor of A

if (B has not been in queue)

adjust_edge(point[A], point[B],

weight[A, B], epsilon);

queue += B;

3.2. Tension Vector Algorithm

Let us suppose that we can construct a physical representation of the graph using
some sort of interconnecting rods for the edges. Each rod corresponding to an
edge would have an initial length equal to the weight of the edge and a section
much smaller than the length. These rods can only be deformed along the main
direction. They also present an elasticity property such that when elongated, they
tend to contract, and when compressed, they tend to extend. Moreover, each rod
creates a contracting or extending force along the main direction proportionate to
the amount of deformation that was applied to them.

We can build the graph using there rods by deforming them as necessary
to fit the connections in the graph description. The physical construction would
then naturally evolve to an equilibrium state in which the deformation tensions
annihilate each other, if they are not solved.

With the next algorithm we try to find the equilibrium solution for the situ-
ation that we have described.

The focus now goes again to the points representing the vertices in the graph.
For each point, a number of forces are applied to it as a result of the deformation
along all the edges that are connected to the point. We will assume that if the
composition of all the forces that apply to a vertex is not 0, then the point will be
pushed in the direction of the resulting force.

We can now express the condition for the solution with 0 local tension. We
would like to find an assignment of points for the vertices of the graph such that
the composition of all the deformation forces that operate on each vertex give a
resulting null vector.

Additionally, we can express the optimal solution with minimal local tension
based on the exact solution. We would like to find a positioning of the graph that
minimizes the total norm of the resulting deformation force applied to each vertex.

Consistent Weighted Graph Layouts 7

Figure 2. Resulting tension vector for a vertex

In the following algorithm, for each of the edges that is deformed, we will
consider that an equal force is applied to each of the two vertices that are connected
by the edge in opposite directions. Thus, the simple resulting force of all the
deformation forces in the graph is always 0, so that the construction cannot work
as a perpetuum mobile.

For example, let us suppose that a vertex A is connected to three vertices
B1, B2, B3 as in Figure 2.

On each of the edges (A, Bi) ∈ E , i = 1, 2, 3, the deformation suffered by
the edge engenders a force proportional to it in the contrary direction, that we

have denoted by ~Fi, i = 1, 2, 3. Thus, from the direction of these forces we can
deduce that the points corresponding to the vertices B1 and B3 are closer to the
point associated with the vertex A than they should be. On the contrary, the point
associated with B2 is farther from the point assigned to A than indicated by the
weight of that edge.

By composing the three vectors representing the deformation forces ~Fi, i =
1, 2, 3, we obtain the resulting force that operates on the point assigned to A, that

we have denoted by ~R = ~F1 + ~F2 + ~F3. The algorithm assumes that the point

corresponding to A will be moved along ~R until the resulting force is null.

We still have to define the the deformation force in a precise way. We can
start by the amount of deformation errAB which has been defined in Equation 2.6
as the difference between the weight of the edge (A, B) and the distance between
the points associated with the two vertices, PA and PB . Then we can define the
deformation force applied to the point PB as being

~FAB = errAB

~AB

‖ ~AB‖
(3.2)

Thus, is the error is positive, then the two points are too close and PB should

move away from PA, which is in the direction of the vector ~AB.

8 Dana Vrajitoru and Jason DeBoni

In Equation 3.2, we have assumed that the deformation suffered by the edge
(A, B) is equally distributed between the two points. Thus, for an unoriented

graph, for each force ~FAB , there is a corresponding force equal in norm and of
contrary direction applied to the other point of the edge:

~FAB = −~FBA

For an oriented graph, suppose that two vertices A and B are connected by
two opposite edges (A, B) and (B, A), of possible different weights. In this case, the
force applied to each point will be the average of the deformation forces resulting
from each edge. For example, the force applied to PB as a result of the vertex A
is equal to:

~F(A)B =
1

2
(~FAB − ~FBA)

Then we can define the resulting force applied to the point PA:

~RA =

{

∑

∀(A,B)∈E
~FBA, for an unweighted graph

∑

∀(A,B),(B,A)∈E
~F(B)A, for a weighted graph

(3.3)

If PA is the point associated to the vertex A at a particular moment and
~RA the force operating on it, the algorithm assumes that at the next moment the
point would have moved to a new location P ′

A defined as follows:

P ′
A = PA + ε ~RA (3.4)

where ε is a constant, 0 < ε ≤ 1.

At last, the algorithm with start again with a random assignment of points
to the vertices in the graph and will move them according to the rule described in
Equation 3.4 in a number of iteration until the points convergence to an equilib-
rium. The following is a general pseudocode description of the algorithm:

for (i=0; i<number_of_iterations; i++)

for all A in V

compute RA;

for all A in V

PA = PA + epsilon * RA;

It is important to remark that in the new algorithm, the resultant force for
every point of the graph is computed based on the current assignment of points
before any of them is moved. The new points are computed after all the resulting
forces are determined. This is a major difference between this algorithm and the
ones introduced in Section 3, in which each point was moved in one step, and the
next point to be moved was based on the new position of all of the previous points.

Consistent Weighted Graph Layouts 9

4. Genetic Algorithms for Graph Layouts

In this section we present an application of genetic algorithms (GAs) to our graph
layout problem.

A genetic algorithm deriving graph layouts represents an alternative to the
algorithms presented in the previous section. The advantage of the GA is that the
choice of the fitness function can allow us to express some geometrical constraints
that are not easy to achieve by the force-based methods, like maximizing the
enclosed volume, or even aesthetic qualities of the solutions. Although this will
be the object of future research, the results obtained so far seem promising. The
difficulty of this method so far is that we expect it to generate accurate solutions
much slower than the other algorithms.

4.1. The Genetic Algorithms

The GAs are probabilistic algorithms generally used for optimization problems.
Through operations inspired from the natural selection, they search for the best
solution to a problem (Holland [12], Goldberg [10]).

Given a search space E, we must find an element e ∈ E maximizing a per-
formance mapping f defined on E, called fitness. The elements of E are called
chromosomes and each of them represents a potential solution to the problem. To
apply a GA, the chromosomes must be coded as a sequence of genes, the most
often binary. The position of a given gene in the chromosome sequence is called
locus.

The general GA starts with an initial population containing a number of
chromosomes, size, and representing the first generation. Given an old generation,
a new generation is built from it using the following operations.

The selection chooses size chromosomes from the old generation, according a
better chance to chromosomes presenting a better performance. The chance of each
chromosome to be selected is proportional to its fitness. This method is generally
known as the roulette wheel or fitness-proportionate selection.

The second operation is the crossover, generally employed to combine the
genes of two chromosomes, known as parents, with the hope of constructing better
ones, known as children. We have chosen the uniform crossover (Syswerda [15]) for
our application. This operator decides independently for each locus from 1 through
L− 1, whether the parents genes will be swapped or not, with a given probability.
We have adopted the swap probability of 0.5 for our research.

The third operation is the mutation which decides randomly for every locus,
if the gene must be mutated to be replaced with a different value. If the genes are
binary, then the mutation will replace a gene with its opposite. This decision also
depends on a given probability which is in general relatively low.

Finally, some individuals from the old generation can be cloned with no
modification into the new generation, operation known as reproduction. In our
case, we have chosen to reproduce the best chromosome from the old generation,

10 Dana Vrajitoru and Jason DeBoni

if the new generation hasn’t produced any chromosome of higher fitness. This
operation insures the monotony of the algorithm (Vrajitoru [17]).

The GA consists in building new generations until a stop condition is fulfilled
(usually the population convergence) or until a given number of generations is
reached. In our case we have run all of our experiments up to 1000 generations.

4.2. Genetic Representation of a Graph Layout

The first challenge of using the GAs to produce consistent graph layouts is rep-
resenting a graph layout as a chromosome. If the graph itself is known to the
algorithm as a global object that we do not need to include in each chromosome,
then a graph layout is simply a sequence of points, each of them described by three
real coordinates. We can represent a real number as a sequence of binary genes
by a discretization, but we have chosen to allow the genes themselves to be real
numbers. Thus, the size of a chromosome is three times the number of vertices in
the graph. Considering that this number is generally much lower than the number
of edges, it allows us to have a comfortable number of chromosomes by generation
without running into memory problems.

The only operation that must be adapted to this problem is the mutation.
Since a real number doesn’t have an obvious opposite, we simply chose to replace
it by mutation with another real number chosen randomly in a given bounding
box.

The next choice is the fitness function, which should represent the total error
in the graph. Since the algorithms usually expect a fitness that increases as the
solutions get better, our fitness is expressed by

f(layout) =
1

1 + TotalError(layout)

The maximum for this function is 1, but we chose to show the total error in
the resulting best chromosome in the last generation instead of the actual fitness.

5. Experimental Results

There are two distinct sets of problems that we will have to deal with.
In the first category, we have graphs for which there exists a consistent layout.

For this category, we expect the tension vector algorithm to converge faster to the
solution. We have used 11 graphs in this category, with the number of vertices
going from 50 to 200.

In the second category, we have problems for which there is no consistent
layout. We have chosen 11 problems in this category, with the number of vertices
the same as before. In this case, we aim to find the layout that is closest to an
equilibrium, or in other words, that minimizes the total edge error in the graph. We
expect the breadth-first based algorithm to find better solutions for this category
of problems.

Consistent Weighted Graph Layouts 11

Table 1. Average total error in 1000 iterations for graphs with
existing solution

]Vertices Total Weight BF TV GA
50 34751.2 4.18 8.33 32602.1
60 60600.7 27.56 25.2587 56821.0
70 121708 1.15 1.29 114702.0
80 141513 0.00169601 0.00033846 132823.0
90 176463 0.00195465 0.000355982 166298.0
100 245876 14.0295 77.2433 230943.0
125 379287 0.00372101 117.348 357410.0
150 498501 0.00531211 92.9607 469440.0
175 639429 0.00628272 129.093 602553.0
200 900704 0.00943293 171.594 849261.0

Table 2. Average total error in 1000 iterations for graphs with
non-existing solution

]Vertices Total Weight BF TV GA
50 7959.8 41.15 80.23 5243.71
60 13300.5 77.44 190.11 8977.52
70 25938.8 187.03 225.75 17664.50
80 31289.1 219.66 262.29 21431.80
90 35912.3 257.89 nan 25014.3
100 52355.1 398.76 619.81 36344.0
125 77765.8 616.54 836.72 54445.2
150 102694 833.31 1073.74 72310.0
175 130597 1066.42 1536.99 92783.7
200 183641 1529.38 43.0 131198.0

Tables 1 and 2 present the results of the 3 algorithms for the graphs with exist-
ing and non-existing solution respectively. In the case of the force-based methods,
these represent 1000 iterations with ε = 0.05. In the case of the genetic algorithms,
they represent 1000 generations with a population size of 50 chromosomes. All of
the results are an average over 50 trials with the same parameters but different
sequences of random numbers.

The first column in each table indicates the number of vertices in the graph.
The second column represents the sum of the weights on all the edges in the
graph, which gives us an indication of the precision of the layouts produced by each
method. The nan entry in one of the cells indicates that the algorithm has diverged
on all the trials for that particular graph. Thus, the tension vector algorithms shows
some occasional divergence problems.

12 Dana Vrajitoru and Jason DeBoni

From these tables we can see that the force-based methods seem to be per-
forming much better than the genetic algorithms. These methods are also faster
under the described experimental conditions. The genetic algorithms would proba-
bly require a larger number of generations to produce comparable results, or more
specific operators, like a mutation that uses one of the force-based methods to find
a better placement for a point in the layout. Perhaps a combination of the genetic
algorithms as a first step with a force-based method to refine the solution would
produce even better results.

Finally, Figure 3 shows the evolution of a layout for a graph with 125 ver-
tices through 1000 iterations of the tension vector algorithm. The edges colored
in red are shorter than they should be, those colored in blue are longer than they
should be, and a yellow edge has exactly the length indicated by its weight. The
configuration of weights for this graph constraints the vertices to be organized in
clusters in the layout, which can be observed in the final layout.

Figure 3. Evolution of a graph layout in 1000 iterations with TV

6. Conclusion

In this paper we have introduced three algorithms that aim to construct graph
layouts that are consistent with the weights in the graph. The first two algorithms
are force-based and inspired by the spring algorithm. They build incrementally

Consistent Weighted Graph Layouts 13

better layouts starting from a random layout by considering attraction and repul-
sion forces between vertices generated by the error on the edges. The third one
is an application of genetic algorithms to this particular problem with a uniform
crossover and a random mutation.

The first two methods have produced solutions with reasonable precision.
Generally, the breadth-first method seems to be more precise. The genetic algo-
rithms have shown a much slower evolution than the force-based methods, but
they show promise because the fitness function could incorporate other geometri-
cal constraints than simply a low total error.

References

[1] U. Brandes and D. Wagner. Using graph layout to visualize train interconnection
data. Journal of Graph Algorithms and Applications, 4(3):35–155, 2000.

[2] J. Branke, F. Bucher, and H. Schmeck. Using genetic algorithms for drawing undi-
rected graphs. In J.T. Allen, editor, The Third Nordic Workshop on Genetic Algo-

rithms and their Applications, pages 193–205, 1997.

[3] C. Dornheim. Planar graphs with topological constraints. Journal of Graph Algo-

rithms and Applications, 6(1):27–66, 2002.

[4] J. Daz, J. Petit, and M. Serna. A survey on graph layout problems. ACM Computing

Surveys, 34(3):313–356, 2002.

[5] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.

[6] P. Eades and X. de Mendonça. Vertex splitting and tension-free layout. In Graph

Drawing, number 1027 in Lecture Notes in Computer Science,, pages 244–253, 1995.

[7] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks. Ars

Combin., 21.A:89–98, 1986.

[8] U. Erlingsson and M. Krishnamoorthy. Interactive graph drawing on the world wide
web. In Sixth World Wide Web Conference, 1997.

[9] P. Gajer and S.G. Kobourov. Grip: Graph drawing with intelligent placement. Jour-

nal of Graph Algorithms and Applications, 6(3):203–224, 2002.

[10] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (MA), 1989.

[11] W. He and K. Marriott. Constrained graph layout. In S. North, editor, The 4th

Internation Symposium on Graph Drawing. LNCS 1190, 1997.

[12] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

[13] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing: Algorithms

for the Visualization of Graphs. An Alan R. Apt Book. Prentice Hall, Upper Saddle
River, NJ, 1999.

[14] J. Nesetril. Art of graph drawing and art. Journal of Graph Algorithms and Appli-

cations, 6(1):131–147, 2002.

[15] G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaffer, editor,
Proceedings of the International Conference on Genetic Algorithms, San Mateo (CA),
1989. Morgan Kaufmann Publishers.

14 Dana Vrajitoru and Jason DeBoni

[16] R. Tamassia. Constraints in graph drawing algorithms. Constraints, 3(1):87–120,
1998.

[17] D. Vrajitoru. Genetic programming operators applied to genetic algorithms. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference, pages 686–693,
Orlando (FL), 1999. Morgan Kaufmann Publishers.

Dana Vrajitoru
Intelligent Systems Laboratory
Indiana University South Bend
Computer and Information Sciences
South Bend, IN, USA
e-mail: danav@cs.iusb.edu

Jason DeBoni
Intelligent Systems Laboratory
Indiana University South Bend
Computer and Information Sciences
South Bend, IN, USA
e-mail: wanderung@yahoo.com

