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Abstract

Evolution in the context of genetic algorithms is driven
by the fitness function. For some applications, this factor
is not easy to compute and coevolution represents an alter-
nate solution. Thus, competition between individuals in the
population can be used as a performance measure instead
of an objective function, when the nature of the problem al-
lows it. In this paper we explore the impact of such a choice
on the overall performance of the solutions, as compared
to the classic approach. We apply this model to a problem
of configuring a multi-agent autonomous pilot for motorcy-
cles.

1 Introduction

Generally, coevolution [5] describes evolutionary mod-
els where the performance of any individual or candidate
solution depends on other individuals in the population.
There are two possible forms of coevolution: competitive,
where individuals are tested against each other [10], and co-
operative, where individuals must collaborate to solve the
problem [12]. The competition/collaboration can concern
individuals from the same population or from populations
evolving in parallel.

Competitive coevolution seems especially well suited for
game playing [6]. This class of problems can include any
situation where the individuals or candidate solutions can
be seen as opponents competing to achieve a mutually ex-
clusive goal. In other terms, the co-evaluation of several
individuals leads to a winner and one or more losers. The
question we are asking in this paper is, how does this kind
of evaluation compare to the evolution drive of an objective
fitness function.

In this experiment we are using a genetic algorithm to

configure a multi-agent probabilistic pilot for single track
vehicles (STV) like motorcycles. The application aims to
control the vehicle in a non-deterministic way inspired from
the behavior of a human driver and using similar perceptual
information to make decisions.

The genetic algorithms (GAs) and other evolutionary ap-
proaches have been successfully been applied to related
areas such as path-find for robots [3] and scheduling [1].
Several approaches have applied multi-agent models to the
simulation of autonomous drivers [8] and our application is
based on the model presented in [13].

Most of the research on autonomous pilots is directed
toward piloting aircrafts [7], and cars [9]. Our approach
targets motorcycles which have not yet been studied as ex-
tensively as the other types of vehicles and which represent
a more challenging modeling problem.

2 Competitive Coevolution

Competitive coevolution is usually employed as an alter-
native to an objective fitness function and consists in play-
ing two or more potential solutions against each other, re-
sulting in a winner and a loser. The competing solutions of-
ten belong to parallel populations, but that may not always
be the case.

More precisely, problems like game playing and strategy
involve opponents competing to achieve a mutually exclu-
sive goal that can only be reached by one of them. In the
example of a predatory-prey scheme [10], two populations
evolve separate strategies that approach the problem from
a different perspective. In the case of a backgammon or
soccer strategy, the competing solutions need not belong to
different populations and a different competing scheme is
necessary.

In the case of individuals competing within the same
population, one possible evaluation approach is the Sin-



gle Elimination Tournament [2] inspired from real sportive
events. A tournament pairs the opponents in each round,
runs them against each other, then promotes the winners to
the next round. Thus, the game takes the shape of a tree
with a global winner as the root. Such a scheme has the dis-
advantage of possibly eliminating a good solution early on,
which is an issue that real sportive tournaments address by
not pairing the teams in an entirely random fashion. Strong
teams are prevented from playing against each other in early
stages of the game based on a performance estimation from
previous games.

In our study we employed the K-Random Opponents
strategy [11]. According to this method, each individual
in the population has a chance to compete against a chosen
number of opponents defined by the parameter k. Thus, to
evaluate an individual, we select k random opponents and
run a match against each of them, incrementing the score of
the winner every time.

In our situation the problem to be solved is driving a mo-
torcycle over a circuit without stranding, crashing, and as
fast as possible. In the competitive setting, two pilots drive
their vehicles simultaneously over the circuit. If one of them
is stranded outside of the circuit or crashes by losing bal-
ance, then the opponent is declared a winner. If none of the
pilots ends the run in a failure, then the pilot finishing the
circuit the first is the winner.

The main question we ask in this paper is how effective
is such an evaluation as compared to an objective individ-
ual fitness function. In our case, the objective performance
can be measured by running the pilot alone over the circuit
in the same conditions. In case of a failure by crashing or
stranding out of the circuit, the fitness is measured as the
percentage of the circuit that was covered before the crash.
In the case where the pilot finishes the circuit successfully, a
component is added to the fitness favoring a faster comple-
tion of the circuit. More details are provided in Section 4.

To enable the comparison, the pilot is evolved both using
uniquely the objective fitness function and using the com-
petitive evaluation. In the latter situation, at the end of each
run of the GA we evaluate the best solution evolved com-
petitively using an objective function so that we have a com-
mon ground for the comparison.

3 Physical Model of the Motorcycle and Au-
tonomous Pilot

The physical model of the motorcycle has been more ex-
tensively described in [13] and is close to [4]. The motor-
cycle or STV, is modeled as a system composed of several
elements with various degrees of freedom that can be driven
through several control units. Figure 1 shows the compo-
nents of the physical model for a motorcycle.
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Figure 1. A motorcycle with control units and
degrees of freedom

An STV is a non-holonomic dynamic system with six
degrees of freedom: the rotation of the wheels around an
axis parallel to Oz, the rotation of the handlebar and of the
front wheel around the fork axis (steering), the front and
back translation along the suspension axis, and the rotation
of the whole vehicle around the Ox axis in a system of co-
ordinates relative to the motorcycle where the origin is in
the center of the vehicle, on the ground level. The driver
can control the vehicle through five inputs: the handlebar
steering, leaning the vehicle laterally, the throttle, and the
two brakes, front and back.

The STV is modeled as a reduced state system of contin-
uous variables. The generalized coordinates of the vehicle
at a particular moment are given by

q = (s,α ,θ )T (1)

where s(t) = (x(t),z(t)) represents the spatial position of
the STV, α the leaning angle, and θ the orientation angle
determining the direction of movement d = (cosθ ,sinθ ).

The vertical component of both s and d is determined
by the altitude and by the slope of the road considering the
current position and orientation of the vehicle. In this paper
we consider the road to be close enough to the sea level
such that the gravitational acceleration is the constant g =
9.8 m/s2. Let σ(s,d) be the angle made by the contact line
of the vehicle with the horizontal plane (x,z).

The driver’s input into the system is defined by the tuple
u = (τ ,β f ,βr,φ ,α) where τ is the component of the accel-
eration tangent to the direction of movement d and β f ,βr
represent the front and rear brakes respectively.

Let v = s′ be the momentary speed or velocity in the di-
rection of movement, and a = v′ = s′′ the momentary ac-
celeration in the direction of movement. We modeled the
motion of the vehicle using Newtonian mechanics. The po-
sition and velocity of the vehicle at t +∆t are defined by

s(t +∆t) = s(t)+∆s,v(t +∆t) = v(t)+∆v (2)

where:

∆s = d
(

v ·∆t +a
∆t2

2

)

, ∆v = a ·∆t (3)



The acceleration is defined by the gravity, the friction,
the drag, and the throttle. The brakes do not act as a sim-
ple negative acceleration, but contribute to the friction force
instead.

3.1 The Autonomous Pilot

In this section we present the multi-agent autonomous
pilot for our motorcycle and the perceptual information it
uses.

The autonomous pilot uses perceptual information to
make decisions about the vehicle driving. This informa-
tion is inspired from the perceptual cues that a human driver
would also be paying attention to while driving a vehicle.
In our application, the pilot is aware of the following mea-
sures:

The visible front distance, denoted by f ront, defined as
the distance to the border of the road from the current po-
sition in the direction of movement, scaled by the length of
the vehicle, or horizon.

The front probes, denoted by f rontl and f rontr, are de-
fined as the distances to the border of the road from the
current position of the vehicle in directions rotated left and
right by a small angle from the direction of movement.

The lateral distances, denoted by le f td and rightd, are
measures of the lateral distance from the vehicle to the bor-
der of the road, at a short distance ahead of the vehicle,
simulating what the pilot might be aware of without turning
their head to look.

The slope is a perceptual version of σ , discretized to
simulate the intuitive notion of road inclination that a hu-
man driver would have, approximated by the values almost
flat, slightly inclined up or down, or highly inclined up or
down. This simulates the fact that a human pilot is not aware
of the precise value of σ .

Figure 2 shows an example of the geometrical definition
of these measures.

Figure 2. Perceptual information used by the
autonomous pilot

The motorcycle is driven by several control units (CUs).
Each of them is controlled by an independent agent with
a probabilistic behavior. The agents are not active during
the computation of each new frame simulating the evolution
of the vehicle on the road, but only once in a while in a

non-deterministic manner. This simulates the behavior or a
human driver that may not be able to respond instantly to
the road situation and requires some reaction time.

The current control units focus on the gas (throttle), the
brakes, the handlebar/leaning. Each of these CUs is inde-
pendently adjusted by an agent whose behavior is intended
to drive the motorcycle safely in the middle of the road at
a speed close to a given limit. In our case, the agents con-
trolling the throttle and the handlebar are in general more
active than the agent controlling the brakes.

The agents behave based on a set of equations relating
the road conditions to action. The full set of equations is
described in [13]. Here we will briefly describe each of
the agents. The equations comprise a fair number of coeffi-
cients and thresholds. The configuration of each agent uses
independent values for the coefficients.

The Throttle. This agent controls the amount of gas
supplied to the engine and thus the speed of the vehicle.

The agent uses a minimal speed threshold vlow, a maxi-
mal speed threshold over which the speed is considered un-
safe, and the given speed limit vlimit . The agent aims to
keep the vehicle speed above vlow and below the maximal
one, and also close below the vlimit .

The agent detects a turn in the road by testing le f td and
rightd and if needed, cuts the gas to allow for a safe turn.
A similar rule is applied to the visible distance in front of
the driver: a low value for f ront indicates an unsafe road
situation requiring a reduced speed. In any other situation it
attempts to keep the speed close to vlimit .

The Brakes. The agent controlling the brakes presents a
similar behavior to the throttle agent but can only decrease
the speed. This agent acts when a more dramatic change is
necessary.

The Steering / Leaning Agent. The motorcycle can
achieve a change in direction either by steering using the
handlebar, or by leaning. The autonomous pilot has been
tested under three conditions: when the motorcycle is
driven entirely by steering, when the motorcycle is driven
entirely by leaning, and a combined strategy, consisting of
steering at low speed (bellow a threshold) and leaning at a
speed above the threshold. This emulates the general strat-
egy employed by human drivers.

Alerting Agent. Beside all the agents that are in direct
control of the motorcycle, the pilot comprises a fourth agent
that does not perform any action on the vehicle. While the
other agents are active only occasionally, this agent is prob-
ing the vehicle and road conditions for every new frame and
is capable of activating one of the other agents if the situa-
tion requires special attention. Such situations include the
speed of the vehicle being too high or too low, or the visible
front distance being too short.



4 Pilot Configuration by Genetic Algorithms

All of the agents composing the autonomous pilot are
governed by equations comprising a set of thresholds and
constants that can be configured to adjust its behavior and
optimize its performance.

To apply the GAs to this problem, we chose a representa-
tion where each configurable coefficient is assigned 10 bi-
nary genes, and the chromosome results by concatenating
all of the coefficients. Thus, we worked with 32 coeffi-
cients for the leaning and steering modes, and with 36 for
the combined mode, which means that the chromosome is
of a length of 320 and 360 respectively.

We used the one-point crossover for our experiments
with a probability of 0.8 and a probability of mutation of
0.01. We employed an elitist reproduction preserving the
best individual from each generation to the next.

A chromosome is evaluated by running the motorcycle
in a non-graphical environment once with the pilot config-
ured based on values obtained by decoding the chromosome
over a test circuit presenting various turning and slope chal-
lenges. To compute the objective fitness we marked 50 ref-
erence points on the road and counted how many of them
were almost touched by the motorcycle. The fitness is com-
puted as follows:

F(x) =

{

dm
dt

+ 1
1+tm

if the circuit was completed
dm
dt

+ 1
5+tm

if the circuit was not completed
(4)

where dm is the number of points crossed by the motorcy-
cle, dt is the total number of points, and tm is the total time
taken until either the circuit was completed, or until a failure
condition was detected.

Thus the objective fitness reflects both how much of the
circuit the motorcycle completed, and how fast it was capa-
ble of finishing the track. In general, a fitness higher than 1
is an indication of completion of the circuit.

A failed circuit can be caused by one of the following
three situations: a crash due to a high leaning angle, an exit
from the road with no immediate recovery, or crossing the
starting line without having reached all the marks, as when
the vehicle takes a turn of 180 degrees and continues back-
ward.

To compute the competitive fitness, we initialize the
score of each individual to 1, such that none of them
will have a probability of 0 to be selected by the fitness-
proportionate scheme. After each match of the k-random
opponents competition, the score of the winning pilot is in-
creased by 1. The final score counts as the individual’s fit-
ness value.

Table 1. Average competitive fitness in 100
generations

k Steer Lean Combined

2 5.24 5.27 5.26

5 9.55 9.59 9.53

10 12.91 15.41 15.27

4.1 Experiments

We performed 100 runs of the GAs for each of the pi-
loting modes, steering, leaning, and combined. Separate
experiments were done using uniquely the objective fitness,
and the competitive fitness for three values of k. At the end
of each competitive run we evaluated the best individual in
the population with the objective fitness. The population
size was of 20 in all cases and we limited the evolution to
500 generations. These parameters are justified by the high
cost of the fitness evaluation which requires from a few sec-
onds to a few minutes.

For each experiment we selected the best pilot evolved
from the trials and performed 100 runs over the circuit in
a full graphical environment. These experiments give us
a better appreciation of how the pilots evolved using each
model compared over a greater number of probabilistic tri-
als. We also compare these results with the performance of
the human players as reported in [13] and presented in Table
3.

The statistics we considered as measures of performance
are the total time to complete the circuit, the average and
maximal speed, the total distance covered by the pilot which
is an indication of how efficiently the circuit was completed,
and the lateral balance. The latter takes values between 0
and 1, 0 indicating the center of the road, 1 the extreme bor-
ders of the road, and lower values showing a better behavior.
The last row shows the percentage of completed circuits in
each case.

Table 1 presents the average performance of the best in-
dividual in the last generation according to the competitive
evaluation for the three values of the parameter k that we
used. Table 2 presents the average objective evaluation of
the best individual in the last generation for the same exper-
iments. The row denoted by ObjEv represents the experi-
ments where we used the objective evaluation exclusively
without a competitive component. In general, values of the
objective fitness higher than 1 signify completed circuits.

From Table 2 we can notice a big difference in perfor-
mance between the three modes, using steering, leaning, or
a combination, as well as between the competitive evolution
and the objective fitness evolution. We performed a T-Test



Table 2. Average objective fitness in 100 gen-
erations

k Steer Lean Combined

2 0.970348 0.921057 0.930663

5 0.979599 0.926643 0.933911

10 1.10882 0.930716 0.928135

ObjEv 1.90845 0.943309 1.00504

Table 3. Performance of the human players

Human 1 Human 2

Total time 97.4 79.2

Total distance 2312.05 2316.83

Average speed 6.19 8.94

Maximum speed 8.75 12.26

Lateral balance 0.29 0.36

Completed circuits 100% 100%

to determine which of these results were significantly dif-
ferent from the ones in the row above, marked in bold, and
from the next best result on the same row, marked in italics.
For example, the result for steering more, k = 10 is signif-
icantly better than both the steering mode where k = 5 and
than the leaning mode for k = 10.

We can note that all results from the objective evolution
are significantly better than the ones obtained by competi-
tive evolution. Also, the steering mode systematically pro-
duces better results than the two other modes.

Tables 4 and 5 show the performance of the pilot con-
figured based on the parameters derived by the GA, for the
completed and incomplete circuits respectively. In the com-
petitive mode we selected the pilot showing the best ob-
jective fitness among all the trials, which in all cases was
achieved for k = 10.

These statistics show some interesting facts. In the steer-
ing mode, the best competitive pilot performs better than the
best pilot evolved with an objective fitness, even though the
objective evolution showed a better average performance.
It completes the circuit successfully significantly faster, but
it also fails to complete the circuit 5% of the time due to
stranding out of the track for too long. It seems that the
competitive evolution generates a more efficient but also
more reckless road behavior.

In the leaning and combined modes, the best competitive
pilots also drive faster than the ones evolved by an objective
fitness. In these cases the behavior is not profitable because

Table 4. Results of the GA configured pilot,
completed circuits

Steer Lean Combined

Objective fitness

Total time 47.49 107.333

Total distance 2295.41 2359.51

Speed 2.08982 0.990959

Max speed 3.1264 2.19597

Lateral balance 0.36593 0.296454

Completed circuits 100% 0% 3%

Competitive evolution

Total time 19.7895

Total distance 2495.61

Speed 5.49419

Max speed 8.19704

Lateral balance 0.38513

Completed circuits 95% 0% 0%

the pilot leans too far and crashes for all of the circuits. No-
tice that in the combined mode, the objectively evolved pilot
could complete the circuit 3 times using a much lower speed
than its competitive colleagues.

Overall the performance of the pilots in the steering
mode is close to that of the human players, and the com-
petitive pilot is even more efficient than the human players.
This means that the program can be used to provide chal-
lenging opponents to a human player in a competitive game
scenario.

5 Conclusions

In this paper we presented a comparison of an evolution
through genetic algorithms using an objective fitness with a
competitive coevolution based on the k-random opponents
model, as described in Section 2. Both of these schemes
were applied to configure a multi-agent autonomous pilot
for motorcycles, described in Section 3.

Our experiments presented in Section 4 show that the pi-
lot evolved through a competitive scheme can outperform
the one evolved with an objective fitness based on some cri-
teria such as the average speed and the time efficiency in
completing the circuit. The objectively evolved pilots on
the other hand show a higher robustness and are capable of
completing the circuit more often.



Table 5. Results of the GA configured pilot,
incomplete circuits

Steer Lean Combined

Objective fitness

Total time 4.33 27.6289

Total distance 126.825 661.058

Speed 1.01564 0.946201

Max speed 3.09039 1.76654

Lateral balance 0.55627 0.35331

Incomplete circuits 0% 100% 97%

Competitive evolution

Total time 24 1.7 1.48

Total distance 3717.95 121.76 131.69

Speed 3.36772 2.54087 3.52169

Max speed 4.92465 4.91532 6.83542

Lateral balance 0.290996 0.461192 0.384132

Incomplete circuits 5% 100% 100%

The difference in performance between the two schemes
can be explained by the features of the pilots that are re-
warded by each evaluation method. The competitive fitness
encourages faster pilots that can finish the circuits before
their peers, while the objective evaluation encourages the
completion of the circuit more than how fast it is done.

Both of these schemes produce pilots that can represent a
real challenge to a human player. They can be used to gen-
erate a variety of autonomous opponents in a multi-player
situation and enhance the playing experience for a human
user.
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