
NPCs and Chatterbots with Personality and Emotional Response

Dana Vrajitoru
Intelligent Systems Laboratory, Computer and Information Sciences

Indiana University South Bend
danav@cs.iusb.edu

Abstract— Chatterbots are computer programs that simulate
intelligent conversation. They are situated between games and
toys, as their aim is mostly to be entertaining, but the user
doesn’t have to follow precise rules when playing with the
program. Currently business and educational applications have
started to emerge as a further development of the idea of
intelligent dialog. For the game industry, they come close to
the concept of NPC, or Non-Player Character, and they may
become part of making such virtual beings more believable
and life-like in the future. In this paper we present application
introducing an emotional component designed to enhance the
realism of the conversation.

Keywords: Intelligent NPCs

I. INTRODUCTION

NPCs or non-player characters are an important aspect
of games, especially in the role playing category. Their
functionality is to add to the game content by providing
access to the backstory, assigning and rewarding quests, and
generally, offering information about the game to the player.
Their conversation skills are relatively limited and are in
general scripted, and context-based.

There are several foreseeable developments for NPCs, and
one of them consists in expanding their dialog capabilities.
It is likely that in the future, NPCs will merge with some of
the functionality currently present in chatterbots.

Chatterbots are computer programs that simulate intelli-
gent conversation. The typical execution involves an input
from the user in natural language to which the program
provides an answer that should be a reasonable and possibly
intelligent response to the original sentence. The process is
repeated while the human keeps the conversation going.

The very first chatterbot, named Eliza [1], simulated a
Rogerian psychotherapist. The idea was simple and consisted
in a pattern matching algorithm and sentence reconstruction
following templates, with no in-depth knowledge or pro-
cessing of the natural language. The program proved to be
amazingly efficient in sustaining people’s attention during
the conversation and the success of the original program has
influenced the development of many others.

Using similar ideas, Colby from the Stanford AI Lab
developed Parry, the paranoid, in 1971. Parry is the opposite
of Eliza as it simulates a patient and has been intended as a
study of the nature of paranoia and is capable of expressing
beliefs, fears, and anxieties [2], [3]. Among the famous
chatterbots we can mention Racter, a story-teller, [4] by
W. Chamberlain and T. Etter, the stated author of the book
The Policeman’s Beard Was Half Constructed. However, the
authenticity of the book has been questioned since then [5].

Another chatterbot worth mentioning is A.L.I.C.E, Arti-
ficial Linguistic Internet Computer Entity (www.alice.org),
that has its own development language called AIML (artifi-
cial intelligence markup language) and earned the Loebner
Prize, based on the Turing Test [6], in 2000 and 2001.

Among recent developments are the virtual agents that can
provide online help and customer service by incorporating
knowledge about the company (www.egain.com). Some of
the recent research also focuses on a definition of config-
urable personality for virtual characters [7], [8]. Some studies
have also been conducted on the behavior of the human
participants in the interaction with the chatterbots [9], [10].

The goal of the chatterbots we implemented is to simulate
particular personalities, either fictional or real, mostly taken
from literature, film, or television shows. This mostly applies
to NPCs in adventure games inspired from an external
story source, like the Lord of the Rings. We typically start
from a database of sentences that can be attributed to the
personality to be simulated, as for example, the text of the
book or their lines from a script. The first prototypes can
be found online (http://www.cs.iusb.edu/˜danav/chatterbots/).
An integrated 3D environment for the chatterbot is currently
under development.

The current chatterbot model represents an extension of
[11]. In our primary model, we construct an answer to the
human’s input by a probabilistic choice between pattern
matching and templates, sentence keyword retrieval based
on automatic indexing, and database matching based on
a personality-specific database. Several of the chatterbot
construction operations have been automated, but a large
human contribution is still necessary. The newest aspect
of our program is represented by the emotional component
designed to enhance the credibility of the character.

The emotional response in an essential component of
any believable character [12], [13], [14]. The importance of
this aspect has been recognized in the artificial intelligence
community and several studies focused on it [15]. Among
the possible applications of emotional agents and virtual
characters we can cite teaching and tutoring [16], [17].

The paper is structured the following way. The second
section presents the outline of the chatterbot program. The
third section discusses the general chatterbot techniques we
implemented. The fourth section introduces the personal-
ity database and emotional component of the program. A
following section presents some experimental results and
compares them with out previous work. The paper ends with
conclusions.



II. THE VIRTUAL CHARACTER

The chatterbot algorithm consists in a loop reading an
input from the user and generating an answer, until the user
ends the dialog by either closing the browser or typing in a
synonym of “bye”. The program will attempt to generate
an answer with a certain probability using the following
methods in this order:

1) personal features database, 90% probability,
2) pattern matching and templates, 90% probability,
3) first word question-matching, using a different set of

answers for inputs starting with “where” than for those
starting with “how” and so on, 80% probability,

4) keyword-matching in the database created by automatic
indexing, 90% probability.

5) random answer distinguishing between declarative sen-
tences and questions, 100% probability.

The probabilities expressed in the list above are condi-
tional. Thus, the pattern matching probability of 90% is
conditioned by the 10% probability that the personal feature
database will not be used, and by the event that this database
did not contain a valid answer to the user’s input. As the last
method always succeeds, a hopefully valid answer will be
returned in any case.

III. GENERAL PURPOSE CHATTERBOT TECHNIQUES

In this section we briefly introduce some of the techniques
used by chatterbots, which are pattern-matching, indexing,
and randomly matched answers. We classify these as general
purpose techniques because most chatterbots are using a
combination of them, but for the purposes of creating a
personality for the chatterbot they are insufficient.

A. Pattern Matching and Templates

The pattern matching technique consists in finding one
or several patterns that match the sentence entered by the
user. A pattern is generally defined as a sentence in natural
language in which certain parts have been replaced by wild
cards that can be matched by any group of words in a
matching sentence.

For each pattern defined in the database, a corresponding
template is utilized to generate the answer to the sentence.
The parts of the original sentence that are identified with the
wild cards are first subjected to a person transformation in
which words like “I, my, mine” become “you, your, yours”
and the other way around.

For example, a pattern in the original Eliza program can
be expressed as

I want *
in which the ’*’ character can be replaced by any sequence

of words. The corresponding template to generate the answer
can be expressed by

What would it mean to you if you got *
in which the ’*’ is replaced by the sequence of words that

was matched to the wild card in the pattern.
An application of this pattern could be the following

dialog:

User: I want to know how your program works.
Eliza: What would it mean to you if you got to know how

my program works?
Beside the list of patterns, the original Eliza program also

contained a list of sentences that can be given in answer to
sentences that cannot be matched to any of the patterns, like:

What does that suggest to you ?
Please go on.
For a virtual character, the patterns are built from the

database of character lines from the book or from the script.
They are based on the lines of any other character that
precedes the character we are developing in the dialog and
the response templates are generated from the character’s
answer in the original dialog.

Here are some examples of answers generated with the
pattern-template model. This method is still one of the best
options because it uses part of the sentence provided by the
user and thus the answer seems to have a strong connection
to it.

Input: “can you proceed without clearance?”
Answer: “we don’t need clearance. we need the 16-digit

code.”
We developed an automatic pattern-template generating

algorithm for this application that takes as input two sen-
tences, the first one belonging to any character in the original
script, and the second one belonging to the character that
the chatterbot emulates and representing an answer to the
first. Let q and a be the two sentences. The algorithm starts
by identifying a sequence of substrings of q such that each
of them is also a substring of a, but not necessarily in the
same order, as shown in Equation 2. The sequence may
not be the longest and its selection process is randomized.
The algorithm avoids selecting common substrings that are
composed of only words that are too common, like “the”.

q = q0 s0 q1 s1 . . . qn−1 sn−1 qn (1)
such that ∀i = 0, n − 1, si is a substring of a (2)

The program then generates a pattern by replacing each
si in q by a “*”, the wild card symbol that can be matched
by any substring, even empty. The corresponding template is
generated by replacing every occurrence of si in the sentence
a with a symbol representing the substring index in the
pattern, in our case denoted by ∗#i∗.

The algorithm is not yet sufficient to automatically gener-
ate the entire database of the chatterbot with no human inter-
vention. After the patterns were automatically generated, it
was necessary for a human indexer to verify their quality and
eliminate some of them. Even so, this represents a significant
improvement to the task of generating a chatterbot. Without
it, the human indexer must define all of the pattern-template
couples by hand. This process usually involves reading a
substantial amount of text looking for pieces of dialog that
can be used. The algorithm shortened the development time
for the chatterbot considerably.



B. Automatic Indexing for Chatterbots

In the classical IR approach [18], we are given a collection
of documents (ASCII text in natural language) and a query
expressed by a human in natural language. The task of the
system is to find the documents in the collection that are the
closest match to the given query.

We extended this model to the chatterbot application by
considering that each document consists of one or two
sentences associated with the character in the original script,
usually one of the character’s lines. The user’s input to the
program can be seen as the query. In our case we want to
find one particular document (sentence) that can be seen as
a good answer to the query.

Thus, in the first step, we process all sentences available in
the database by eliminating the words that are too common,
such as “a”, “is”, “for”, and removing the unnecessary
suffixes and prefixes to retain only the root of each word. For
example, “program”, “programs” and “programming” will all
be indexed under “program”. We used the Porter stemming
algorithm for this step [18].

In the next step, we build an inverted index database,
where we store a reference to all the sentences in the
database that contain any given keyword. Sometimes words
that appear in the text before the sentence being processed
can also be significant to it, so our indexing also takes
into account the context of a document. Our model follows
a Boolean indexing [19] meaning that we record only the
presence or absence of a term in an indexed sentence, with
no assumption as to its importance.

In contrast to the IR approaches where the goal is to
provide the user with a reasonable number of documents
presented in an order corresponding to their relevance to the
query, in our case the program must return a single coherent
answer to the user’s input. The retrieval process starts by
applying the same transformation to the input to extract the
keywords. Based on these, we make a probabilistic choice
of one of the stored sentences that are indexed by any of
the terms present in the user’s input. Our database is small
enough that the program does not require a more refined
retrieval system.

This approach presents certain limitations in its use for
chatterbots. The first one is that the sentences it generates
come from a static database so even if the answer is proba-
bilistic, the limit of choice may cause repetition and decrease
the life-like impression of the program. Another limitation
is that having some keywords in common with the input is
often not sufficient for a good answer. For these reasons, this
method is given a lower priority than others. It is still useful
sometimes when the user is looking for very specific type of
information.

Here is an example of a good answer generated by
indexing:

Input: “Where is Michael?”
Answer: “nikita and michael just called. they’ve got the

antibiotic and they’re on their way in.”
This next example can be described as accidentally good.

It was indexed by the word “proceed”.
Input: “can you proceed without clearance?”
Answer: “no. insufficient personnel. how do we proceed?”
Here is another example that resulted from a match of two

keywords but that doesn’t sound like it had much to do with
the input:

Input: “I need an address for the conference.”
Answer: “david zacharoff’s attached to the canadian trade

commission. he was in brussels the night rudy said he saw
him addressing a conference. there’s about 5,000 witnesses.”

Sometimes this gives the impression that the chatterbot is
either trying to change the subject, or that the answers are
somewhat “off the wall”. This method seems to be working
better when the discussion focuses on subjects related to the
character’s backstory.

In the following example, the answer resulted from an
indexing method that took into consideration the preceding
sentence that the character was answering to. The result is
that the answer seems to have nothing to do with the input:

Input: “I need advise about changing my major.”
Answer: “that’s us.”
Of all the methods used by the chatterbot, the automatic

indexing seems to generate the least coherent answers. This
doesn’t mean that the method should be completely aban-
doned, but rather limited to questions related to the game
backstory, identifiable for example by keywords specific to
certain quests, like character names and quest items.

C. Randomly Generated Answers

While writing a chatterbot, the programmer must take into
account that there are many situations in which the sentence
entered by the user can be matched neither by a pattern,
nor by any of the indexed keywords. The database usually
contains a number of answers that can be provided in such
cases. For the original Eliza, they would be things like “This
is interesting, please continue” and “Can you elaborate on
this?”.

We refined this technique to distinguish first between input
expressed as a question or as a declarative sentence. The
questions are further classified by the word they start with.
Thus, a question starting with “where” can result in an an-
swer containing a random location, while a question starting
with “who” can result in the identification or description of a
random person. There are also a number of answers that can
be provided to questions that do not start with such special
keywords, as for example, “I don’t know – yet.”

Here are some examples of answers generated this way:
Input: “Where is Michael?”
Answer: “20 degrees to the left.”
Input: “I’m bored.”
Answer: “sad.”
Input: “what are the latest news?”
Answer: “a vapor trail. whatever it is, it’s getting closer.

could be a nato plane on maneuvers?”



D. Short-Term Memory

A program generating answers to the player’s input pro-
cedurally is likely to generate the same answer for the same
question. This undermines the credibility of the chatterbot or
NPC as a live character. It is thus necessary to implement
a failsafe that prevents answer repetition, even if the player
keeps asking the same question.

In our latest model, the chatterbot keeps track of up to
5 of the answers it provides. The program stores a number
associated in the indexing with the answers and not the actual
text. This way we can prevent the chatterbot from using the
same pattern twice in a row, even if it is to generate different
sentences. Also, it prevents a sentence that was retrieved from
the keyword indexing from being returned after a pattern
has been used that was generated from the same original
sentence.

IV. CHATTERBOT PERSONALITY

In this section we present the two components of the
chatterbot personality, which are the database of personal
preferences and the emotional response.

Creating a character with personality involves several
components. In general, when it comes to an NPC with a
three dimensional body and with a face that can be seen in
detail in the program, these aspects are part of the personality,
mainly the facial expressions and body movement. The
character’s reactions are even more important, as well as
its level of friendliness, expressiveness, and the amount of
dialog provided during the communication. The emotional
aspect is also critical to a believable character and this feature
increased the realism of our chatterbot.

A big part of creating characters with specific personality
in our case if the fact that the database used for the dialog
is created from an original script or book in which that
character exists and has a distinguishable personality. One
question that can be asked is if the templates created from
the character’s original dialog will generate sentences that are
still consistent with the character. From the results presented
in the next chapter, this seems to be indeed the case.

Some studies related to authorship [20], [21] propose
statistical measures aimed to classify documents, establish
authorship, or compare two documents. Such features include
frequency of words or expressions, word ordering, use of
conjunctions, modality, comments, and so on, and can be
based on the syntax and on the semantics. Similar methods
can be used in the future to determine the consistency of the
chatterbot’s answers with the original personality it intends
to emulate.

A. Personality-Specific Database

We added a new component to the chatterbot presented
in [11] which consists in a database of personal preferences
specific to the personality represented by the chatterbot.

This database contains information ranging from the
eating and drinking preferences, to family relations
and friends. For example, our chatterbot Birky

(www.cs.iusb.edu/˜danav/chatterbots/ebirkoff) likes to
eat gummy bears and Oreo crackers, he has a brother named
Jason, and a friend called Walter.

The program is then able to detect substrings in the
user’s input like ”are you” and ”is your”, which could be
an indication that a question was asked about a personal
preference, as for example “What do you want to eat?”. The
program identifies a keyword in the sentence that indicates
the type of preference being asked for. In the example it
would be the word “eat”. A small database of synonyms is
then used to match “eat” with “food” which is the database
keyword of relevance to the question. The last step consists
in retrieving a random answer from all the entries stored
for this keyword in the database, as for example, “gummy
bears”.

The database is constructed based on the personal infer-
ence of the author on what constitutes appropriate descrip-
tions of the chatterbot’s preferences. The implementation of
this component can be extended in the future such that the
personal preferences are automatically extracted from the
original text if the chatterbot is constructed from an existing
character from literature. This constitutes a direction for
future research.

The personality-specific database also contains informa-
tion about the character’s occupation and hobbies, about all
of the persons that this character considers as friends or not,
and precise information like age and location. Some of the
question in the Loebner Prize of the past year have addressed
such issues. As part of our evaluation was based on these
questions, this part of the database generated many of the
answered that were evaluated as “good”.

As a direction of future development of this part of the
program, we would like to incorporate in an NPC knowledge
about other characters he might know from the same frame-
work, story, or game. More generally, a similar algorithm
can be used to retrieve specific information about the world
of the game or about current events, if that is considered
relevant to the NPC.

V. EMOTIONAL COMPONENT OF THE CHATTERBOT

This part of the project focuses on integrating an emotional
component in the chatterbot program to partially match the
program’s answers and enhance the user’s experience of the
dialog.

This component of the program was generated in three
steps: organizing variations of the chatterbot’s avatar, gener-
ating and organizing a list of moods that could apply to the
chatterbot, and attaching an emotional description to some
of the sentences in the chatterbot database.

We organized the tree components, avatars, moods, and
emotional descriptions, in five basic categories described
by the set {fear, anger, sadness, happiness, other}.
The fifth category includes everything that cannot be de-
scribed by one of the four emotions. These categories
were inspired from [22], where the emotions are identified
by facial expressions and are classified in six categories,
{surprise, fear, anger, sadness, disgust, happiness}.



While the original classification is more complete, we did not
find any images of the character Birky showing disgust, and
the distinction between the images showing fear and surprise
was not clear enough to create separate categories.

We selected a number of expressive images of the charac-
ter emulated by the chatterbot and organized them in the five
categories described above. The images in each class except
for the fifth one were then sorted by intensity.

For the second step we generated a list of about 100
different moods collected from mood descriptors commonly
used in online communication like blogs, message boards,
emoticons, and synonyms of the four basic categories. About
a fifth of the moods couldn’t be classified as any of the
four basic emotions and constitute the fifth category. The
moods in each class were then also sorted by intensity.
For example, the “fear” class contains moods ranging from
“uncomfortable” and “confused” to “shaken” or “terrified”.
Many of these moods reflect a combination of fear and
surprise in various degrees.

In the last step we identified the sentences in the chatter-
bot’s indexed database for which one of the four emotion
categories could apply. These sentences are identified by a
number and are used by the patterns, by the keyword-based
indexing, and to generate random answers.

The mood-generation process for any answer provided by
the chatterbot consists in three steps. First, we identify one
of the five categories that applies to the answer, either as one
of the four emotions if such an emotion could be identified
for the sentence, or the category “other” if not. Second, a
random avatar is selected from the identified category. And
last, the avatar’s index in the set of pictures is projected onto
the range of moods for the same category, and a mood is
selected within a range of 20% around the projected index.
This way we approximately match the mood with the avatar’s
expression without providing the same avatar every time for
any particular mood.

The selected avatar image is displayed, and a
caption above the picture identifies the mood of
the chatterbot. The program can be seen online at
www.cs.iusb.edu/˜danav/chatterbots/ebirkoff/.

VI. EXPERIMENTAL RESULTS

In this section we present some experimental results of our
chatterbot.

A. Previous Work

We compare the current chatterbot with and without the
emotional component with the previous work we presented
in [11]. The chatterbots discussed in that paper can be seen
online at www.cs.iusb.edu/˜danav/chatterbots/.

In the former state, our chatterbots were using pattern
matching and templates that were entirely constructed by
hand. The random answers used a distinction between
declarative inputs and question-type inputs, with no further
classification of the questions. From the various discussions
conducted with the chatterbots, the refinement of this random

component seems to represent an improvement to the quality
of the answers.

The first chatterbots were using a very limited version
of keyword indexing. We expanded this component by im-
plementing an automatic indexing process. This component
expanded the diversity of the answers, but also proved to
provide the least quality in the answers. We foresee little use
of this technique for the future, and the need for a much
more selective indexing process.

The previous paper presented an evolutionary algorithm
that allowed us to generate new sentences based on the ones
retrieved from the database and enhance the diversity of
response of the chatterbot. We did not include this component
in the latest chatterbot, but it is a possible direction for future
research. However, the automatic pattern generation and
indexing, as well as the personal preference database seem
to be better methods for expanding the space of possible
answers for the chatterbot.

B. Chatterbot Evaluation

To evaluate the new chatterbot program with and without
the emotional component, an experiment was conducted
consisting in a dialog with the chatterbot with and without
the emotional component. The discussion consisted of 50
inputs and answers for each version of the chatterbot. One
subject participated in the experiments. A different set of
input sentences was used with each version of the chatterbot,
following the thread of the discussion. The answers were
evaluated based on the following categories: reasonable an-
swers, good answers, and off topic answers, that seem to have
little or nothing to do with the input sentence. The judgments
of the chatterbot answers were made by the subject of the
experiment. Additionally, sentences that were syntactically
incorrect were also counted, as well as the answers that were
consistent with the character simulated by the chatterbot.
Similar categories were used in [11] to evaluate the answers.

Table I shows the results of this experiment and compares
the percentages in each categories with those reported in
[11]. We computed the average from the previous paper
of the percentages in each category, with and without the
contribution of the evolutionary algorithm which is denoted
by EA in the last column. From this table we remark a
substantial improvement of the quality of responses provided
by the latest chatterbot. The difference between the versions
of the program with and without the emotional component is
very small. This is due to the fact that the mood is added to
the response after the response is generated, and the answer
generation algorithm is identical in the two cases.

The results in last column, denoted by LB, were based
on the Loebner Prize (http://www.loebner.net/Prizef/loebner-
prize.html). We selected 150 questions that the referees asked
the chatterbots and the humans in 2005. Birky’s answers
to these questions were then judged based on the same
criteria as the other experiments. These results show a lower
percentage of reasonable and good answers because they
were not asked during a sustained conversation, nor were
any of them specific to this particular chatterbot.



TABLE I
EVALUATION OF THE CHATTERBOTS WITH AND WITHOUT THE

EMOTIONAL COMPONENT

plain emotional previous EA LB
Reasonable 32% 30% 40% 42.5% 31.3%
Good 48% 50% 18% 15.5% 32.7%
Off topic 20% 20% 42% 42% 32%
In character 90% 84% 75% 79% 92%
Syntactically 2% 4% 4.5% 6.5% 4%
incorrect

These experiments also provided an intuitive idea of what
the emotional component adds to the program. In general, the
chatterbot’s expressed mood enhances the dialog experience
and the impression of realism of the chatterbot. In several
cases the mood also added to the significance of the answer.
A few answers that would have been classified as “reason-
able” without the mood were classified as “good” based on
this additional information.

For example, when asked “would you like to talk about
gail?”, who is supposedly a female character in the story
that the character had a romantic connection to in the past,
Birky answered “i don’t know.” This answer can make sense
without being especially to the point in the absence of infor-
mation about the mood, which qualifies it as “reasonable”.
The mood expressed in this case was “rejected” which added
a new significance to the answer and qualified it as “good”.

The correspondence between the avatars and the mood ex-
pressed by the chatterbot was appropriate without being too
repetitive. In most cases, the expressed mood was reasonable
for the answer provided by the program.

VII. CONCLUSION

In this paper we presented a chatterbot application with an
emotional component and personality-specific database. We
are currently developing a game integrating this chatterbot
in a 3D environment as an intelligent NPC.

In the paper we first introduced the decision making
process to generate an answer. We followed with the basic
techniques used by the chatterbot, pattern matching, au-
tomatic indexing, and random sentence matching, as well
as the short term memory. The next section presented the
personality database describing personal features like food
preferences and family links, and the emotional component
that associates a mood and a corresponding avatar to every
answer returned by the chatterbot.

The results presented in the previous section are encourag-
ing. The quality of response of the chatterbot has improved
as compared to the previous models we implemented, as well
as the space of possible answers for the chatterbot. Moreover,
the emotional component adds another dimension of realism
to the program and enhances the dialog experience. The
capacity of emotional response is thus an important aspect
in creating believable virtual characters.

REFERENCES

[1] J. Weizenbaum, “Eliza - a computer program for the study of natural
language communication between man and machine,” Communica-
tions of the ACM, vol. 1, no. 9, 1966.

[2] B. Raphael, The Thinking Computer. New York: Freeman, 1976.
[3] G. Güzeldere and S. Franchi, “Dialogues with colorful personalities

of early AI,” Stanford Humanities Review, vol. 4, no. 2, 1995.
[4] W. Chamberlain, The Policeman’s Beard is Half Constructed. Warner

Books, 1984.
[5] J. Barger, “”The Policeman’s Beard” was largely prefab!” The Journal

of Computer Game Design, vol. 6, 1993.
[6] A. Turing, “Computing machinery and intelligence,” Mind, vol. 59,

no. 236, pp. 433–460, 1950.
[7] F. Barthelemy, B. Dosquet, S. Gries, and X. Magnant, “Believable

synthetic characters in a virtual emarket,” in IASTED Artificial Intel-
ligence and Applications, Innsbruck, Austria, 2004.

[8] A. Galvo, F. Barros, A. Neves, and G. Ramalho, “Persona-AIML: An
architecture for developing chatterbots with personality,” in Proceeding
of Autonomous Agents and Multi Agent Systems, Columbia University,
NY, USA, 2004.

[9] L. Saarine, Chatterbots: Crash Test Dummies of Communication.
Master Thesis, University of Arts and Design Helsinki UIAH, 2001.

[10] A. De Angeli, G. I. Johnson, and L. Coventry, “The unfriendly
user: Exploring social reactions to chatterbots,” in Proc. Int. Conf.
Affective Human Factor Design, M. G. Helander, H. M. Kalid, and
T. M. Po, Eds. Asean Academic Press, 2001, pp. 467–474. [Online].
Available: citeseer.ist.psu.edu/557029.html

[11] D. Vrajitoru and J. Ratkiewicz, “Evolutionary sentence combination
for chatterbots,” in The IASTED International Conference on Artificial
Intelligence and Applications (AIA 2004). Innsbruck, Austria: ACTA
Press, February 16-18 2004, pp. 287–292.

[12] J. Bates, “The role of emotion in believable agents,” Communications
of the ACM, vol. 37, no. 7, pp. 122–125, 1994.

[13] S. Brave and C. Nass, “Emotion in human-computer interaction,” in
The human-computer interaction handbook: fundamentals, evolving
technologies and emerging applications. Lawrence Erlbaum Asso-
ciates, Inc, 2002, pp. 81–96.

[14] N. Magnenat-Thalmann, “Creating a smart virtual personality,” Lecture
Notes in Computer Science, vol. 2773, no. 2, pp. 15 – 16, 1993.

[15] E. Oliveira and L. Sarmento, “Emotional valence-based mechanisms
and agent personality,” in Lecture Notes on Artificial Intelligence, ser.
2507, G. Bittencourt and G. Ramalho, Eds. Springer, 2002, pp. 152–
162.

[16] C. Okonkwo and J. Vassileva, “Affective pedagogical agents and user
persuasion,” in Proceedings of the 9th International Conference on
Human- Computer Interaction, C. Stephanidis, Ed., New Orleans,
2001, pp. 397–401.

[17] N. Person, A. Graesser, R. Kreuz, V. Pomeroy, and TRG, “Simulating
human tutor dialog moves in AutoTutor,” International Journal of
Artificial Intelligence in Education, vol. 12, pp. 23–39, 2001.

[18] G. Salton, Ed., The SMART Retrieval System - Experiments in Auto-
matic Document Processing. Englewood Cliffs (NJ): Prentice-Hall,
1971.

[19] G. Salton, E. Fox, and U. Wu, “Extended Boolean information
retrieval,” Communications of the ACM, vol. 26, no. 12, pp. 1022–
1036, 1983.

[20] H. v. Halteren, “Linguistic profiling for authorship recognition and
verification,” in Proceedings of the 42th Meeting of the Association
for COmputational Linguistics (ACL’04), Barcelona, Spain, 2004, pp.
199–206.

[21] C. Whitelaw and J. Patrick, “Selecting systemic features for text classi-
fication,” in Australasian Language Technology Workshop, Macquarie
University, NSW Australia, 2004, pp. 93–100.

[22] P. Eckman and V. F. Wallace, Unmasking the Face: A Guide to
Recognizing Emotions from Facial Clues. Englewood Cliffs N.J.:
Prentice-Hall, 1975.


