Evolutionary Sentence Combination for Chatterbots

Dana Vrajitoru

Computer and Information Sciences

Indiana University South Bend,
1700 Mishawaka Ave,
South Bend, IN 46634, USA
email: danav@cs.iusb.edu

ABSTRACT

Chatterbots are computer programs that simulate intelligent
conversation. They make use of various techniques such
as pattern matching, indexing, sentence reconstruction, and
even natural language processing. In this paper we present
an approach to chatterbots that mixes pattern matching with
indexing and query matching methods inspired by informa-
tion retrieval. We propose a model in which new sentences
can be produced from existing ones using an evolutionary
algorithm adapted to the structure of the natural language.

KEY WORDS
genetic algorithms, natural language processing, chatterbot

1 Introduction

Chatterbots are computer programs that simulate intelligent
conversation. The typical execution involves an input from
the user in natural language to which the program provides
an answer that should sound like a reasonable and possibly
intelligent response to the original sentence. The whole
process is repeated while the human keeps the conversation
going.

The very first chatterbot, named Eliza [18], was writ-
ten by J. Weizenbaum in 1965, and simulated a Rogerian
psychotherapist. The idea was very simple and consisted
in a pattern matching algorithm and sentence reconstruc-
tion following templates, with no in-depth knowledge or
processing of the natural language. The program proved to
be amazingly efficient in sustaining people’s attention dur-
ing the conversation and the success of the original program
has influenced the development of many others.

Using similar ideas, Colby from the Stanford AI Lab
developed Parry, the paranoid, in 1971. Parry is the oppo-
site of Eliza as it simulates a patient and has been intended
as a study of the nature of paranoia and is capable of ex-
pressing beliefs, fears, and anxieties [1], [6].

Among the famous chatterbots we can mention Racter
[4] by W. Chamberlain and T. Etter, to whom has been at-
tributed the authorship of the book The Policeman’s Beard
Was Half Constructed, and which is basically a story teller.
The authenticity of the book has been questioned since
then, however [2].

Another chatterbot worth mentioning is A.L.I.C.E,

Jacob Ratkiewicz
Computer Science
Indiana University Bloomington
Lindley Hall room 215
Bloomington, IN 47405, USA
email: jpr@cs.indiana.edu

Artificial Linguistic Internet Computer Entity [9], that has
its own development language called AIML (artificial in-
telligence markup language) and earned the Loebner Prize,
based on the Turing Test [15], in 2000 and 2001.

The most recent development are the so-called vir-
tual agents that can enhance the content of the web page
and help guide the customer [10]. Such agents incorporate
knowledge about the company owning them and are com-
petent in answering business related questions [10].

The goal of the chatterbots we have implemented is
to simulate particular personalities, either fictional or real,
mostly taken from literature, film, or television shows. We
typically start from a database of sentences that can be at-
tributed to the personality to be simulated, as for example,
the text of the book or their lines from a script. The first
prototypes can be found online [16].

In our basic model, we build the answer to the hu-
man’s input by a probabilistic choice between pattern
matching and sentence building based on templates, which
is similar to Eliza, and query matching in a set of sen-
tences indexed by keywords, inspired by information re-
trieval. Our model also keeps track of the short-term his-
tory and makes sure that the same answer is not given twice
in a row, even if the human keeps repeating their input.

In this paper we also introduce an additional compo-
nent of the system, in which we employ an evolutionary
approach to enhance the diversity of the chatterbot’s an-
swers. In this model, we start by retrieving a whole set of
sentences as potential answers to the human’s input, and
combine them to produce new sentences using a method
similar to genetic algorithms. The fitness function is based
on the similarity between the generated sentences and the
original human sentence. One sentence is chosen in the
end by a probabilistic function and is presented to the user.
This way we hope to generate new sentences that follow the
conversation style of the original character, but have not yet
been attributed to it.

The paper is structured the following way. Section 2
gives some details about the general techniques that we
have implemented for our chatterbots. Section 3 intro-
duces the general algorithm for a virtual character based
on these techniques. Section 4 introduces the evolutionary
algorithm used to generate new sentences from the ones al-
ready existing in the database. The paper ends with some

conclusions.

2 Chatterbot Techniques

In this section we briefly introduce the main techniques
used by chatterbots, which are pattern-matching and index-
ing.

2.1 Pattern Matching and Templates

The pattern matching technique consists in finding one or
several patterns that match the sentence entered by the the
user. A pattern is generally defined as a sentence in natu-
ral language in which certain parts have been replaced by
wild cards that can be matched to any group of words in a
matching sentence.

For each pattern that is defined in the database, a cor-
responding template is utilized to generate the answer to
the sentence. The parts of the original sentence that are
identified with the wild cards are first subjected to a person
transformation in which words like “I, my, mine” become
“you, your, yours” and the other way around.

For example, a pattern in the original Eliza program
can be expressed as

I'want *

in which the **’ character can be replaced by any se-
quence of words. The corresponding template to generate
the answer can be expressed by

What would it mean to you if you got *

in which the **’ is replaced by the sequence of words
that has been matched to the wild card in the pattern.

An application of this pattern could be the following
dialog:

User: I want to know how it works.

Eliza: What would it mean to you if you got to know
how it works?

The next dialog based on the same pattern is an ex-
ample of the necessity of the person transformation:

User: I want to talk to my adviser.

Eliza: What would it mean to you if you got to talk to
your adviser?

Beside the list of patterns, the original Eliza program
also contained a list of sentences that can be given in an-
swer to sentences that cannot be matched to any of the pat-
terns, like:

What does that suggest to you ?

Please go on.

For a virtual character, the patterns are built from the
database of character lines from the book or the script.
They are based on the lines of any other character that pre-
cedes the character we are developing in the dialog. and
the response templates are generated from the character’s
answer in the original dialog. For the moment, the patterns
have been chosen manually, and as future work we intend
to implement an automatic pattern and template generator.

Following the ideas in the original Eliza, our chatter-
bots also contain a list of random sentences that can be an-
swered to an affirmative-type or a question-type input from
the user.

2.2 Information Retrieval and Chatterbots

To begin the discussion about applying Information Re-
trieval (IR) techniques to chatterbots, we can remark that
there are some similarities between these two applications,
even though their goals are different.

In the classical IR approach [11], we are given a col-
lection of documents (ASCII text in natural language) and
a query expressed by a human in natural language. The task
of the system is to find the documents in the collection that
are the closest match to the given query.

We can extend this problem to the chatterbot or virtual
character applications by considering that each document
consists of one or two sentences associated with the char-
acter in the original script. In this approach, we can regard
the sentence entered by the human participant in the dialog
as being the query. This input sentence can be expressed
in either affirmative, negative, or interrogative form. In our
case we want to find one particular document (sentence)
that can be seen as a good answer to the query.

The are also some differences between IR approaches
and the chatterbots. First, in IR the goal is to provide
the user with a reasonable number of documents presented
in an order corresponding to their relevance to the query,
while for the virtual character model we only need one at
a time that can be interpreted by the user as a coherent an-
swer to his input. Second, while in IR we hope that all
of the terms in the query will be present in the retrieved
documents, the definition of a coherent answer for chatter-
bots is much more general and subjective. The response
may be satisfactory from the point of view of the human
participant even if it doesn’t contain any of the terms from
the input sentence (query). We can assume, however, that
the presence of some of these terms in the returned phrase
would increase the user’s perception of it as an intelligent
answer.

The common ground between the two models sug-
gests that we can use some of the methods developed in IR
to improve our system, like the automatic indexing, query
matching and classification of the retrieved documents ac-
cording to their relevance to the query. These techniques
are especially useful when we have access to of a large
number of sentences that can be associated with the char-
acter we intend to simulate. For example, if we start from
a given character taken from a book, movie, or television
show, that initial collection of sentences would be the tran-
script of all the parts in the book or script that constitute the
character’s lines or contribution to the dialog.

The first IR method that we can apply to chatterbots
is the indexing of documents - sentences by keywords that
represent significant words figuring in the text of the doc-
uments. In the current implementation of our chatterbots,

we have used a manual indexing, and an automatic one is
under development.

The automatic indexing starts by removing all of the
common words from each document, such as “a”, “is”,
“for”. This part must be adapted to the chatterbot approach
in the sense that some words that are considered insignifi-
cant in IR, can be very meaningful in a dialog, like “you”,
“because”, etc. The automatic indexing system we are de-
veloping utilizes two lists of stop words, some of them that
define the semantics of the sentence and thus must be taken
into consideration in a particular way, and others that can
simply be ignored.

The second step in automatic indexing is to remove
all the unnecessary suffixes, like the plural “s”, the “ing”
from the continuous form of verbs, etc. This step insures
that words from the same family, like “drive”, “driving”,
“driver”, will be indexed as a single keyword.

In the third step, the system creates an index of the
collection of documents based on the resulting terms. In
general, each term is assigned a weight based on its fre-
quency in the document as well as in the entire collection.
This is known as the vector space model [11]. Given the
reduced length of our documents, a Boolean indexing [12]
is appropriate. In other words, we record only the pres-
ence or absence of a term in an indexed sentence, with no
assumption as to its importance.

In our model, the documents (sentences) are indexed
not only by terms occurring in them, but also by some of
their synonyms. Sometimes words that appear in the text
before the sentence being processed can also be significant
to it, so our indexing also takes into account the context of
a document.

The second technique from IR that we can apply
to the virtual character is the automatic document-query
matching and document retrieval. For this, we can consider
the sentence entered by the user as the query.

In the classical IR approach, the query is processed
the same way as the documents, meaning that all of the
common words are removed as well as the suffixes, and the
remaining terms are indexed based on their frequency. In
our model, we also have to take into account the two stops
lists for this phase.

In the retrieval process, the system selects all of the
documents (sentences) that contain at least one of the terms
in the query (the user’s input) and ranks them according to
the number of terms in common with the query. In IR, the
system will return all of the documents matching the query
in the order of their similarity to the query. In our case,
we select only one of the matching sentences based on a
probabilistic function.

This approach increases the efficiency of the chatter-
bot and organizes the knowledge included in the program in
a way that can also be extended to other applications. The
limitation of the system is that it cannot generate sentences
that did not exist in the original database and this reduces
the potential diversity of the answers.

The collection of sentences is given in the beginning

and each of them is recorded in its initial form. If the col-
lection is big enough, this may be sufficient for a one-time
conversation, but a recurrent user of the system may find it
repetitive. More sentences can be added to the collection
at a later point, if this seems necessary, but once a sentence
has been indexed, it cannot change. Thus, a person know-
ing very well the initial character can get the impression
that the virtual character is only repeating word by word,
sentences that were already present in the original script.

A combination of this technique and the pattern-
matching with template answers is a partial solution to the
problem, and this is the actual state of our online chatter-
bots [16]. The approach that we introduce in this paper is
to add a third technique that can dynamically generate new
sentences and eventually add them to the database, and this
is the evolutionary computation model that we present in
Section 4.

3 The Virtual Character

The chatterbot algorithm can generally be described by the
following pseudocode:

while (true) {
Read (input) ;
output = Make_answer (input) ;
Write (output);

}

The Make_answer function processes the sentence
from the user and generates an answer based on the fol-
lowing rules:

It starts by looking for a pattern with a given proba-
bility (for example, 90%).

If several patterns match the input, it selects one of
them randomly and generates the answer based on the tem-
plate associated to it.

If the previous step has been unsuccessful, it looks
for a sentence indexed by any of the terms present in the
input sentence. Another probability is associated with this
second step (90% again).

If the answer could not be generated from the previ-
ous steps, it selects it from a list of random answers. The
case where the input sentence was formulated as a question
is treated separately in this step.

3.1 Short-term Memory

As arequirement of a seemingly intelligent conversation, a
chatterbot should include some implementation of a short-
term memory that prevents it from repeating what it is say-
ing, even if the human keeps feeding it the same input sen-
tence.

In our current model, the chatterbot keeps track of the
latest sentence that has been generated and keeps calling

the Make_answer function until the new sentence is differ-
ent from the last one. We intend to extend this memory
to include the latest pattern that has been used, instead of
simply the resulting sentence, and also to go a few steps
back.

The short-term memory of a chatterbot can also serve
to create a certain coherence in the conversation. As a fu-
ture work, we intend to keep track of a general context of
the conversation containing a given number of terms that
have been used in the dialog and include them in the search
for a new answer. This way, the chatterbot would not only
be conversing on the current topic, but also on topics that
have been mentioned a few sentences back.

4 Evolutionary Algorithm for Sentence Gen-
eration

In this section we introduce an evolutionary algorithm that
allows us to generate new sentences based on the ones re-
trieved from the database and enhance the diversity of re-
sponse of the chatterbot.

Evolutionary computation is not a very common
method for natural language processing. Some application
of the genetic algorithms to this field include adaptive word
segmentation [8], grammar learning [3], linguistic classifi-
cation [13], and information retrieval [5], [17].

4.1 Our Model

The combination of the previous methods may seem
enough to generate interesting and diverse conversations
with a human opponent. We would still like the system
to be able to learn new sentences during the conversation
and possibly grow the database according to some feed-
back from the user.

Our idea is to use a form of genetic algorithms (GAs)
[7] to build new sentences based on the ones that were al-
ready present in the database.

The GAs start with a usually random initial popula-
tion of potential solutions to the problem (individuals) and
attempt to build better ones by recombination and muta-
tion operators. Each individual is evaluated to estimate its
fitness to the problem being solved. The chances that a par-
ticular individual is chosen for reproduction depend on this
evaluation.

In our case, the initial population consists of the sen-
tences retrieved by the system as potential answers to the
input sentence from the user. The fitness function is com-
puted as the number of terms that the sentence has in com-
mon with the query (input). We have used the crossover
operator to generate new individuals exclusively, leaving
out the mutation operation.

The difficult part in the algorithm is representing a
sentence expressed in natural language as a genetic individ-
ual, defining the genes and the building blocks, and choos-
ing the crossover form. The challenge is to recombine two

sentences and create new ones that are still making sense
with a relatively simple algorithm not requiring a complex
natural language parser.

Our idea was to use what we call the largest common
pattern to convert two sentences into a genetic representa-
tion such that we can apply a crossover operator to them.

Definition. Let s and ¢ be two sentences in natural
language. The largest common pattern of s and ¢, denoted
by LCP(s,t) is the longest sequence of words or groups
of words

LCP(87t) = (p17 b2, ---, Pn)

such that eithern = landp; = 0,0rVi, 1 <i < n, p; #
(), and that the two sentences can be expressed as

§=S89pP1S1LP2S52 ---
t:t0p1t1p2t2

Sn—1 Pn Sn
tn—l Dn tn

In this definition, we consider a word to be any string com-
posed of alphabetic characters that is delimited by spaces or
punctuation characters such as commas, semicolons, and so
on. We are looking for the longest pattern in terms of the
largest number of characters in the union of py, ..., pp,
and not of the largest possible n. The substrings s; and ¢;,
0 <4 < n, can even be empty.

To determine the largest common pattern between two
sequences of words we can use an algorithm that is similar
to the method for determining the distance between two
strings, in which we replace each character by a word. Let
sy and t, be the very first two words in the sentences s
and t. Then we can define LCP(s, t) recursively in the
following way:

$x U LCP(s\54, t\tx), if 85 = ty,
LCP(s\sx, t),
) max< LCP(s, t\ty), if 8, # ts,
LCP(s, 1) = LCP(s\s,, £\ts),
0, ifs=10,
0, ift =0

In this formula, we have denoted by s\ s, and ¢\t the sen-
tences that we obtain by removing the first word from s and
t respectively.

The meaning of the first line in the formula is that the
LCP between two sentences starting with the same word
contains that word plus the largest common pattern be-
tween the remaining of both sentences. The second line
means that if the first two words are different, then the LCP
can be computed as the maximum between the largest com-
mon pattern obtained by ignoring the first word either in the
first sentence, or in the second sentence, or in both. The last
two lines mean that the recursive algorithm stops when any
of the two sentences is empty.

As soon as we have determined the LC'P of the two
sentences, we can define their genetic representation to be
the complement vector of the LC P in each sentence. Thus,
if we denote by Ind, and Ind; the individuals representing

each of these sentences, we can define them by the follow-
ing:

y Sn—1, Sn)

) tn—17 tn)

The genes in these individuals represent the words or
groups of words that are different in the sentences and that
are situated between each two common words or groups of
words composing the LC'P. Note that the genetic repre-
sentation of each sentence depends on the second sentence
that is compared to it and changes from one crossover op-
eration to the next.

Since in this model the two sentences have the same
number of genes, we can apply any of the classical
crossover operators. We have chosen the uniform crossover
[14]. This operator exchanges the corresponding genes in
the two individuals for each position independently with a
swap probability of 0.5 in our case. In this particular case,
each pair of genes (s;, t;), where 0 < i < n, can be inde-
pendently swapped.

After the swapping step, the child sentences are gen-
erated by reinserting the words or group of words from the
LCP in the resulting individuals in the same places they
were in the initial sentences.

In our model, the crossover can only be applied to
sentences with the same final punctuation mark. Thus, a
question can only be combined with another question and
the same rule applies to affirmative sentences.

In this model, the genetic representation of the
sentences has to be created and disassembled for each
crossover operation, which is more time consuming than
for the classical GAs where the representation of a partic-
ular solution to the problem is unique. On the other hand,
this application doesn’t require generating a large number
of new individuals. The entire operation of genetic evolu-
tion is also limited by the time the user is willing to wait
for the system to reply.

The entire process of generating new sentences for a
particular query follows an evolutionary algorithm in which
the new sentences are added to the existing ones and the
process continues up to a given population size. We have
chosen this model because of the limited number of indi-
viduals available to begin with, and because the coherence
of the sentences may decrease with the number of genera-
tions, so that the original individuals can still be useful.

Once a given number of new individuals have been
generated, one of them is chosen by a random process fa-
voring the sentences of high fitness, and is presented to the
user as the answer. This phase is still in experimentation
and hasn’t yet been included in our online chatterbots.

Inds = (so, 1, 82 ...
Indt = (t(), t1, tg,

4.2 Example

For a better understanding of our algorithm, suppose that
we have the following sentences that we want to recombine
using the LCP-based crossover.

s = You don’t have all the information.

t = We have a situation that requires all of the re-
sources.

The first step is to compute the LCP between the two
sentences:

LCP(s,t) = (have, all, the)
Thus, the two individuals are

Inds; = (You don't, 0, 0, information)
Ind; = (We, a situation that requires, of,
resources)

Each of these individuals contains 4 genes. The uni-
form crossover operator can choose to swap each of them
independently with a probability of 50%. Supposing that
the decision is made to swap the first and the fourth gene,
we obtain the following individuals:

child; = (We, 0, 0, resources)
childs = (You don't, a situation that requires, of,
in formation)

By merging these individuals with the LCP of the
original sentences, we obtain the following new sentences

We have all the resources.

You don’t have a situation that requires all of the in-
formation.

We can see that both of these sentences are correct
from a syntactic point of view, and they are similar enough
to the original ones that they can still be attributed to the
same author or character.

Not any recombination of sentences turns out into co-
herent English phrases. For example, a possible recombi-
nation of the following sentences: Is this what you walked
in here for? and What makes you think that? would result
in the following questions that are not syntactically correct:
Is this what you think that? What makes you walked in here
for?

4.3 Experimental Results

To evaluate the evolutionary algorithm, we have performed
an experience where 200 sentences were generated for each
chatterbot by the evolutionary algorithm starting from sen-
tences already existing in the database. From the 400 pro-
duced entries, only 127 (31.75%) of the sentences were dif-
ferent from the existing ones and distinct from each other.
This is easily explained by the fact that two sentences with
no common words will produce only copies of themselves
by crossover. From the new sentences, 97 (76.38%) were
grammatically correct. We have inserted the new sentences
in the database of the chatterbots and we have run two ex-
periments to compare the resulting programs with the orig-
inal ones.

The experiments consisted in a dialog with each of
the two chatterbots before and after the extension of the
database. Both versions of each chatterbot have received

the same input from the user. The dialog consisted of 50
exchanges entered by a user familiar with the simulated
character (user 1) and a user unfamiliar with it (user 2).
Each of them has evaluated the answers to their own dialog
to decide whether they were reasonable answers (if they
made sense), if they could be considered good answers, if
they were consistent with the character (for the first user),
and if they were grammatically correct. Table xxx shows
the results of this evaluation (as an average over the 2 chat-
terbots).

Table 1. Evaluation of the chatterbots before and after the
extension to their database based on the evolutionary algo-
rithm

User 1 User 2

before after before after
Reasonable 45% 54% 35% 31%
Good 30% 24% 6% 7%
In character 75% 79% n/a n/a
Grammatically 4% 7% 5% 6%
incorrect
Other 21% 15% 54% 56%

From these results we can deduce that the evolution-
ary algorithm has had a positive impact on the chatter-
bots allowing us to extend their database with little change
in their performance. In some cases, the answers of the
chatterbots can considered better after the extension of the
database, but this can also be caused by the probabilistic
nature of the generated answers, since the chatterbot may
give a different answer to the same input the second time
around.

5 Conclusion

In this paper we have presented an evolutionary algorithm
that can be utilized to enhance the diversity of response of
a chatterbot or virtual character. The algorithm is still in an
experimental phase, but an early prototype of the chatterbot
program is already functional online.

The genetic recombination is capable of generating
new sentences and enhancing the diversity of the chatter-
bot while keeping the general style of the original character
being simulated. As a downside, the recombination doesn’t
always result in coherent sentences and further constraints
are necessary to improve the success rate of the system.

References

[1] The Thinking Computer. Freeman, New York, 1976.

[2] J. Barger. "the policeman’s beard” was largely prefab!
The Journal of Computer Game Design, 6, 1993.

[3] A. Belz. PCFG learning by nonterminal partition
search. In H. Fernau and M. van Zaanen, edi-

tors, Grammatical Inference: Algorithms and Appli-
cations. Proceedings of the 6th International Collo-
quium on Grammatical Inference (ICGI 2002), pages
14-27. Springer, 2002.

[4] W. Chamberlain. The Policeman’s Beard is Half Con-
structed. Warner Books, 1984.

[5] H. Chen. Machine learning for information retrieval:
Neural networks, symbolic learning, and genetic al-
gorithms. Journal of the American Society for Infor-
mation Science, 46(3):194-216, 1995.

[6] G. Giizeldere and S. Franchi. Dialogues with colorful
personalities of early Al. Stanford Humanities Re-
view, 4(2), 1995.

[7]1 J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[8] D. Kazakov and S. Manandhar. Unsupervised learn-
ing of word segmentation rules with genetic algo-
rithms and inductive logic programming. Machine
Learning, 43:121-162,2001.

[9] The A.LI.C.E Arttificial Intelligence Foundation.
http://www.alicebot.org/.

[10] eGain Communications Corp. Web self service.
http://www.egain.com/.

[11] G. Salton, editor. The SMART Retrieval System
- Experiments in Automatic Document Processing.
Prentice-Hall, Englewood Cliffs (NJ), 1971.

[12] G. Salton, E. Fox, and U. Wu. Extended Boolean
information retrieval. Communications of the ACM,
26(12):1022-1036, 1983.

[13] E. V. Siegel and K. R. McKeown. Learning methods
to combine linguistic indicators: Improving aspectual
classification and revealing linguistic insights. Com-
putational Linguistics, 26(4):595-627,2000.

[14] G. Syswerda. Uniform crossover in genetic algo-
rithms. In J. D. Schaffer, editor, Proceedings of the
International Conference on Genetic Algorithms, San
Mateo (CA), 1989. Morgan Kaufmann Publishers.

[15] A.M. Turing. Computing machinery and intelligence.
Mind, 59(236):433-460, 1950.

[16] D. Vrajitoru. Chatterbots web page.
http://www.cs.iusb.edu/"danav/chatterbots/.

[17] D. Vrajitoru. Crossover improvement for the genetic
algorithm in information retrieval. Information Pro-
cessing and Management, 34(4):405-415, 1998.

[18] J. Weizenbaum. Eliza - a computer program for the
study of natural language communication between
man and machine. Communications of the ACM, (9),
1966.

