
DataViewer: A Scene Graph Based Visualization Library
Randy Paffenroth

Applied and Computational Mathematics
California Institute of Technology,

California, USA.
email: redrod@acm.org

Dana Vrajitoru
Computer and Information Sciences,

Indiana University at South Bend,
Indiana, USA.

email: danav@cs.iusb.edu

Thomas Stone
Veridian MRJ Technology Solutions,

Fairfax, Virginia, USA.
email: tstone@mrj.com

John Maddocks
LCVM

�
, EPFL, Switzerland.

email: John.Maddocks@epfl.ch

ABSTRACT

This article outlines the capabilities of a scientific vi-
sualization toolkit called DataViewer, and compares it to
analogous software. DataViewer was originally designed
for the construction of the visualization part of certain com-
putational steering packages, and consequently it is partic-
ularly straightforward to closely couple DataViewer with
numerical calculations. Rendering is performed through a
high-level scene graph which facilitates the easy construc-
tion of complex visualizations. DataViewer differs from
other such libraries by allowing complex geometrical ob-
jects, which efficiently encapsulate large amounts of data,
to be used as nodes in the scene graph. Graphics hardware
access is through the OpenGL API.

KEY WORDS

Scene Graphs, Scientific Visualization, Steered Com-
putations

1 Introduction

DataViewer (http://lcvmwww.epfl.ch/DV/) is a scientific vi-
sualization library created to allow the easy development
of efficient visualization programs for those who are not,
and do not wish to become, graphics programming experts.
DataViewer comprises a high-level set of routines for ren-
dering geometric objects. It utilizes the OpenGL graphics
API [1] for low level rendering. DataViewer has previously
been used in several different visualization projects, e.g.
most of the visualization modules of the parameter continu-
ation software package VBM (Visualization of Bifurcation
Manifolds, [2, 3], http://lcvmwww.epfl.ch/VBM/) have been
developed using it.

Most of the goals that have driven the design of
DataViewer are comparatively standard. It had to be com-
putationally efficient, but with a high-level easy-to-use in-
terface, portable (at least over UNIX platforms), and open
source, freely available to the mathematical and scientific

research communities. A less standard design goal for
DataViewer was to facilitate a close coupling between vi-
sualization and numerical computations, so as to be able to
visualize dynamic data sets easily. By dynamic data sets
we here mean data sets that are continually being modi-
fied as, for example, in interactively steered codes. Such
dynamic data sets require a tighter coupling to the actual
computation of the numerical data than is necessary in the
more standard mode of visualizing a static, pre-computed
data set a posteriori.

Rendering in DataViewer is performed through a
high-level scene graph based structure which allows
the user to construct complex visualizations simply.
DataViewer is object oriented and provides a selection of
leaf nodes that contain data for visualization, and container
nodes that group together other nodes and which share
properties. In addition to using only existing node types,
more advanced users may easily add new node types to ex-
tend DataViewer’s capabilities. DataViewer differs from
other such libraries in that it allows both simple and com-
plex geometrical objects to be used as single nodes in the
scene graph. The complex nodes can be used to visualize
large amounts of data more efficiently than is possible by
using conglomerations of simple nodes, while the simple
nodes can be used when flexibility is required. Section 2
will detail DataViewer’s implementation of a scene graph
and give examples of geometrical objects that DataViewer
provides.

Many packages and algorithms have been developed
for rendering three dimensional graphics on modern com-
puters. Because our work requires highly interactive 3D
graphics tightly coupled to computation, only certain ap-
proaches were of potential interest to us. For example,
ray-tracing, e.g. POV-Ray (http://www.povray.org) per-
forms well under many circumstances and can produce
very realistic images, but is generally too slow and of-
ten inappropriately detailed for our purposes of interac-
tive scientific visualization. Similarly our experiences with
[3], and evaluations of, general purpose high-level vi-
sualization packages such as AVS (http://www.avs.com/),

DataExplorer (http://www.qbssoftware.com/), and Explorer
http://www.nag.com/Welcome IEC.html lead us to the con-
clusion that it was awkward to couple such programs
tightly with computations. For the problems of interest to
us it seems to be more efficient to visualize by embedding
3D graphics capabilities into a computational code, rather
than to embed computational code into a general graph-
ics package. In addition such large software packages as
AVS, DataExplorer, and Explorer, typically do not meet our
desiderata of low cost, and access to source code.

From all of the available packages for scientific vi-
sualization, VTK (http://www.kitware.com) represents the
software package most closely realizing the DataViewer
objectives. In spite of its many advantages, it was not
designed for close coupling to numerics, and is in many
ways much more sophisticated than our needs. Other
software packages like AVS (http://www.avs.com/), Open-
Inventor (http://oss.sgi.com/projects/inventor/), and Ge-
omView (http://www.geomview.org), have been considered
before starting the development of DataViewer, but none of
them met our needs closely enough.

Hence in late 1996, we were left with the prospect
of starting to create our own visualization software library.
DataViewer 2.x was developed by R. Paffenroth, T. Stone,
D. Vrajitoru, and A. Ahearn; it is our attempt to create a
library which encompasses all of the needs detailed in the
Introduction. The package is still being developed along
with new applications in research and education.

This paper is structured as follows. Section 2 de-
scribes the design, implementation and specific features
of DataViewer. Section 3 introduces some examples of
DataViewer applications.

2 DataViewer 2.x Design

The first release, DataViewer1.0, was implemented based
on C++ with Motif for the GUI. DataViewer 2.x dif-
fers from DataViewer1.0 in two main respects. First,
DataViewer 2.x uses Python to create GUIs, which we
feel makes implementations much simpler. Second,
DataViewer 2.x encapsulates all low-level graphics calls.
The user may know nothing about OpenGL and still be
able to exploit DataViewer 2.x efficiently. Further detail
on the DataViewer 2.x software library may be found at
http://lcvmwww.epfl.ch/DV.

2.1 Implementation

DataViewer 2.x is written entirely in C++, and uses many
of the language’s object oriented features, such as tem-
plates and virtual functions [4]. Each graphical object class
in DataViewer 2.x inherits from a single base class called
DVobject. Each DVobject defines a virtual draw routine
that canonically contains a set of OpenGL commands that
create the graphical representation of the object. In addi-
tion, each DVobject contains a set of properties, such as

color, translation, and rotation. These properties are dis-
cussed in greater detail below.

Python gives access to the Tk [5] widget library,
which DataViewer utilizes for the design of GUIs. Tk is
a library of widgets which can be accessed from a wide
variety of languages, including Tcl, Python, C/C++, and
Perl. It is a robust and mature code which has implemen-
tations on all Unix systems as well as Microsoft Windows
and Macintosh. In our opinion, Tk is much easier to use
than Motif and makes the GUI more flexible. For users
with only a little familiarity with Tk and Python, it is quite
straightforward to create customized DataViewer GUIs for
their particular problems.

Finally, DataViewer 2.x provides several features that
are accessible in any application which uses the library. For
example, DataViewer provides stereo viewing capabilities,
using hardware such as Crystal Eyes from StereoGraphics
Inc, along with access to six degree-of-freedom controls,
such as the Magellan 6D Mouse from Logitech Inc.

2.2 The Scene Graph and its Properties

The most important feature of DataViewer 2.x is its rep-
resentation of the geometrical scene as a graph. Scene
trees are a well-known and longstanding notion in com-
puter graphics, either as a structural hierarchy of the view
scene [6], or a spatial development of it [7, 8]. Although
some recent research has expressed reservations concern-
ing scene graphs [9], especially for photo-realistic render-
ing, they are still an efficient paradigm for scientific visu-
alization, and we chose to implement them in DataViewer
2.x.

In a scene graph, a geometrical object is represented
in a hierarchical fashion using a tree. A given object is
divided into pieces, each of which is either a leaf node
(i.e. a geometrical object which can be represented as an
atomic data type) or a group node which itself contains
other nodes. DataViewer 2.x implements a scene graph by
using two main types of nodes.

The first type of node in DataViewer 2.x is the geome-
try node. Geometry nodes are the leaf nodes of DataViewer
2.x. They represent basic geometrical objects. DataViewer
2.x differs from most libraries that use scene graphs in
that DataViewer 2.x provides both simple leaf nodes, and
in addition leaf nodes that are quite complex geometri-
cal objects. Such objects usually group any number of
data to be translated into the same category of geometri-
cal shapes and/or OpenGL primitives. Geometry nodes in
DataViewer 2.x include sets of lines, cylinders, polygons,
triangle strips, spheres and others. For example, Figure 1
is represented as two leaf nodes of DataViewer 2.x, a sim-
ple one containing the planar grid, and a more complex one
containing a set of line segments rendered as cylinders with
an associated ribbon.

While complex leaf nodes reduce the flexibility of a
library, DataViewer 2.x includes complex objects for two
reasons. First, in our work certain types of geometry nodes

are commonly used as metaphors for scientific visualiza-
tion, and we wish these complex objects to be easy to use.
For example, Figure 2 represents a surface computed as
a surface of rotation generated by a periodic curve satis-
fying a certain system of ordinary differential equations.
Second, each node in DataViewer 2.x has a certain amount
of computational overhead imposed at each processing of
the scene graph. For complex objects grouped into a sin-
gle node, this overhead is low, while conglomerations of
simpler objects increases the overhead. Concretely, many
operations can be performed once for a whole set of basic
geometrical shapes. Such operations include the definition
of rendering properties such as color or data components
to be displayed. In addition, properties such as rotation,
translation, and scaling, are composed as the drawing ad-
vances in the depth of the tree. These operations take a
non-trivial amount of computational effort, and the modi-
fication of some of them can even cause the OpenGL ren-
dering pipeline to stall, causing a significant loss of effi-
ciency. Thus, grouping basic objects into single leaf nodes
as much as is possible both significantly improves the speed
of translating a scene tree into OpenGL commands, and re-
duces the number of such commands.

Figure 1. A complex geometric object which can be rep-
resented in DataViewer 2.x by two leaf nodes. The tube
formed from cylinders and ribbon are both included in the
definition of the first leaf node. The planar grid forms the
second leaf node.

The second type of node in DataViewer 2.x is the con-
tainer node. Container nodes group together other nodes
into a set sharing a number of common graphical proper-
ties, which may then be treated as a single node. The con-
tainer node and the nodes that are attached to it are linked
by a parent - children relationship. DataViewer divides
container nodes into two classes. The first class of con-
tainer nodes is represented by normal containers, which
have the following functionality: their draw function calls
the draw functions of all of the children by passing to them
a composition of the geometrical properties received from
higher in the tree and the container’s own properties. The

Figure 2. A complex geometric object which can be rep-
resented in DataViewer 2.x by a set of triangle strips in a
single leaf node.

second class of container nodes includes several kinds of
selection containers. Their draw function calls the draw
functions of only some of the children. Generally, the se-
lection containers are used for special effects, such as ani-
mation and level-of-detail.

A scene graph also requires some way to handle prop-
erties, such as color. For example, the developers of Open-
Inventor chose to implement properties as leaf nodes them-
selves. In other words, leaf nodes are not just geometrical
objects, they may also be properties. A color node may
appear in the scene graph, and each geometrical object is
drawn in the color of the color node that is closest to it (de-
pending on how the scene graph tree is traversed). While
this approach is quite flexible, it does introduce an order
dependence in the scene graph. Depending on the order
in which the scene graph is rendered different results may
occur. DataViewer therefore took the different approach
of including the properties into the geometry and container
nodes themselves. Each node may either set the value of
a given property itself, in which case objects in the node
are rendered using its own value of the property, or the
node may inherit the property from its parent. An exam-
ple of a group of spheres and a set of property definitions is
shown in Figure 3. Using this type of property inheritance
the scene graph is not order dependent, and there is only a
small loss of flexibility. We remark that, subsequent to our
development of DataViewer 2.x, Java3D adopted the same
property structure.

2.3 Numerical issues

DataViewer was designed to be easily linked to numerical
programs. This link can be achieved in several ways.

First of all, any numerical program written in c++ or
FORTRAN can be directly integrated by compilation in a
DataViewer application. This requires programming skills
in one of these languages, but the number of lines of code

Container

Container ContainerRed

Green

Blue
1

2 3

Figure 3. This figure shows a scene graph on the left and
the graphical result of the scene graph on the right. The top
container sets the color property to be green. The sphere
attached to the top container sets the color property to red,
and the first container attached to the top container sets the
color property to blue. No other node sets the color prop-
erty. The sphere marked with 1 is drawn in red since it
sets that property itself. The sphere marked with 2 inher-
its its blue color from the container directly above it. The
sphere marked with 3 inherits its green color from the top
container.

that are necessary for the integration is minimal. About 5
lines of c++ are required to define a new DataViewer 2.x
application. The rest of the needed work concentrates on
communicating the data between the numerical code and
the graphical objects. This part has been simplified by the
implementation of the data structures in DataViewer. For
example, an entire array of data can be transformed into
a set of lines by one line of code. Here is an example of
discretizing a 3 dimensional curve

���������
	��������	��������
	������
�����

:

LCVMarray_2D<float> data(number_of_points, 3);
step = (b-a) / (number_of_points-1);
for (int i=0; i<number_of_points; i++) {

s = a+ i * step;
data[i][0] = x(s);
data[i][1] = y(s);
data[i][2] = z(s);

}
DVlines curve(data);

The DVlines object translates the data into OpenGL
commands creating a line strip, where a line segment links
every point data[i] to the next one data[i+1]. A parameter-
ized surface can be represented as a discrete set of triangles
just as easily.

An example of this kind of integration can be found
as part of the VBM program.

Second, more complex stand-alone programs like
AUTO [10] can communicate with DataViewer by means
of data files. Using Python’s system modules, one can run
the numerical program from the DataViewer interface, even
choose the parameters. This method has the advantage to
separate the compilation of the numerical program from the
compilation of the application, and is recommended in the
case where the numerical program is too complex to be eas-
ily integrated at a compilation level into DataViewer, or if

the output of the program is already in the form of a file.
It is also a good solution for anybody that is more com-
fortable with the programming in a scripted language like
Python, rather than c++. It requires a file parser to be writ-
ten either in c++ or Python for the specific output of the
program. VBM also contains some examples of this kind
of communication.

Third, the users that are not familiar with program-
ming, or that prefer not to do this kind of effort, can use
the scene file format to visualize data produced by other
programs. This file format is specific to DataViewer and is
described in Section 3.2. This is the easiest way of using
the library, but it requires a minimal knowledge of the file
format, and eventually a script to produce the data in the
required form.

2.4 Animation

DataViewer 2.x provides 2 types of animation: flip-book
and key-framed. Both types of animation are implemented
using selection containers. Flip-book animation is achieved
by simple selection containers that draw only one of their
children for each frame. They occupy a relatively large
amount of memory space, but are very flexible. In con-
trast key-framed animation is implemented using rotation
and translation interpolation containers. They contain a list
of rotation or translation properties corresponding to some
particular frame numbers. Their draw function calls the
draw functions of all of their children for each frame, but
hands them a rotation or translation property that is interpo-
lated according to the frame number. This kind of anima-
tion is less flexible, but occupies significantly less memory
and requires less user effort to create.

Another feature of DataViewer is the possibility to
combine any kind of normal and selection containers to
create quite complex scenes. DataViewer 2.x is quite flex-
ible and allows one to balance memory space restrictions
and speed requirements when combining large static scenes
with small animated objects.

2.5 Runtime Features

Every application written with DataViewer is automatically
provided with a number of features that make the program
interactive and easy to use.

The first category of runtime features concerns navi-
gation through the 3D scene. With simple mouse and key-
board actions, the user can perform rotations, translations
and zooms of the 3D scene. Other more complex actions,
such as selecting particular objects from the scene for fur-
ther manipulation, can be linked to the mouse and keyboard
by each application.

The second category of runtime features concerns
view and display manipulation via a menu bar asso-
ciated with DataViewer’s main window (see Figure 4).
The menu options include control of 6D and stereo de-

vices, macros for setting the viewpoint, exporting snap-
shots of the displayed image, etc. An important widget in
DataViewer is the animation control that provides naviga-
tion through an animated scene and frame by frame view.
It is possible to export any particular DataViewer scene
to various 2D and 3D formats such as bitmap, POV-Ray
(http://www.povray.org), etc.

Figure 4. An example of DataViewer’s main window.

3 Applications

Several applications of DataViewer have already been im-
plemented. We briefly mention three.

3.1 VBM

Visualization of Bifurcation Manifolds (VBM,
http://lcvmwww.epfl.ch/VBM/) [2] is a software pack-
age whose goal is to provide tools for computing,
manipulating, and visualizing bifurcation manifolds
obtained by parameter continuation. As described
in [3] VBM is a confluence of the packages MC �
http://lcvmwww.epfl.ch/visual.html and
PCR [11, 12], which represent much of our earlier, and
more painful, experiences with graphics packages. VBM
allows easy access to large data sets using special projec-
tions of the bifurcation diagram. It also provides direct
selection of any particular solution, followed by its more
detailed visualization in a separate window using a data
probe. Most of the data probes in VBM have been written
using DataViewer, Figure 5 shows an example of a VBM
data probe. VBM has been developed by R. Paffenroth, J.
Maddocks, R. Manning, D. Vrajitoru, and K. Hoffman.

3.2 Scene File Parser

The Scene File Parser by D. Vrajitoru
(http://lcvmwww.epfl.ch/DV/Scene file/) is an application
of DataViewer allowing rapid development, modification
and visualization of 3D scenes by means of a file parser
(see Figure 6) even with no knowledge of programming.

Figure 5. A runtime example of the software package
VBM. The top window contains a bifurcation diagram in
which each point on the curve represents a solution to a
system of differential equations for some parameter values,
with color indicating stability properties. The bottom win-
dow visualizes the solution corresponding to the point in
the bifurcation diagram marked by a white ball.

As DataViewer can also export scenes to this file format,
the scene file parser can be used as an input and output
mechanism, to take 3D snapshots from DataViewer
applications, and for debugging purposes.

Figure 6. An example of a geometrical object generated
with the scene file parser.

This application defines a file format that pro-
vides special syntax structures for each graphical class in
DataViewer and for most of the properties attached to them.
This graphical file format uses especially minimal syntax
requirements while keeping the structure of the scene clear.
Thus, with minimal effort, the user can transform a raw
data file produced by any other program, into a coherent
scene file that can then be visualized with DataViewer.

For example, a file of raw data composed of real num-
bers on 3 columns and any number of lines, separated only

by spaces, representing successive 3D points on a curve,
can be turned into a scene file by adding the keyword lines
at the beginning of the file, followed by the character � ,
and the closing character � at the end of the file:

lines {
0 0 0
1 1 1

}

The previous syntax defines a line segment from the
point (0, 0, 0) to the point (1, 1, 1). The lines keyword
is associated in general with the line strips concept from
OpenGL. More details in the scene file documentation.

Following the ideas from the design of DataViewer,
the data are grouped into large objects according to the
graphical primitives they represent. This procedure de-
creases memory needs, streamlines the rendering, and min-
imizes the number of tokens in the scene file. The syntax
also provides a tree structure similar to the one described
in Section 2.2.

3.3 Slinky

DataViewer2.0 has been used in the latest implementation
of a package called Slinky that was build to interactively
explore solutions of an initial value problem for a system of
ordinary differential equations describing an elastic ribbon.
The ODE system governs the shape of an elastic rod that is
used as a model of DNA (see Figure 7). The GUI allows
the effect of changes in various coefficients and model pa-
rameters to be viewed interactively, with no external coding
required.

Figure 7. An example of an elastic rod generated with
Slinky.

Acknowledgments

It is a pleasure for the authors to be able to thank the many
useful suggestions and criticisms from the past and current

members of the Laboratory for Computation and Visual-
ization in Mathematics and Mechanics (or LCVM) of the
EPFL, and the former Laboratory for Computation and Vi-
sualization in Mechanics (or LCVM) at the University of
Maryland.

References

[1] J. Neider, T. Davis, and M. Woo, OpenGL Program-
ming Guide, Addison-Wesley, 1993.

[2] R. Paffenroth, Mathematical Visualization, Pa-
rameter Continuation, and Steered Computa-
tions, Ph.D. thesis, University of Maryland, 1998,
http://www.acm.caltech.edu/˜redrod.

[3] J. H. Maddocks, R. Manning, R. Paffenroth,
K. Rogers, and J. Warner, “Interactive computation,
parameter continuation, and visualization,” Interna-
tional Journal of Bifurcation and Chaos, vol. 7, no. 8,
pp. 1699–1715, 1997.

[4] B. Stroustrup, The C++ Programming Language,
Addison-Wesley, third edition, 1997.

[5] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-
Wesley, 1994.

[6] S.R. Clay, “Put: Language-based interactive manipu-
lation of objects,” IEEE Computer Graphics and Ap-
plications, vol. 16, no. 2, pp. 31–39, March 1996.

[7] K.R. Subramanian and B.F. Naylor, “Converting dis-
crete images to partitioning trees,” IEEE Transactions
on Visualization and Computer Graphics, vol. 3, no.
3, pp. 273–288, July-September 1997.

[8] O. Sudarsky and C. Gotsman, “Dynamic scene occlu-
sion culling,” IEEE Transactions on Visualization and
Computer Graphics, vol. 5, no. 1, pp. 13–29, January-
March 1999.

[9] W. Bethel, “Scene graph APIs: Wired or tired?,”
in SIGGRAPH’99 Conference Abstracts ans Applica-
tions. 1999, Computer Graphics Anual Conference,
pp. 136–138, ACM SIGGRAPH.

[10] R. Paffenroth, “The auto2000 command line user
interface,” in Proceedings of the 9th International
Python Conference, 2001., pp. 233–241.

[11] G. Domokos and R. C. Paffenroth, “Case study: Visu-
alization for boundary value problems,” in IEEE Vi-
sualization ’94 Conference Proceedings, R. D. Berg-
eron and A. E. Kaufman, Eds. 1994, pp. 345–348,
IEEE Computer Society Press.

[12] G. Domokos and R.C. Paffenroth, “PCR a visualiza-
tion tool for boundary value problems,” WWW page,
http://lcvmwww.epfl.ch/PCR/.

