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Abstract

In this paper we present our experiments with devel-
oping an intelligent agent using genetic programming,
with the goal of exploring an environment with limited
information in search for resources. The challenge con-
sisted of evolving an agent browsing a world knowing
only the altitude in a local neighborhood, looking for a
balance food diet of game and grain. We used genetic
programming to evolve our agent, using both a sim-
ple exploratory approach and more sophisticated search
techniques. Our results show that in this particular con-
text, the simple approaches seem to work the best.

Introduction

In this paper we present some experiments with evolving an
agent capable of exploring an environment given as a height
map in search for food, with the purpose of achieving a bal-
anced diet. The agent was developed for the GECCO 2008
Contest: Finding a Balanced Diet in Fractal World (Keijzer
2008). The challenge of this particular application is that
the agent has no prior knowledge of the location of the food
and can only ’see’ a limited local neighborhood around its
current position. We decided to evolve this agent using only
genetic programming and virtually no static memory that the
agent can use.

The problem we are discussing in this paper is specific
to the GECCO 2008 contest, but it fits within the larger
context of developing intelligent agents capable of finding
resources in their environment using limited information.
These agents are necessary for the future of artificial life.
There is a good number of potential applications, going from
robots exploring new worlds, to autonomous devices provid-
ing common domestic services while being able to refill the
vital resources with little human intervention.

The environment consisted of a discrete two dimensional
world containing food of two types: grain and game. The
world is specified as a height map, and the agent only knows
the altitude in a small neighborhood around its location. The
agent will not know if a cell contains food until it moves to
it. There is an implicit probabilistic correlation between the
height of the terrain and the sort of food that can be found
there. The test would drop the agent in a random position
on the map and the agent was allowed a given number of
moves to find food. The score was the amount of both grain

and game that it could find within those steps, meaning the
value of the smaller of the two quantities.

We chose genetic programming as our basic model be-
cause it seems the most appropriate for the type of prob-
lem we tried to solve. The specifics of the problem defini-
tion were limiting in the choice of algorithms. For example,
usual search algorithms like the A* or depth-first rely on
complete knowledge of the map, which was not part of our
constraints. The knowledge was limited to the small neigh-
borhood and more knowledge was not available until a move
was made. Greedy algorithms would also not be an option
because the agent had no knowledge of the food position
until it made a move to the cell. Genetic programming gave
us the flexibility of not having to pre-define a model for the
agent’s behavior, as we would have to do with genetic algo-
rithms or neural networks.

We developed the agent in three phases. In the first phase,
we aimed to evolve a function exploring as wide a region as
it could without repetition and without memory of where it
has been before. In the second phase, we evolved the agent
in the real contest conditions, and using the best function
evolved during the first phase. In the third phase we intro-
duced a cooperative coevolutionary approach where three
populations of functions were evolved at the same time in
parallel, serving as a test, a positive action, and a negative
action in a conditional.

Overall our best agent managed to eat an average of
8.77% of the expected food on the map in a fairly balanced
diet, and more sophisticated approaches didn’t seem to yield
the expected improvement in performance.

Genetic programming (GP) (Koza 1992) is a popular evo-
lutionary paradigm that is used in many cases to evolve com-
plex behavior (Altenberg 1994). Many studies have applied
it to developing agents capable of exploring a given ter-
rain with reduced information or even in hostile environment
(Haynes and Wainwright 1995). A related topic is evolving
robot behavior (Tanev, Ray, and Buller 2005), (Andersson et
al. 1999), (Lee and Zhang 2000) or articulated organisms ca-
pable of moving efficiently in a given environment (L. Gritz
2006), (Shim and Kim 2003).

The paper is structured as follows. We start by describ-
ing the problem and test conditions. Next, we introduce our
evolutionary models and the solutions we retained. Third,
we compare the scores of the agents in the real test condi-



tions.

The Problem and Contest Rules

The goal of the competition was to evolve an agent to search
a two dimensional landscape and find as much as possible
of two types of food. The landscape consisted of a 256x256
grid. Each cell had an ’elevation’ between 0 and 255. Fig-
ure 1 shows an example of a region taken from such a map,
where the cells are shaded by elevation, brighter levels of
gray meaning lower values. Two types of food are in this
landscape: grain, marked by white dots, and game, marked
by black dots. In addition, large dark blots represent impas-
sible terrain. We were provided 10 such sample maps, and
we assumed that for the contest the agent would be tested on
a new set of maps.

Figure 1: Sample area taken from a map, brightness defines
elevation, white dots represent grain, black dots represent
game, large dark areas represent impassable terrain.

The agent’s goal was to find a balanced mixture of grain
and game. Specifically, for the competition an individual’s
fitness was evaluated as the amount of whichever food it
found less of. For example, if an agent found 35 grain and
29 game, its score was 29. Individuals were allowed 13,107
moves, representing 20% of the surface of the terrain. Thus,
exhaustive search algorithms were not expected to be partic-
ularly effective.

The agent had information only about the elevation of the
terrain in a vicinity of the current position. There was an
implicit probabilistic correlation though between the type of
food more likely to be present at a particular location. The
average elevation and the standard deviation on the provided
maps are shown in Table 1 below. From this table we can see
that game can be found mostly at low altitude elevations,
while grain can be found mostly at high altitude elevations.

Table 1: Distribution of game and grain based on elevation
Game Grain

Map Ave StdDev Ave StdDev

1 79.81 28.3 223.92 10.49
2 75.41 27.48 220.88 17.75
3 77.24 25.98 221.17 17.61
4 73.37 26.83 221.17 18.29
5 74.56 25.93 198.48 46.68
6 72.42 26.71 223.26 15.64
7 73.32 25.97 176.27 62.39
8 66.8 26.98 177.66 65.35
9 74.17 25.84 222.76 15.29
10 69.83 26.36 221.54 22.99
Average 73.69 26.64 210.71 29.25
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Figure 2: Visible neighborhood of the agent and its cell num-
bering. The current cell is represented by the number 12.

Individuals could ’see’ elevations in a 5 by 5 grid around
their location, numbered as shown in Figure 2. They auto-
matically picked up food if they entered a square containing
it, but could not see it. Thus, the agents had to learn where to
look for food based on elevation. At each move, the current
position of the agent is in cell 12, in the middle. The agents
started on a random cell of unknown location to them.

The ultimate goal of the contest was to develop an ANSI
C function with the prototype

int Next Move(int *grid, int grain, int

game, int last, int time);

returning the next relative position of the agent as a num-
ber between 0 and 24, as stated in Figure 2. The agent re-
ceived the local neighborhood for the next move as input for
this function, as well as the last move it had executed be-
fore. Moves resulting in an impassible position, remaining
in place, or attempting to move further away than the 5x5
grid resulted in the agent’s position not changing, but still
counted towards their total number of moves.

Our Solution and Implementation Details

We developed our agent in several phases based on the func-
tionality we aimed to accomplish at each stage. In addi-
tion, we wrote some test functions designed to represent a
baseline for comparison of the performance of the evolved
agents.

Our initial plan was to divide the process in two phases:
for the first half of the given steps we would develop a
greedy algorithm trying to get as much food of any sort as
it could. In the second half we would employ another al-
gorithm attempting to improve on whichever food had been
collected less so far.



For the implementation of the agents, we focused on ge-
netic programming (GP) (Koza 1992) attempting to allow
for as little input from the human as we could. We used
a small free Genetic Program written in Python by Paras
Chopra (Chopra 2008) and modified for our purposes. We
converted the resulting trees to C by hand.

Benchmark Functions

We used two functions to give us an idea of how well our
agent was performing.

The first one is a completely random exploration of the
terrain, with no consideration for the elevation or for the
current performance in terms of acquired food. This func-
tion chooses a random position within the 5x5 grid, taking
care of not staying in place (position number 12) and of not
falling on a block (marked in the elevation map by -1). This
first function gives us an idea of the probability of finding
food on the map with a completely random exploration. We
called this function random walk.

The second benchmark function is a small utility that we
wrote by hand, considering the amount of game and grain
that the agent acquired so far, and attempting to improve on
the least of the two numbers. For that, the agent is looking at
the elevation of the terrain in the 5x5 grid around the current
position and moving towards cells of elevation most likely
to match the average height of the kind of food it needs. For
example, if the amount of grain is lower than the amount
of grain, the agent tries to move toward cells of lower ele-
vation, ideally around the value 73.69, which is the overall
average of the game positions. This second function would
give us an idea of how the agents evolved by genetic pro-
gramming compare with one written by a human. We called
this function human walk.

First Phase

For the first phase we started with a function evolved with a
classic GP with the aim of exploring a square area trying to
avoid walking over the same cells more than once. The chro-
mosomes are trees where nodes can be functions, variables,
or constants. Possible nodes are described below, where the
functions have the usual meaning in most programming lan-
guages, wrapped in some tests for mathematical soundness
of the arguments:

• Functions: +, -, *, /, %, cos, sqrt, pow

• Variables: x and y

• Constants: the range of possible moves, [0, 24], plus the
size of the table and some randomly generated constants

• Output: a value capped to the range [0, 24] representing
the next move.

• Other parameters: population size: 100, number of gen-
erations: 500, maximum tree depth: 30, selection: fitness-
proportionate and elitist, probability of crossover: 0.8,
probability of mutation: 0.1

The first four functions we chose as potential nodes for
our trees define the basic arithmetic operations. The func-
tion square root was chosen because the size of the known

+--ADD

| +--SQRT

| | +--ADD

| | | +--[X]

| | | +--SQRT

| | | | +--ADD

| | | | | +--[Y]

| | | | | +--[9]

| +--SQRT

| | +--DIV

| | | +--[X]

| | | +--[20]

Figure 3: Example of output of the program

neighborhood of the agent was of the order of magnitude of
the square root of the size of the table. The cosine function if
often used in genetic programming and in combination with
the function power it can be used to derive the whole set of
trigonometric functions.

These other parameters were used through all the exper-
iments, unless otherwise specified. We used the classic GP
crossover and mutation. We initially tried a larger num-
ber of generations but the population seemed to converge
rather quickly and it wasn’t of much use letting it evolve a
lot longer.

Fitness: we started with a table of 25x25 which was ini-
tially composed of unmarked cells. We tested each program
by making 150 moves based on their output, updating the
variables x and y after each move accordingly, and mark-
ing the visited cell each time. The fitness consisted of the
number of marked cells at the end of the run.

Figure 3 shows an example of the output from the pro-
gram, corresponding to the tree shown in Figure 4.

Figure 4: Tree corresponding to the function in Figure 3

The best program we obtained achieved a fitness of 86 and
was produced at generation number 162. We translated this
output into a C function called walk move (the full code is
available in (Vrajitoru and Guse 2008)). The C code for this



int walk_move(int x, int y)

{

float a, b, c;

c = pow(y - (y+x%y)/y, sqrt(8));

a = sqrt(15 + y + x%c);

b = cos((x*20)%y)/11.0;

return x - (a + b);

}

Figure 5: The function walk move

function is shown in Figure 5. Interestingly enough, many
of the functions we obtained this way seem to want to go
constantly in one given direction.

We tested the function walk move by itself in the real
test conditions. As we didn’t know the real position of the
agent on the map, we started with random values for the vari-
ables x and y for which we used static variables, and updated
these values based on the moves made. We treated the map
as being circular, which means that 256 = 0 for both coordi-
nates. This test revealed that the function has an eigenvalue
and the agent eventually converges to that position on the
map sooner or later. A solution to avoid this convergence is
to re-scramble the variables x and y from time to time.

Second Phase

For the second phase we introduced the real test conditions
into the fitness function. The size of the table for the fit-
ness was 256x256 and the food and elevation tables were
imported from one of the files that were provided. The fit-
ness function ran the agent 150 steps on one of the real tables
and the game and grain points were counted. The fitness re-
turned the least of game and grain. Even though we only
used one specific map in the fitness itself, after the training
was done, we tested all the functions on all of the maps and
made the selection this way. Thus, the function we submit-
ted was not over-specialized to the training data.

The set of functions used as potential nodes in the trees
was extended to include the function walk move evolved
in the first phase, and also a function elev with one argu-
ment that returns the elevation at that position in the 5x5 grid
if the argument is in the range [0,24], and -1 otherwise.

We evolved two agents with this new approach. For the
first one we added the following set of logical and compar-
ison functions: {IF, EQ, NOT, GT, LT, AND, OR, XOR}.
The best function evolved this way is translated into the
function game walk. As the logical and comparison func-
tions didn’t seem to be well used, we removed them, and
the best function evolved this way translated into the func-
tion walk elev. The original trees for both these functions
can be found in (Vrajitoru and Guse 2008). Neither of these
two functions performed any better than just the function
walk move by itself, so we decided not to use them. In
fact they both seem to return a constant move most of the
time.

Coevolutionary Approach

For the third phase we tried a cooperative coevolutionary
approach (Paredis 1996) where we evolved three popula-
tions in parallel. This is a cooperative approach (Potter
and De Jong 2000) where different related components are
evolved by separate populations (Wiegand, Liles, and Jong
2001). The first population evolved a condition using the
set of logical and comparison functions introduced above.
The second population evolved a function to be called if the
condition is true. This population was not using the logi-
cal and comparison functions, but the set of arithmetic func-
tions. We decided at this point to replace the function elev
with just a variable containing the elevation at the current
position in the grid. The third population evolved a function
to be called if the condition is false, and its parameters were
identical to those used for the second population.

The fitness function was very similar to the one described
for the second phase, except that it used one chromosome
from each of the 3 populations together to determine the
move. The method for combining the 3 chromosomes was
the following: for each generation, the chromosomes of the
first population were evaluated using the best chromosome
from the second and third populations from the previous
generation. The second and third populations were evalu-
ated in a similar way.

The best combined functions that we obtained with this
new approach were called three headed and the full
code can be found in (Vrajitoru and Guse 2008). The per-
formance of these functions in the real test conditions was
quite inferior to the first function that was evolved in phase
one.

Final Decision

Given that the more complex functions that we tried to
evolve performed below our expectations, we decided to
turn in the very first function walk move that was evolved
without any knowledge of the elevation and of the accumu-
lated food.

As a wrapper around this function, we used a couple of
static variables x and y that we initialize with random val-
ues in the range [0, 255]. We updated these variables based
on the current move and we enclose it in a loop that makes
sure that the move returned is not 12 (stay in place) or a
move to a position containing a block. On the average we
estimated that the algorithm collects a total amount of food
between 5% and 10%, which is relatively well balanced be-
tween grain and game.

Numerical Results and Analysis

All of the agents evolved by genetic programming were sub-
jected to a fitness function testing their ability to solve the
problem in somewhat limited conditions, as described in the
previous section.

For a better reflection of the agents’ performance and a
unified comparison, we subjected all of them to a unified
test set. We ran the agents on each of the 10 sample maps
for the number of steps specified in the contest, which is
13107. We repeated the test 1000 times on each map starting



Table 2: Average scores over all the maps in 1000 tests and
13107 steps

Agent Average Best

walk move 28.74 (8.77%) 42.77 (13.06%)
game walk 0.8 (0.24%) 0.96 (0.29%)
walk elev 0.89 (0.27%) 1.08 (0.33%)
three headed 2.79 (0.85%) 2.27 (0.69%)

random walk 30.68 (9.37%) 46.93 (14.33%)
human walk 3.99 (1.22%) 3.28 (1.00%)

from a different but random initial position, unknown to the
agents themselves. We ran the same test with the benchmark
functions. The performance in all the cases was considered
to be the lowest number of the acquired game and grain.

Table 2 shows the results of these experiments as follows.
The total amount of game or grain in all the maps was 3276.
The number of moves allowed the agent to explore at most
20% of the entire map. This led to an expected maximal
value for the amount of food of 327.6, because for the agent
to achieve a given score, it had to find that number of both
game and grain. We present the scores as a simple count,
and then as a percentage of the maximal expected value in
parenthesis. The second column represents the average over
all the maps, while the third column represents the map num-
ber 1 on which most agents obtained the best score. We can
speculate that even though all the maps contain the exact
same amount of food, this map probably has the best distri-
bution of the food, making it easier to find.

The results in Table 2 indicate that the best performance
was achieved by the function random walk. Note that the
function “random” itself was not part of the set that the evo-
lutionary process could use to construct trees. The second
best function is walk move, which is the result of the sim-
plest evolutionary approach that we took. This function vis-
ibly outperforms all of the others resulting from evolution,
and the one designed by hand, human walk. The function
three headed, resulting from the most sophisticated evo-
lutionary process we used, improves on the performance of
the previous ones and is comparable to the human designed
function.

To show how the different distribution of food can in-
fluence the performance of the agents, Table 3 presents
the results on the maps where the function random walk

achieved the weakest score, map number 10, and the one
where the function walk move got the lowest score of all
the maps, map 2. This shows that even though one agent
might perform better over all, various distributions of the
food on the map have a major influence on the performance
of the agents. On the whole, the function walk move

showed the best score on 3 out of the 10 maps, and the func-
tion random walk showed the best score on the 7 other
maps.

Conclusions

In this paper we presented an evolutionary approach to de-
veloping an agent capable of exploring a two dimensional
world in search for food in the specific conditions for the

Table 3: Worst scores for the function random walk (map
10) and for the function walk move (map 2) in 1000 itera-
tions

Agent Map 10 Map 2

walk move 24.64 (7.52%) 13.91 (4.25%)
game walk 0.6 (0.18%) 0.38 (0.12%)
walk elev 0.68 (0.21%) 0.7 (0.21%)
three headed 2.37 (0.72%) 2.04 (0.62%)

random walk 16.99 (5.19%) 20.53 (6.27%)
human walk 2.62 (0.80%) 2.52 (0.77%)

GECCO 2008 contest.

We introduced several models, the first one doing a sim-
ple exploration where the goal was to avoid repetition as
much as possible, with no knowledge of the specific problem
conditions. The second model we developed evolved under
the real test conditions, where the fitness function used in
the evolutionary process reflected the performance measure
used in the contest. The third model introduced a coevo-
lutionary approach where three populations of genetic trees
evolved in parallel, depending on each other for the fitness.

The results from the various tests indicate that the ap-
proach that performed best was the simplest one, not taking
into consideration any information concerning the elevation
and the food acquired so far. This agent was capable of ac-
quiring about 4.25% to 13.06% of the expected food in a
number of moves covering at most 20% of the terrain, which
is an encouraging result. This last agent performs well as
compared to the agents written by hand.

Our results indicate that the genetic programming can be
a valid approach to difficult problems and can show per-
formance matching or better than the human coded agents.
They also suggest that sometimes attempts to introduce extra
intelligence into the system can be counterproductive, and
can limit the search space in unexpected ways.
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