
1

CROSSOVER IMPROVEMENT FOR THE GENETIC
ALGORITHM IN INFORMATION RETRIEVAL

DANA VRAJITORU*

Université de Neuchâtel, Institut interfacultaire d'informatique, Pierre-à-Mazel 7, CH-2000

Neuchâtel, Switzerland

(Received March 1997; accepted February 1998)

Abstract - Genetic algorithms (GAs) search for good solutions to a problem by
operations inspired from the natural selection of living beings. Among their many uses,
we can count information retrieval (IR). In this field, the aim of the GA is to help an IR
system to find, in a huge documents text collection, a good reply to a query expressed
by the user. The analysis of phenomena seen during the implementation of a GA for IR
has brought us to a new crossover operation. This article introduces this new operation
and compares it with other learning methods.
© 1998 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

Inspired by the mechanisms of reproduction of living beings, the genetic algorithms
constitutes an interesting paradigm that seems to be able to solve many different problems
(Holland, 1975; Goldberg, 1989). This general strategy belongs to the class of probabilistic
algorithms that use random choices and behave differently even when applied repeatedly on
the same data (Brasard and Bratley, 1994).

Several researchers have used the GA in IR and their results seem to indicate that this
algorithm could be efficient. In this vein, the main directions concern modifying the document
indexing (Gordon, 1988; Blair, 1990), the clustering problem (Raghavan and Agarval, 1987;
Gordon, 1991) and improving query formulation (Yang et al., 1992; Petry et al., 1993; Chen,
1995). In order to integrate the GA in our previous research (Vrajitoru, 1997), we have
considered Gordon’s model.

One major problem encountered by whoever wants to use the GAs to solve a problem is the
appropriate choice of the underlying operators and their parameter settings. These algorithms
have many different forms and, for each of them, several parameters influence their behavior.
Many researchers have studied their choices (Mitchell et al., 1991; Spears, 1995) and their
results suggest that there is no general best GA, and that each form of GA can be better than
others, depending on the particular application it is used for.

In this vein, the present paper tries to improve a very important GA feature, that is the
crossover operation. From the invention of the GAs (Holland, 1975), several variations of
crossover have been developed (De Jong, 1975; Syswerda, 1989) and various studies have
shown that the employed form of crossover can determine the performance of the GA (Spears,
1995). The present research is based on the same idea.

* E-mail: dana.vrajitoru@seco.unine.ch.

2

Although many researchers are optimistic about applying the GAs to solve IR problems,
some of our previous experiments have shown poor results. Looking for an explanation, this
paper presents an analysis of the importance of the crossover operation in IR.

Section 2 presents a brief introduction to the GAs in IR. Section 3 describes a theoretical
analysis to understand some of the phenomena that can lead a GA to poor results. This
analysis also conducted us to design a new crossover operator and an experimental phase has
confirmed our theoretical approach. Not only does the new crossover operator perform better
than the classical one, but it allows the GA to be competitive with other learning methods in
the IR field, as shown in Section 4.

2. THE GA IN INFORMATION RETRIEVAL

This section presents a form of GA and how we used it in our information retrieval
research.

2.1. Short description of a GA
The GAs are generally used for optimization problems. Through operations inspired from

the natural selection, they search for the best solution to a problem (Goldberg, 1989).
Given a search space E, we must find an element indopt E maximizing a performance

mapping f defined on E. The elements of E are called individuals and each of them represents
a potential solution to the problem. To apply a GA, the individuals must be coded as a
sequence of genes called chromosome. The position of a given gene in the chromosome
sequence is called locus.

The GA starts with an initial population containing a number of individuals and
representing the generation number 0 (G0 = {ind1, ind2, .., indnind}). Given an old generation,
a new generation is built from it according to the following steps :

• The reproduction step selects nind individuals from the old generation, according a
better chance to individuals presenting a better performance.

• The crossover step groups the chosen individuals in couples, chooses a random
position or cross site (crossSite), and exchanges the resulting parts of each individual from the
couple to form two new individuals or children, as follows:

child1 i() =
parent1 i() if i ≤ crossSite

parent2 i() if i > crossSite

child2 i() =
parent2 i() if i ≤ crossSite

parent1 i() if i > crossSite

• The mutation step chooses a random gene and replaces its value with a different one
(its opposite if the genes are binary).

The GA consists in building new generations until a stop condition is fulfilled (usually the
population convergence) or until a given number of generations is reached.

2.2. Problem coding in information retrieval
To evaluate the GA in information retrieval we have used the CACM collection (3204

documents and 50 queries with known relevance judgments), and the CISI collection (1460
documents and 35 queries).

To modify the document indexing with a GA, a chromosome should contain the document
representations. Gordon's model represents an individual as a single document descriptor. The

3

initial population contains several descriptions of the same document that are meant to
compete with each other. To extend the model to a real-scale collection, we considered all the
documents as a whole. Thus, in our case, the search space (E) is the set of all possible
descriptions of the documents in the collection.

Given a set of terms tk where k = 1, ..., termNr , the genetic representation or descriptor
associated to the document dj, where j = 1, ..., colSize has the following form :

 d j = t1 j ,t2 j ,K ,ttermNr j

In this formula, the gene tkj corresponds to the term tk in the document dj and has the value 0
or 1, whether the term is absent or present in the document description.

To include all the documents in the collection, an individual is built by concatenation of
document descriptors dj , for j = 1, 2, ..., colSize:

ind = d1,d2 ,K , dcolSize

= t11,K ttermNr1 ,t12 ,K ttermNr2 ,K ,t1colSize,K ttermNrcolSize

The basis for our research is the vector space model and the ntf.nidf indexing (Salton et al.,
1983; Turtle, 1990). The genes tkj no longer have binary values, but real values from 0
through 1.

The learning scheme developed in this paper is aimed for a transient learning, meaning that
the GA is trying to improve the system’s performance only for the current query. For the GA,
an individual is composed by the terms occurring in the current query (an average of 11.24
terms for the CACM and of 7.43 for the CISI).

We have evaluated the learning scheme in two ways, called retrospective and user. The
retrospective evaluation provides the entire set of relevance judgments to the GA from the
start. The results are positively biased (too optimistic), but are important because they show
the apparent error rate (Efron, 1986; Kulikowski and Weiss, 1991).

To estimate the error rate in a more accurate way, the GA must not know the relevance
judgments of the current query from the start. We have used a method consisting in "showing
the user" the top 30 documents retrieved by the system for the current query. The GA starts
without knowing the existence of any relevant document and modifies this knowledge through
feedback. We have marked these evaluations by user.

The fitness function in our case is given by the average precision at eleven recall points.

2.3. Starting population

We have built the initial population in two different manners, named title, and query learn,
both using sources of information completing the automatic indexing.

The title population uses partial indexing built from the logical sections of the documents:
the complete indexing, using all logical sections
only the title,
only the keywords given by the author (CACM only),
only the CR (Computer Review Abstract, CACM only), and
two individuals whose genes have only the "0" value (CISI only, to have the same
population size as for the CACM).

4

The population called query learn uses relevance judgments. It contains the individual built
with all logical sections, and seven others, resulting from the division in seven parts of the set
{ (Q, T), ∀query Q, ∀term T Q}.

To evaluate this population we have used the "leaving-one-out" method (Efron, 1986;
Savoy and Vrajitoru, 1996), which consists, in this case, in ignoring the relevance judgments
of the current query when constructing the population.

The results of these evaluations are shown in table 1. The baseline represents the vector
space model. A difference of 5% (at least) is considered as significant.

Table 1. Results of the GA in 10 generations
Precision (% change)

Evaluation Population CACM CISI
Baseline 32.7 19.83
Retrospective title 37.93 (+15.99%) 21.38 (+7.8%)

query learn 38.16 (+16.7%) 24.9 (+25.59%)
User title 37.92 (+15.97%) 20.0 (+0.87%)

query learn 37.85 (+15.77%) 22.01 (+11.02%)

3. A NEW OPERATOR

This section is dedicated to the analysis of a certain phenomenon concerning the classical
crossover operation, and to the description of the new operator.

3.1. Various crossover operations
The crossover operation used so far is the simplest operation of this kind. There are other

forms, and this paragraph presents some of them.
The first generalization of the simple crossover is the n-point crossover (De Jong, 1975). In

this case, we randomly choose a number of sites and apply n simple crossover operations on
the parents at once.

The restricted crossover operator is identical to the simple one, with the difference that the
cross point can only be chosen between the first and the last position where the parents’
chromosomes are different.

minDif ≤ crossSite ≤ maxDif , where parent1 i()
= parent2 for 1 ≤ i < minDif and maxDif < i ≤ L − 1

where L denotes the chromosome length.
The uniform crossover operator (Syswerda, 1989) consists in independently choosing, for

each locus i from 1 through L - 1, if the parents genes will be swapped or not. This choice
depends on a swap probability noted pswap :

child1 i() =
parent1 i() if randi ≤ pswap

parent2 i() otherwise

, child2 i() =
parent2 i() if randi ≤ pswap

parent1 i() otherwise

Finally, the fusion operator (Beasley and Chu, 1996) produces only one child from two
parents. For each gene, the child inherits the value from one or the other of the parents with a
probability according to its performance:

5

∀i, 1 ≤ i ≤ L, child i() =

parent1 i() with probability
f parent1()

f parent1() + f parent2()

parent2 i() with probability
f parent2()

f parent1()+ f parent2()

3.2. Crossover analysis
The main idea of the GAs is to simulate the mechanism of natural selection of living

beings, which makes the ecosystems develop and become stable. Within this mechanism, the
organisms adapt themselves through generations to their environment and to specifics survival
tasks. Through rough competition, the best individuals mate to produce descendants that can
inherit the parents’ skills and even increase them.

Inspired from this natural phenomenon, the purpose of the crossover operation is to create
new individuals having, hopefully, greater performance than their parents. In our case, we
have noticed that the children often show a performance greater than the worse performance
of the parents but smaller than the best value of the parents. The following considerations try
to analyze this phenomenon.

If H is a partial individual, let o(H) be the number of locus in H (its length). We consider
that the "useful" part of an individual represents its intersection with an optimal individual. In
our case, the useful part of an individual contains genes representing the fact that query terms
are present in the description of relevant documents or absent from the description of non-
relevant documents. It seems natural that if the useful part of an individual increases, its
performance should do the same. In information retrieval this hypothesis holds.

For a crossover operation between the parents parent1 and parent2, let us consider the
useful parts of these individuals, noted H1 ℘ parent1 and H2 ℘ parent2. In the general case,
by definition, the useful part of an individual is not unique. In this case, let indopt be the
individual of maximal performance having the largest intersection with parent1 ≈ parent2. We
define H1 and H2 as the intersection of each parent with indopt :

H1 = parent1 ∩ indopt , H2 = parent2 ∩ indopt

We try to form, by one crossover, an individual child containing a useful part bigger than
both H1 and H2. We can assume that o(H1) > o(H2) (otherwise we reverse the individuals).
The individual indopt is the best we can get from parent1 and parent2, so we should also
consider the useful part of the child according to it. Thus, we hope to obtain, from crossover
between parent1 and parent2, an individual child containing H3, so that o(H3) > o(H1).

The crossover site (crossSite) divides H1 and H2 each in two parts that represent a rate of
their total length noted as α for H1 and by β for H2, where 0 ��α, β �����VHH�)LJ������,I�ZH�QRWH
by Ifirst the interval [1..crossSite], we have :

α =
o H1 ∩ I first()

o H1() β =
o H2 ∩ I first()

o H2() (1)

The crossover operates on the parents and produces the children illustrated in Fig. 2. The
consistent information in a child is obtained by appending the consistent information (dotted
part) from the intervals inherited from each parent.

Then we can compute

6

o H3()= α ⋅ o H1()+ 1 −β() ⋅ o H2(), o H4()= 1 − α()⋅ o H1()+ β ⋅o H2()

As we have mentioned before, the performance of child1 exceeds the performance of the
parents if the length of its useful information, o(H3), is greater than the length of the useful
information in the parents. As we know that o(H1) > o(H2), this condition becomes :

H1

H2

parent1

parent2

α•H1 (1-α)•H1

β• H2 (1-β)• H2

crossSite

Fig. 1. Meaning of α and β.
H1

H2

parent1

parent2

H3

H4

child1

child2

Fig. 2. Crossover result.

o H3()> o H1()⇔ α ⋅o H1()+ 1 −β() ⋅o H2()> o H1()⇔ 1 − β() ⋅ o H2()

> 1− α() ⋅o H1()⇔
1 −β()
1 − α() >

o H1()
o H2()

(2)

So, the initial condition (o(H3) > o(H1)) is equivalent to the condition in the last line of
equation [2]. This means that the chance to obtain an individual of better performance than its
parents increases with the difference between α and β. In fact, the ratio between 1 - α and 1 - β
must be higher than the rate between the length of the useful information in the parents. We
have considered that H1 belonged to the parent of highest performance, so the rate
o(H1) / o(H2) is superior to 1. Generally, in our IR application at least, the individuals forming
the initial population share similar distributions of the gene values, and we will show that this
property determines the ratio (1 - α) / (1 - β) to be very close to 1. In this conditions, the
constraint expressed in equation [2] can no longer be fulfilled, and the performance of the
population cannot increase.

We will now consider the fact that the optimal individual indopt includes both H1 and H2.
Let I be an interval (a set of loci). We state the hypothesis that, because of the uniformity of

the population, the length of the intersection of I with each of H1, H2, and indopt is
proportional with their length :

o I ∩ H1()
o H1() ≈

o I ∩ H2()
o H2() ≈

o I ∩ indopt()
o indopt() (3)

7

By the statistical law of big numbers, a large individual size, as in our case, should increase
the chances that the hypothesis holds. Equation [3] can be transformed as follows :

o I ∩ H1()≈ o H1()⋅
o I ∩ indopt()

o indopt() , o I ∩ H2()≈ o H2()⋅
o I ∩ indopt()

o indopt() (4)

If we replace the interval I in equation [4] with Ifirst , we can reconsider the values of α and
β according to equation [1]:

α =
o H1 ∩ I first()

o H1() ≈
o indopt ∩ I first()

o indopt() , β =
o H2 ∩ I first()

o I first() ≈
o indopt ∩ I first()

o indopt() , α ≈ β (5)

Equation [5] indicates that if the population is uniform, the values of α and β are almost
equal. As their ratio is close to 1, it is no longer possible to fulfill the condition [2] wherever
the cross site may be. Again, this statement implies that the performance cannot be improved.
This problem resembles a known problem of afine combinations.

Table 2. Histograms for the CACM collection

Individual Histogram #Couples µ σ
indopt 130 135 182 232 451 652 890 1303 1374 1923 1020 8292 8.14 2.45

Indexed 15 23 28 54 103 151 156 254 241 361 202 1588 8.13 1.93

The hypothesis of uniformity expressed in equation [3] is rather hard to verify. In our case,
the useful information in each individual consists in the presence of query terms in the
description of relevant documents and the absence of the same search keywords in the
description of non-relevant documents. As this last part of the information is to large to
significantly influence equation [3], we have considered only the information about relevant
documents.

To have an idea about the credibility of the underlying hypothesis of uniformity, we have
analyzed the distribution of the query terms in the descriptions of the relevant documents in
the researched individual (indopt) and in the automatically indexed individual for the two
collections. The researched individual indopt is obtained by assembling all the query terms for
all the relevant documents and nothing else. We have divided the documents in classes of 300
documents for the CACM and of 150 documents for the CISI. For example, the third class for
the CACM collection contains the documents with numbers between #601 and #900. For the
CISI collection, the third class contains documents with numbers between #301 and #450.

The number of couples
(term Q, relevant document for Q) for any query Q

found in each class are contained in Tables 2 and 3 (values depicted under the label
"#couples"). The same information is presented in Fig. 3. The column #couples contains the
total number of such couples in each individual and corresponds to o(Hi). We have added to
the histograms the average class (µ) and the corresponding standard deviation (σ).

We can notice from Fig. 3 that the distribution of the useful information between classes of
both indopt and indexed individuals are similar, and that the average class and the standard
deviation are very close for the two individuals. These remarks confirm the hypothesis
expressed in equation [3].

For a better understanding of the meaning of this formula in our case, we have applied it to
the seventh class of the CACM collection (document numbers between 1801 and 2100) and to
the first class of the CISI collection (document numbers between 1 and 150). Both values are

8

depicted in bold in Tables 2 and 3. The ratio between the number of couples in these classes
and the total number of couples in the individual they come from are very close for each
collection :

CACM

indopt
890

8292
= 0.107

Indexed
156
1588

= 0.098

CISI

indopt
1218
9961

= 0.122

Indexed
316
2669

= 0.118

These results suggest that the hypothesis expressed in equation [3] holds and, according to
equation [5], the parameters α and β are almost equal. It seems a good explanation for the fact
that, in many of the crossover operations that we observed, the children show less
performance than the best of the parents, phenomenon that dramatically restricts performance
improvement.

Table 3. Histograms for the CISI collection

Individual Histogram #Couples µ σ
indopt 1218 1179 1148 1244 1401 1101 518 978 587 587 9961 4.84 3.53

Indexed 316 295 307 375 349 298 139 280 162 148 2669 4.87 3.54

0

2000
µ

0

2000 µ

CACM indopt CISI indopt

0

500 µ

0

500
µ

CACM Indexed CISI Indexed

Fig. 3. Graphical presentation of the histograms.

3.3. Description and evaluation of the new operator
The analysis presented in the preceding section has led us to implement a new crossover

operator, called dissociated crossover. The main idea is to force the parameters α and β to take
different values no matter what information the parents might contain. To do this, we have
introduced a second cross site.

Let parent1 and parent2 be two individuals and 1 � crossSite1 � crossSite2 � L two
crossover sites. The new individuals child1 and child2 are created in the following manner:

9

child1 i() =
parent1 i() if i ≤ crossSite1

parent1 i()or parent2 i() if crossSite1 < i ≤ crossSite2

parent2 i() if i > crossSite2

,

child2 i() =
parent2 i() if i ≤ crossSite1
0 if crossSite1 < i ≤ crossSite2

parent1 i() if i > crossSite1

(6)

The difference between the simple two-point and the dissociated crossover operators is
depicted in Fig. 4 from which one can see that

• the simple two-point crossover applies the same two simple crossover operations to
each parent, but

• the dissociated crossover applies a different simple crossover operator to each parent.
In this case, the question is not "how do we obtain each child", but "what happens to each
parent".

parent2

child1

child2
two-point crossover

child1

child2

or

0 dissociated crossover

crossSite2crossSite1

Fig. 4. Dissociated crossover versus two-point crossover.

Table 4. Results of the retrospective transient GA
Precision (%change)

CACM CISI
Population classical dissociated classical dissociated
Query learn 38.16 43.95 (+15.73%) 24.90 25.74 (+3.37%)
Title 37.93 42.01 (+10.76%) 21.38 23.18 (+8.42%)

Table 5. Results of the user transient GA
Precision (%change)

CACM CISI
Population classical dissociated classical dissociated
Query learn 37.85 42.9 (+13.34%) 22.01 24.57 (+11.63%)
Title 37.92 41.49 (+9.41%) 20.0 21.82 (+9.1%)

The difference between the two operators is essential, because the analysis made in Section
3.2 for the simple crossover holds for the n-point crossover (n > 1), but does not hold for the
dissociated crossover.

The results obtained by the modified GA through various generations show a greater
performance diversity. The new method systematically shows better results than the classical

10

GA and the difference is almost always significant. Tables 4 and 5 present a comparison
between the two methods in 10 generations.

To complete the results, Table 6 presents a comparison between the crossover operators,
considering the percentage of queries where each algorithm is better and significantly better
(difference > 5%) than the other. Thus, the second and third columns treat the new algorithm,
the next two treat the classical GA, and the last column shows the percentage of queries where
the methods gave the same results. These results confirm the fact that the new operator not
only behaves better on the whole, but on a greater number of queries as well.

4. RELEVANCE FEEDBACK

The research in this article uses a transient approach to the GA, as we have specified it in
the first section. To compare the GA with a classical transient learning algorithm in
information retrieval, we have tested a form of relevance feedback under the same
experimental conditions. This chapter presents the method and compares it with the GA.

Many authors have used this simple and efficient method and many variants of it exist. We
can find some of them in (Salton and Buckley 1990; Dillon and Desper, 1980). The general
idea is to modify the query according to the relevance judgments given by the user, in order to
modify the request and to obtain better search results. We have chosen the relevance feedback
variant showing the best results in (Salton and Buckley, 1990), that is the dec-hi (Ide, 1971).

The method consists in showing the user a chosen number of documents, classified by the
system on the top of the list, and to make him judge them. On this basis, the query is modified
by including or enhancing the terms appearing in the relevant documents and removing the
terms appearing in the first top non-relevant document.

Table 6. Comparison of the operators by query percentage

Collection Dissociated Significant Classical Significant Equality

CACM 60.33% 47.67% 9.67% 5.33% 30%
CISI 70% 46.67% 20.95% 10.48% 9.05%

Table 7. Residual evaluations for the CACM collection
Precision (%change)

Algorithm 5 docs 10 docs 15 docs 20 docs 30 docs
GA - query
learn dissociated

32.70-41.57
(+27.67%)

32.70-44.78
(+37.53%)

32.70-44.07
(+35.36%)

32.70-44.64
 (+37.1%)

32.70-42.9
(+31.2%)

Rel FB - user 19.34-25.95
(+34.19%)

16.31-24.24
(+48.62%)

15.57-23.83
(+53.08%)

13.48-22.1
(+64.01%)

11.70-21.87
(+86.95%)

Table 8. Residual evaluations for the CISI collection
Precision (%change)

Algorithm 5 docs 10 docs 15 docs 20 docs 30 docs
GA - query
learn dissociated

19.83-22.55
(+12.08%)

19.83-24.81
(+23.3%)

19.83-25.44
(+26.46%)

19.83-25.24
(+25.44%)

19.83-24.57
(+23.9%)

Rel FB - user 17.69-22.31
(+26.16%)

16.70-22.71
(+36.02%)

16.34-23.24
(+42.28%)

14.62-22.83
(+56.14%)

13.07-23.73
(+81.62%)

11

The query is modified according to the following equation :

q’= q + di
all rel
∑ − dtop non rel

in which q’ is the new query, q is the previous query and di document vectors.
If the evaluation of the modified request includes the documents already seen, we can call

this evaluation a retrospective one, and it leads to a biased performance measure. A second
evaluation method, called residual, removes from the final retrieved list all the documents
seen by the user. Tables 7 and 8 show the results of this evaluation compared with the GA (10
generations), by variation of the number of documents seen by the user (notation: 5 through
30 docs).

As the two methods do not have the same performance baseline, we cannot directly
compare their results. The only comparison criteria can be the percentage of change (in
parenthesis in the tables) from the baseline. According to it, the relevance feedback seems to
perform better than the GA. Moreover, the former method is faster, easier to implement, and
easier to understand.

We also know that it is easier to increase the performance from a low baseline. It is the case
for the relevance feedback, and this fact moderates our optimism about it. As an advantage of
the GA, we can cite its probabilistic feature that assures a different result at each run even on
the same query.

5. CONCLUSION

The goal of this article is to introduce a new crossover operator for the GA used in IR. The
analysis presented in the third section shows the origin of the new operator, and the results,
compared to the classical GA, indicate that the crossover operator can be improved.

Thus, the new operator shows significantly and systematically better results than the
classical one. This fact indicates that the new operator is well adapted for our research domain
(IR) and encourages us to continue this research in other domains.

A comparison between our application of the GA and the method of the relevance feedback
shows that, even if the GA is less efficient than more direct methods, it still has its advantages
and will probably continue to be studied in the future.
Acknowledgments - This research was supported by the SNSF (Swiss National Science Foundation) under grant
20-43’217.95.

REFERENCES

Beasley, J. E. & Chu, P. C. (1996). A Genetic Algorithm for the Set Covering Problem. European Journal of
Operational Research, 94, 392-404.

Blair, D.C. (1990). Language and Representation in Information Retrieval. Amsterdam: Elsevier.
Brassard, G. & Bratley, P. (1994). Fundamentals of Algorithmics. Prentice Hall.
Chen, H. (1995). Machine learning for information retrieval: Neural networks, symbolic learning, and genetic

algorithms. Journal of the American Society for Information Science, 46(3), 194-216.
De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. (Doctoral

dissertation, University of Michigan). Dissertation Abstracts International, 36(10), 5140B.
Dillon, M., & Desper, J. (1980). Automatic relevance feedback in Boolean retrieval systems. Journal of

Documentation, 36, 197-208.

12

Efron, B. (1986). How Biased Is the Apparent Error Rate of a Prediction Rule. Journal of the American Statistical
Association, 81 (394), 461-470.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

Gordon, M. (1988). Probabilistic and genetic algorithms for document retrieval. Communications of the ACM,
31(10), 1208-1218.

Gordon, M. (1991). User-Based Document Clustering by Redescribing Subject Descriptions with a Genetic
Algorithm. Journal of the American Society For Information Science, 42(5), 311-322.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: Univ. of Michigan Press.
Ide, E. (1971). New experiments in relevance feedback. In The Smart system - experiments in automatic

document processing, 373-393, Englewood Cliffs, NJ: Prentice Hall Inc.
Kulikowski, A.C. & Weiss, M.S. (1991). Computer systems that learn. San Mateo, CA: Morgan Kaufmann.
Mitchell, M., Forrest, S. & Holland, J.H. (1991). The royal road for genetic algorithms: Fitness landscapes and

GA performance. In Toward a practice of autonomous systems: proceeding of the first european conference on
artificial life, Cambridge (MA): The MIT Press.

Petry, F., Buckles, B., Prabhu, D., & Kraft, D. (1993). Fuzzy information retrieval using genetic algorithms and
relevance feedback. In Proceeding of the ASIS annual meeting, 122-125.

Raghavan, V.V. & Agarwal, B. (1987). Optimal determination of user-oriented clusters : An application for the
reproductive plan. In Proceedings of the second conference on genetic algorithms and their applications,
Hillsdale, NJ, (pp. 241-246).

Salton, G., & Buckley, C. (1990). Improving performance by relevance feedback. Journal of the American
Society for Information Science, 41(4), 288-297.

Salton, G., Fox, E., & Wu, U. (1983). Extended Boolean information retrieval. Communications of the ACM,
26(12), 1022-1036.

Savoy, J. & Vrajitoru, D. (1996). Evaluation of Learning Schemes Used in Information Retrieval. Technical
Report CR-I-95-02, Université de Neuchâtel, Faculté de droit et des Sciences Économiques.

Spears, W. (1995). Adapting crossover in evolutionary algorithms. Proceedings of the fourth annual conference
on evolutionary programming.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J. D. Schaffer (Ed.), Proceedings of the third
international conference on genetic algorithms, San Mateo (CA): Morgan Kaufmann Publishers.

Turtle, H. (1990). Inference networks for document retrieval. Doctoral Dissertation, Computer and Information
Science Department, University of Massachusetts. Technical Report COINS Report 90-92, October 1990,
ACM-TOIS.

Vrajitoru, D. (1997). Apprentissage en recherche d’informartions. Doctoral thesis, University of Neuchâtel,
Faculty of Science.

Yang, J.-J., Korfhage, R.R., & Rasmussen, E. (1992). Query improvement in information retrieval using genetic
algorithms. Proceedings of TREC’1, NIST, Gaitherburgs (MD), (pp. 31-58).

Information Processing & Management, Vol. 34, No. 4, pp. 405-415, 1998.

