
An Application of Neural Networks to an Autonomous Car Driver

K. Albelihi1 and D. Vrajitoru1

1Computer and Information Sciences Department, Indiana University South Bend, South Bend, IN, USA

Abstract— In this paper, we present a car driving system
called “Gazelle” for a simulated racing competition. For this
application, we used both procedural methods and a neural
network capable of learning. We hoped that using neural
networks could lead the controller to derive more accurate
equations for driving the car based on data acquired in the
training process. We also expected that the more the network
is trained, the more precisely it will calculate the driving
information.

Keywords: neural networks, intelligent systems, learning

1. Introduction
In this paper we present a study on various methods that

can be applied for successfully driving a car in a simulated
environment in the presence of opponents. A longer and
more detailed version can be found in [1].

The interest in developing autonomous vehicles increases
day by day with the purpose of achieving high levels of
safety, performance, sustainability, and enjoyment. Driver-
less cars are ideal to use in crowded areas, on highways,
and because they ease the flow of the cars. Autonomous
cars can also reduce the chances of occurring accidents
caused by other cars or by pedestrians. There are many
research centers established around the world for developing
smart systems for driverless cars, such as the Center for
Automotive Research at Stanford University (CARS) [2].

In this paper we present an adaptive racing car controller
called Gazelle developed within TORCS (The Open Racing
Car Simulator) [3]. The TORCS system visualizes racing
cars with complex graphics based on physics principles [4].
TORCS attracts a wide community of developers and users,
and it is the platform for popular competitions organized
every year as a part of various international conferences
[5]. The program offers a server which implements races
combining multiple cars on a variety of tracks. A client
module can be written by the user supplying the actions of
an individual car. Our driver, called Gazelle, was submitted
to the TORCS competition organized by the Genetic and
Evolutionary Computation Conference in 2013 [6].

In this environment, each car is controlled by a process
that can access the current state of the car in the race,
consisting of information about the track, the car, and the
opponents [7]. Based on this information the controller
makes decisions to modify the following control units:

• the steering wheel with values in the range [-1, +1] for
a change in direction: -1 corresponds to −45o while +1

to 45o;
• the gas pedal [0, +1] for accelerating; a value of 0 will

result in losing speed;
• the brake pedal [0, +1] for decelerating;
• the gearbox with possible values in the set -

1,0,1,2,3,4,5,6 for choosing the gear [5].
Figure 1 shows a snapshot of the TORCS application.

The upper screen displays the client car and its information
such as the car’s rank, the total time that the car spent from
the beginning of the race, the best time that has been taken
to complete a lapse, and other measurements. The lower
screen shows the race from another angle that can highlight
opponent cars if any are present. We can also see some
statistics of the car such as gear levels and the speed of
the car.

Fig. 1: A Screenshot of TORCS during the race

The work in this paper is based on the EPIC controller as
presented by Guse and Vrajitoru in [5]. Epic was submitted
to the GECCO 2009 competition [8]. The Epic driver is
based on two components: determining the target angle for
turning in each frame, and determining the target speed in the
next frame. The controller calculates the target angle based
on the free available distance ahead. It also provides a sharp
turn detecting system which adjusts the target speed for an
approaching sharp turn to keep the car inside the track. It
uses Hill-Climbing techniques to adapt the speed parameters
to new tracks. However, this controller lacks a component to
handle opponents, and the movement along the track requires

716 Int'l Conf. Artificial Intelligence | ICAI'15 |

more fluency. The Gazelle driver improves the Epic code on
these two aspects.

Many approaches can be found in the literature for track
prediction with the purpose of optimizing the performance.
Such an example is the track segmentation approach, in
which the track is divided into pieces that are classified as
pre-defined types of polygons. Then the controller recon-
structs a full track model from these polygons, as presented
in [9]. Another controller based on the track segmentation
principle is proposed by Onieva et al. [4]. The architecture
of the controller consists of simple modules that control gear
shifting, steer movements, and pedals positions. In addition,
the target speed is adjusted by the “TSK fuzzy system”.
The most important aspect of this work is the opponent
modifier. It controls the driving behavior in situations where
an opponent is nearby by adjusting the steering controller
and the braking controller immediately.

A more recent work [7] introduces a driving controller
called AUTOPIA for the simulated racing car competition.
It provides a full driving architecture including six separate
main tasks: gear control, pedal control, steering control,
stuck situation manager, target speed determination, oppo-
nent modifier, and learning module. The paper provides
a simple and a powerful architecture especially for the
opponent modifier using heuristic rules.

Many learning approaches are used to find the optimal
path for the car to reduce the time required to complete
the race. An evolutionary learning approach for this purpose
is presented in [10]. Here, a self-adaptive evolutionary
strategy (SAESs) is used to derive the parameters involved
in determining the target speed in an efficient and easy to
generalize way. This driver also lacks an opponent handling
system. Another controller using an evolutionary learning
system is presented in [9]. This controller uses a simple
evolutionary learning approach to plan the path ahead for
the car.

More recently, another learning approach has used hyper-
heuristics in a real-valued mode in [11]. This system ap-
proaches the TORCS-based car system as a real valued
optimization problem and studies the performance of dif-
ferent methodologies. These include a set of heuristics and
their combination controlled by a selection hyper-heuristic
framework. The study shows that hyper-heuristics perform
well in the TORCS environment.

Artificial neural networks (NN) are also used as a learning
system, well recognized by the computer science community
and with many applications [12]. In [13], a human-like
controller using NN was submitted to the 2010 Simulated
Racing Car Championship. The controller builds a model of
the tracks using the NNs to determine the trajectory of the
car and the target speed. The NNs were trained with data
retrieved from a human player. This work shows satisfying
results of predicting the trajectory on new tracks; however,
the target speed is slower than the human’s on the same

tracks.
The remainder of the paper is organized in the follow-

ing way. Section 2 introduces the procedural algorithms
in Gazelle. Section 3 presents the application of NNs to
compute the target direction. Section 4 shows results from
the experiments, and the paper ends with conclusions.

2. Procedural Drivers
We started this research from a procedural driver previ-

ously developed in [5] called Epic, submitted to the GECCO
2009 competition [8]. After several improvements that we
will describe below, the new driver is called Gazelle. We
compare its performance with Epic as well as with a pilot
provided by the TORCS software called Simple Driver.

2.1 Epic Driver
The general algorithm of Epic consists in the following

steps [5]:
• calculate the target direction and speed,
• determine the correct gear,
• calculate the target angle based on the target direction,
• calculate the acceleration and the brake based on the

target angle and speed.
First, for the target direction, Epic starts by deciding if

the car can continue to travel in the current direction. If the
car is inside the track, close enough to the centerline, and
there is enough free distance ahead, then the car can persist
in the same direction. Otherwise Epic takes a new direction
by modifying the steering angle to get closer to the road
centerline.

Second, the target speed is computed. If the car is going
almost straight, the free distance ahead is large enough, and
no sharp turn is expected shortly, then the car speeds up
towards the maximum value. In any other case, a large value
for the target speed is set to start with, which is first scaled
by the sine of the target angle for steering the angle and
with the available free distance in the target direction.

Epic used a simple Hill Climbing technique to adjust
several parameters that affect the control units of the car.
Thus, the controller uses a dynamic adaptation mechanism
to tune the racing car’s behavior to a new track. If no damage
has been recorded during this first lapse, the parameters
used for calculating the maximal speed in each situation
are incremented to make the car go faster. Otherwise every
time the car gets out of the track or records damage without
an opponent being close by, the pilot will keep the same
values for these parameters or will decrease them to make
its behavior safer.

Epic has several well-developed functions, however, it
required some improvements such as handling opponents,
enhancing the trajectory stability on the road, and anticipat-
ing sharp curves better.

Int'l Conf. Artificial Intelligence | ICAI'15 | 717

2.2 The Gazelle Controller
The Gazelle controller consists of three components:

the target direction unit, the target speed unit, and the
opponent adjuster. The target direction unit controls the
direction in which the car is moving. The target speed unit
adjusts the speed based on the target direction, while the
opponent adjuster adjusts the direction and speed based on
the opponents’ presence. Below we will describe each unit
in more detail.

Target Direction Unit
The unit determines the target angle using the following

guidelines:
If the current direction of the car is close enough to the

road centerline, there is enough distance straight ahead, and
the car is safely inside the track, then the car can continue
in the same direction.

Otherwise, we start from the direction of the road center-
line, and scan by 10 degrees in the direction in which the
distance ahead increases, until we find an angle at which it
decreases, or we reach the maximal turn angle of ±45o.

If the car is too close to the border of the road
or gets outside, we add a direction change to move it
back inside. Currently, the borders threshold, denoted by
safelyInsideTrack, is at 85% distance from the center of
the road, to account for the width of the car. Let trackPos

be the current position of the car on the road, taking values
between -1 and 1. If |trackPos| > safeInsideTrack, then
the new target angle is computed as:

−25 ∗ sign(trackPos)(|trackPos| − safeInsideTrack)

where the function sign returns -1 for a negative number,
0 for 0, and 1 for a positive number. This formula scales
25 degrees by how far the car is from the threshold. If the
computed target angle already has a value of the same sign
but of a larger absolute value, then this new target angle
is not used because the normal method is performing the
adjustment already.

If the current turning angle is good enough, we maintain it
for movement continuity. This is determined by comparing
the free distance ahead with the free distance 10 degrees
left and right; if the distance ahead is the largest of the
three values, then we can maintain the current angle. This is
an addition to the Gazelle controller to improve the fluency
of the car’s movement.

Target Speed Unit
The target speed is computed once we know the target

angle. The unit determines the speed using the following
guidelines:

If we are going almost straight or on a fast curve, if
the distance ahead is large enough, and if no sharp turn
is coming ahead, we aim for a configurable high speed
parameter called sundayDriver.

Otherwise the target speed starting from the
sundayDriver value is first scaled directly proportional
with the cosine of the target angle for the change in
direction and with the available distance in the aimed
direction. This way, the smaller the turning angle is, the
larger the speed will be. Similarly, the more distance is
available ahead, the faster the car will go.

Let safeSpeed be a value for the speed that we think will
be safe for any curve, such as 30 km/h. Let spaceFactor be
the available free distance in the aimed direction normalized
by the maximal sensor range (100m). The speed is computed
as:

targetSpeed =
safeSpeed + (sundayDriver − safeSpeed)∗

cos(targetAngle) ∗ spaceFactor2

The resulting target speed is scaled afterwards by a factor
depending on the sharpest turn in the road detected ahead,
20 degrees left and right of the aimed direction. The purpose
of this is to anticipate situations where the speed needs to be
reduced. Thus, a small difference in the free distance ahead
represents a possible sharp turn approaching that requires a
slower speed to be taken safely.

The sharp turn detection algorithm and the basic ideas in
computing the speed are the similar in Gazelle to Epic, but
the practical equations they comprise have been refined.

Opponent Adjuster Unit
We put more efforts into building a component for

dealing with opponents because the car’s performance can
be improved by handling the opponents properly. As we
mentioned previously, most of the controllers we discussed
in the introduction don’t handle the opponents well or at
all. Neither the Simple Driver, the controller provided as an
example by the TORCS competition, nor the Epic controller
can deal with the opponents. In our opponent adjuster, if an
opponent violates the chosen tolerance values of closeness as
determined by the opponent sensors in each direction, then
the gas/brake control and steering control will be modified
to avoid the collision the following way:

If there is an opponent at a distance of 200m or less,
then a test will determine if it violates the safe distance (the
tolerance values) in each of the available sensor directions.

If there is an opponent in the front of the car, on the
sides, or in the rear of the car within an unallowable space,
the following flags are turned on, causing a reaction of the
respective modules:

A Brake flag for an opponent in the front. This flag takes
care of the sensors in the range of −40o to 40o [4]. If
an opponent is found within an unallowable space and its
speed is close to ours, the car should brake immediately by
modifying the brake/accelerate value to half of the current
speed. The tolerance values are shown in Table 1 and were
adopted from [4].

718 Int'l Conf. Artificial Intelligence | ICAI'15 |

Orientation of the Opponent Sensor Tolerance Value
±40o 6m
±30o 6.5m
±20o 7m
±10o 7.5m
0o 8m

Table 1: Opponents adjuster over the gas and brake action

A Steering flag for an opponent in the front or on the side
takes care of the opponent sensors in the range of −100o

to 100o, also adopted from [4]. An overtaking maneuver
requires to modify the steering angle if the opponent violates
the tolerance values. The tolerance values are shown in Table
2.

Orient. of the Opponent Sensor Tolerance Value Increment Value
0o, ±10o 20 m ±0.20o

±20o 18 m ±0.18o

±30o 16 m ±0.16o

±40o 14 m ±0.14o

±50o 12 m ±0.12o

> ±50o 10 m ±0.10o

Table 2: Opponent sensors values for overtaking

An Accelerating flag for an opponent at the rear of the car
driving at an equal or higher speed than ours. Increments
values are summarized in the third column of Table 2.

Trouble Spots Register
This component was added in order to avoid accidents

caused by mistakes in predicting the right steering angle,
leading the car out of the track. In TORCS competitions,
the race starts with a training lapse which allows drivers
to learn the track. After that, the actual race takes place in
the second lapse. Thus, we introduced the “Trouble Spots
Register” detecting and storing places in the track where the
car gets out of the road starting from the training lapse. In
the subsequent lapses of the circuit, to avoid repeating these
mistakes, we use a method decreasing the speed whenever
the car is close to a trouble spot, by an amount inversely
proportional to the distance to the trouble spot.

A list of “trouble spots” on the road will be stored by the
Gazelle driver in a persistent memory space in order for it
to be accessible at later points during the race. To achieve
this, the latest position of the car on the road is stored in
each frame. Then when the code detects that the car got out
of the road, this position is added to the list.

In each frame, the current position of the car is compared
to the trouble spots. If we are close enough to one of them,
the speed will be adjusted as mentioned above. The closer
we are to the trouble spot, the faster the car will decelerate.
The issue arises from the fact that the visibility of the driver
is limited to 100m ahead and that it is difficult to break
down the speed fast enough if the situation requires it. For
this reason we adopted the approach of detecting a sharp
turn on a road combined with the trouble spots detector.

3. Neural Network Application
We employed a NN in the Gazelle system to determine

the direction of movement of the car. We used a classic
perceptron NN with one input layer, two hidden layers, and
one output layer. We trained it with the back-propagation
algorithm and tanh as the neuron activation sigmoid func-
tion. We used recommendations from literature [14], [15]
and experiments to determine the number of hidden layers
and the number of neurons on each of them.

In our model, the input layer consists of 5 neurons for the
following input values:

• the last target angle in the previous frame,
• the current angle with the road direction,
• the lateral offset of the car with the center of the road,
• distance1 and distance2, computed as the difference

between the free distance ahead in the direction of
movement and the free distance ahead at an angle of
±10o. This should indicate in which direction the road
is turning.

The output of the NN consists of the target angle for
steering the car. We tested two separate models for it: one
with a single output neuron, and one with 5 output neu-
rons. For the second model, we divided the output interval
[−340, 34o] for the output into 5 intervals: [−340,−17o),
[−170,−0o), [00, 17o), and [170, 34o]. This is based on the
observation that ±34o was the highest value for steering the
vehicle in the data we collected for training. We assigned a
neuron to each of the values −34o, −17o, 0o, 17o, 34o, then
we aggregated the output as a sum of the assigned values
weighted by the neurons’ output.

When training the NN, we first mapped the value of
an angle to the closest interval, which identified two
neurons with non-zero output. Then we assigned target
values between 0 and 1 to these two neurons based on the
placement of the angle in the interval.

Data Collection and Training
For this experiment, we trained the NN with data collected

from the procedural Gazelle. Thus, while the car is driving
with the pilot described in the previous section, we collect
the input as described in each frame, and then the output
angle determined by this method as intended output for the
NN. The model with 5 output neurons does not need separate
data collection, as the angles can be mapped to the output
for each of the 5 neurons on the spot as needed.

We used three tracks offered by TORCS for our ex-
periments: Alpine2, E-Road, and Forza, of total length
3773.47m, 3260.43m, and 5784.10m respectively. Figure 2
shows the shape of these tracks.

The raw data collected this way is not ready for training.
The number of individual points we collected varies between
3765 and 13140, which is too much. Another problem we
had to deal with is the uneven distribution of the data. Thus,

Int'l Conf. Artificial Intelligence | ICAI'15 | 719

Fig. 2: Test tracks: Alpine 2 (left), E-Road (center), and
Forza (right)

as the car goes straight for a large portion of each track,
data points where the output angle is close to 0 are more
numerous than any of the others. This can result in an over-
specialization of the NN to these angle values.

The collected data are also non-uniformly distributed from
a sequencing point of view. For the same reason as above,
data points where the output angle is almost 0 also tend to
appear together in clusters representing straight stretches of
the road. This can also contribute to over-specialization.

The first operation that we performed was filtering the data
to have a more even distribution. We started by dividing the
interval of observations for the output angle into interval of
0.1 radians length. We isolated one special interval between
[-0.01, 0.01] radians. This represents parts of the track where
the car goes almost straight. The rest of the interval between
-.5 to .6 radians was divided into 11 intervals of a length of
0.1 radians. We added one interval for any angle <-.5 radians
and one for any angle >.6 radians. This gave us 14 intervals
total.

For each of these intervals, we selected about 50 random
data points from each of them. For intervals where the
number of observations was less than 50, we kept all of
the observations. Figure 3 shows an example of the number
of data points in each interval before and after this filtering
process. We can see that the middle intervals initially con-
tained a lot more data than the extreme ones. After filtering,
the data is better distributed between the intervals.

The second operation performed on the data was to
randomize it. We performed a simple fair shuffle on the data
before feeding it to the NN for training.

In a first phase, we tested the NN trained with the data
collected from each track on the track itself. This testing
is called retrospective. In the second phase, we selected
the set of data that performed the best retrospectively, and
tested the NN trained with it on all the tracks. The first
evaluation shows if the NN is capable of learning. The
second evaluation shows if the NN can learn from one track
and then perform well on another one.

During the training process, we stored the weights of
the NN in the configuration where the average error is the
lowest. We called these the best weights. We compared the
performance of these settings with the use of the weights
in the NN at the end of the training process. The latter are
called the last weights.

Finally, we tested two modes for training the NN: one

Fig. 3: Training data collected from Forza before filtering
(top) and after (bottom)

where we fed the data file to the NN in 100 iterations,
and one where we fed it in 500 iterations. The experiments
show that the system doesn’t learn significantly more in
500 iterations, though the best weights are often recorded
between 100 and 200 iterations.

4. Experiments
In this section we present the results of the various models

on the 5 tracks with the parameters we described above.
For each track, we set the race at two lapses in all the
experiments. This allows us to see the effect of any learning
process taking place in the first lapse over the performance
of the car in the second lapse. An example of such a process
is the recording of the trouble spots. We used the value of
100 km/h as the safe speed and 150km/h as the maximum
speed for all the experiments, unless specified otherwise.

At the end of the two lapses, the program itself outputs
some information, such as the total time and the damage.
We will also report some other measures of performance:
the total damage to the car and the total distance covered
by the end of the race. The more distance is covered in one
lapse, the less efficient the driver is.

Table 3 shows a comparison of the procedural Gazelle
with the Epic and the Simple drivers. The table contains the
total time to finish two lapses (in seconds), the total distance
covered by the car (in meters), and the total damage to the
car. A time marked as N/A means that the car did not finish
the two lapses. The races are configured to terminate early

720 Int'l Conf. Artificial Intelligence | ICAI'15 |

if the car takes longer than 12 minutes to finish, or if the
damage is too high.

Track Driver Time (s) Distance (m) Damage
Alpine2 Simple 7:08 7573.55 0

Epic 6:44 7574.1 0
Gazelle 5:33 7571.96 3314

E-Road Simple 5:38 6547.46 0
Epic 5:09 6546.23 0
Gazelle 3:36 6546.05 0

Forza Simple 6:14 5783.91 0
Epic N/A 5783.73 2186
Gazelle 2:42 5784.09 1051

Table 3: Procedural Gazelle results on 3 tracks, single car

From this table we can tell that the procedural Gazelle
is an improvement over Epic and the Simple Driver. It
completed all 3 tracks faster than the two other drivers
and with a slightly more efficient trajectory, based on the
total distance. Although the damage was rather high for the
Alpine2 track, it is still within the allowed amount.

The next experiment shown in Table 4 tested the three
drivers in the presence of opponents on the road. For this
purpose we added 3 drivers provided by the TORCS envi-
ronment: berniw1, lnfHist1, and inferno10. These opponents
have various levels of performance: high, medium, and low
respectively, as specified in the TORCS manual [16].

Track Driver Time (s) Dist. (m) Damage Rank
Alp2 Simple 3:06 + 1 lap 4379.32 3169 4/4

Epic 3:06 + 1 lap 4394.89 1634 4/4
Gazelle 3:03 + 1 lap 5919.3 3250 4/4

E-Rd Simple 3:28 6548.62 403 4/4
Epic 3:29 6648.71 139 3/4
Gazelle 2:17 + 1 lap 4347.97 0 4/4

Forza Simple 2:40 + 2 laps 2745.69 0 4/4
Epic 2:40 + 2 laps 2745.78 0 4/4
Gazelle 2:46 + 1 lap 5809.10 0 4/4

Table 4: Procedural Gazelle, race with 3 opponents

In this table, the total time shown in each case is the time
when the race was finished. Races with multiple cars are
terminated when all but one car have finished the two lapses,
so that the complete ranking of the cars can be determined.
The time shows how many lapses the car had not completed
by the time the race was finished.

On Alpine all 3 drivers finished last and did not complete
the last lapse. However, Gazelle managed to cover a much
longer distance than the Simple Driver and Epic before
the race was finished. The higher amount of damage could
indicate that this car kept closer to the opponents and was
damaged more by interacting with them. On E-road Gazelle
did worse than the two other drivers, but with no damage.
On Forza, Gazelle outperformed the two other drivers: it
completed one lapse before the race finished, while the
others didn’t, and it covered about twice as much distance.
Overall, we can conclude that Gazelle performs better than
Epic and Simple Driver in the presence of opponents.

The next set of experiments shows the results obtained
by the Gazelle using the NN for the target direction. Table
5 starts with the retrospective evaluation where the NN is
trained for each track with the data collected from that same
track. In this table, the time shown as “+1 lap” means that
the race was terminated before the last lapse was completed,
because the car ran out of time.

Track Output Weights Time (s) Dist. (m) Damage
Alpine2 1 last 8:13 7572.02 0

1 best 10:08 7572.78 510
5 last 9:02 7572.1 24
5 best 8:13 7573.58 0

E-Road 1 last +1 lap 439 2133
1 best 6:24 6546.11 0
5 last +1 lap 375.207 1454
5 best 6:22 6545.95 40

Forza 1 last +1 lap 2771.34 0
1 best +1 lap 9682.41 148
5 last 6:03 9751.94 85
5 best 11:44 11595.5 0

Table 5: Retrospective NN testing, 100 training iterations

Based on this table, we selected the data collected from
the Alpine2 track, as the NN trained with it performed well
more consistently than the others. Table 6 shows the results
of this data set in 500 training iterations. As we can see,
training the NN with additional iterations didn’t seem to
improve its performance.

Track Output Weights Time (s) Distance (m) Damage
Alpine2 1 last 9:12 7572.8 1065

1 best 10:00 7573.33 840
5 last 9:26 7572.76 1604
5 best 10:41 7572.28 0

Table 6: Retrospective NN testing, 500 training iterations

The data collected from the Alpine2 track is probably bet-
ter for training because this track is particularly challenging
by nature, presenting many curves of various difficulty in
both directions. Figure 4 shows a close-up of this track,
together with a snapshot of the car on this track.

Fig. 4: A screenshot of the Alpine2 track (left) and the car
driving on it (right)

In the next evaluation stage, we have chosen the data file
that showed the most promise: Alpine2, and tested the NN
trained with it on all the tracks. Table 7 shows the results

Int'l Conf. Artificial Intelligence | ICAI'15 | 721

of the NN trained with the data from the Alpine2 file in
100 iterations, with 5 output neurons, and using the best
weights model. These settings showed the best performance
in the retrospective evaluation. For easier comparison, we
also added the results on the Alpine2 track itself, and the
results without the NN.

Track NN Time (s) Distance (m) Damage
Alpine2 yes 8:13 7573.58 0

no 5:33 7571.96 3314
E-Road yes 8:31 6547.28 0

no 3:36 6546.05 0
Forza yes +1lap 5150.39 1

no 2:42 5784.09 1051

Table 7: Results of the NN trained on Alpine 2, 5 output
neurons, 100 iterations, best weights

These results show that our NN can learn indeed to drive
the car from the data we collected, but the performance
is not as good as the procedural algorithm. However, the
observed driving style of the car with a NN is smoother
and less prone to sudden changes in direction than the
procedural methods. With a mechanism that allows it to
continue training while being in use, we hope to eventually
achieve better performance than the procedural method on
all aspects.

The procedural Gazelle has been submitted to the TORCS
competition organized as part of GECCO 2013 [6]. We
passed the qualification round and ended up in 7th place in
the final round.

Future Work
We intend to extend this research in two directions. First,

we are currently working on developing some methods to
allow the NN to continue training during the race, so that it
can better adapt to new tracks. This involves some measures
to let the driver know when the trajectory is not ideal, as
for example, when exiting the road, or when colliding with
the road shoulders. It also means that we must be able to
estimate a better direction at that moment and feed it to
the NN so it can train with it. A second direction involves
collecting better training data, so that the NN has a chance to
outperform the procedural algorithm. Some possible better
sources of data would be either data collected from humans
driving the car, or data collected by observing other pilots.
It is also possible to use a trajectory optimization algorithm
such as the one suggested in [17].

5. Conclusion
After the experiments we presented, we can conclude that

Gazelle is an improvement over Epic because the Gazelle
was able to handle the opponents efficiently and it succeeded
in avoiding the damage caused either by colliding with other
opponents or by hitting the hard shoulders on the side of the
road. Also, we can conclude that the NN can learn to drive

the car efficiently and is adaptable to new tracks of any type
or any shape. Even though the Gazelle took a longer time
to complete the race with the NN than with the procedural
methods, we can adopt a higher value for the maximum
speed for the next competition to improve the total time.

Our experiments showed that it is not always useful
to train the NN a lot more than 100 iteration with one
set of data. In addition, using the weights in the network
sampled when the lowest value of the error is achieved
is better. Dividing the output value into output for several
neurons proved efficient, as each output neuron has less to
learn. Finally, the quality of the data for training and the
proper processing of this data is also important for a good
performance of the NN.

References
[1] K. Albelihi, “The gazelle adaptive racing car pilot,” Master’s Thesis,

Indiana University South Bend, 2014.
[2] “The center for automotive research at stanford,”

http://me.stanford.edu/groups/design/automotive/.
[3] D. Locaiono and L. Cardamone, “Simulated racing car championship

competition software manual,” April 2013.
[4] E. Onieva, D. A. Pelta, J. Alonso, V. MilanÃl’s, and J. PÃl’rez, “A

modular parametric architecture for the TORCS racing engine,” in
Proceedings of the IEEE Symposium on Computational Intelligence
and Games, 2009, pp. 256–262.

[5] C. Guse and D. Vrajitoru, “The epic adaptive car pilot,” in Proceedings
of the Midwest Artificial Intelligence and Cognitive Science Confer-
ence, South Bend, IN, April 17-18 2010, pp. 30–35.

[6] C. Blum, Ed., Proceedings of the Genetic and Evolutionary Computa-
tion Conference (SIGEVO), Amsterdam, The Netherlands, July 6-10
2013.

[7] E. Onieva and D. A. Pelta, “An evolutionary tuned driving system for
virtual racing car games: The autopia driver,” International Journal
of In telligent Systems, vol. 27, no. 3, pp. 217–241, Oct 2012.

[8] G. Raidl, Ed., Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO), Montreal, Canada, 2009.

[9] J. Quadflieg and M. Preuss, “Learning the track and planning ahead
in a racing car controller,” in Proceedings of the IEEE Conference
on Computational Intelligence and Games (CIGâĂŹ10), Copenhagen,
Denmark, August 18-21 2010, pp. 395–402.

[10] T. S. Kim and J. C. Na, “Optimization of an autonomous car controller
using a self- adaptive evolutionary strategy,” International Journal of
Advanced Robotic Systems, vol. 9, no. 73, pp. 1–15, 2012.

[11] M. Kole and A. Etaner-Uyar, “Heuristics for car setup optimisation
in TORCS,” in Proceeding of IEEE Symposium on Computational
Intelligence and Games,, Edinburgh, UK, 2012, pp. 1–8.

[12] P. N. S. Russell, Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, 2009.

[13] J. Muñoz and G. Gutierrez, “A human-like torcs controller for the
simulated racing car championship,” in Proceedings of the IEEE Sym-
posium on Computational Intelligence Games (CIG), Copenhagen,
Denmark, August 18-21 2010, pp. 473–480.

[14] A. Blum and R. Rivest, Advances in Neural Information Processing
Systems. San Mateo, CA: Morgan Kaufmann, 1989, ch. Training a
3-node neural network is NP-complete, pp. 494–501.

[15] Applying Neural Networks: A Practical Guide. Academic Press,
1996.

[16] D. Loiacono and L. Cardamone, “Simulated racing car championship
competition software manual,” April 2013.

[17] E. Velenis and P. Tsiotras, “Minimum time vs maximum exit velocity
path optimization during cornering,” in Proceedings of the 2005
IEEE International Symposium on Industrial Electronics, Dubrovnic,
Croatia, June 2005, pp. 355–360.

722 Int'l Conf. Artificial Intelligence | ICAI'15 |

