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Abstract   
 
      Database integrity is a central underlying issue in the 
implementation of database technology.   Trust in the 
correctness of the data that is held by the database system 
is a prerequisite for using the data in business, research or 
decision making applications.  This paper will begin by 
discussing the areas that pose challenges in ensuring 
database security and reliability.  It will look at the benefits 
and limitations of possible hardware and software solution 
strategies, especially with respect to the considerations of 
system overhead and the effect on system performance.  It 
will specifically discuss the use of error checking and 
correction codes to address integrity issues and consider 
how these codes may be used to help improve the 
performance of database systems.   
   
1. Introduction 

 
In a database system, a method to ensure data integrity 

is fundamental to providing database reliability and 
security.  In particular, as data is communicated or 
distributed over networks, a method to validate information 
as authentic is required.  The value of a database is 
dependent upon a user’s ability to trust the completeness 
and soundness of the information contained in the data [1].   

Integrity requires that data is protected from improper 
modification, and integrity is lost if unauthorized changes 
are made by intent or by accident [1].  Database integrity 
problems can have many sources.  A problem may be 
caused by a hardware malfunction, a software bug, an 
attack on a system, or a user error.   The undesirable 
changes to a database may also be classified broadly as 
malicious and non-malicious [2], in other words, keeping 
unauthorized users from accessing or changing the data and 
keeping authorized users from accidentally corrupting the 
data. 

There are many strategies to try to avoid, detect, and 
correct problems .  Avoidance strategies include encrypting 
data, journaling, or using read-only storage in appropriate 
situations.  Errors may be detected by replicating or 
mirroring data, parity checking, and the use of checksums 
generated by several kinds of hash functions.  Correction 
may be accomplished by majority vote if mirroring is done 
with more than one copy, by the use of RAID level 5 disks, 

or by applying error correction codes such as Hamming 
codes. 

If loss of integrity is not corrected, the continued use of 
corrupted data could result in further damage, inaccuracy, 
or erroneous decisions [1]. 

Some  methods used to ensure database integrity may 
also have some additional welcome side-effects.  They may 
be able to enhance database security by detecting 
unauthorized modifications to files.  They may enhance 
database performance if a system can take advantage of the 
redundant information required.  Integrity checking may 
also be able to identify a hardware failure in a disk by 
detecting data corruption [1].   

This paper begins by looking at storage system 
problems and solutions and available database tools and 
strategies.  It will then specifically consider the role of error 
correcting codes and secure hash algorithms in providing 
data security and integrity.  It concludes with some 
additional benefits that may be realized with some of these 
methods and proposes a performance and security 
enhancement for the minidb system.  

  
   
2. Disk Storage Systems 
 

Disks can fail when a single bit or few bits will flip.  
This problem can often be detected and corrected at the 
hardware level by using error correcting codes in the 
embedded system of the drive.  More extensive permanent 
damage to a drive can occur with a head crash or a media 
scratch.  Mechanical failures can affect a drive motor or 
arm and electrical problems can damage the in-drive 
circuits [3].   

Disk drive firmware can contain upwards of 400,000 
lines of code.  Firmware problems can result in permanent 
or transient block corruption or performance problems.  
Errors can also occur in the transport, the bus controller, or 
in the low-level software drivers.  Figure 1 from 
Prabhakaran, Bairavasundaram, Agrawal, Gunawi, A. 
ArpaciDusseau, and R. ArpaciDusseau [3] illustrates the 
complexity of the layers of the storage system.  They 
classify disk failures as occuring at three levels: the fail 
stop which renders the entire disk unavailable, a  block level 
failure, and block corruption where the individual data 
within a block has been altered.   
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Figure 1: Illustration from Prabhakaran et al. [3]  
 
 
Database integrity relies on being able to design 

prevention, detection, and correction strategies to overcome 
these vulnerabilities and to accomplish that in a way that 
will still maximize system availability and performance.  
 
2.1 RAID Disk Technology 
 

The design of RAID technology [4] has allowed 
improvement in storage performance, reliability and 
recovery.  The levels of RAID organization divide the disks 
into reliability groups with each group having extra check 
disks containing redundant information.  When a disk fails, 
the assumption is that within a short time the failed disk can 
be replaced and the information can be reconstructed on the 
new disk using the redundant information.  The RAID 
designs offer varying levels of cost and I/O performance.  

RAID level 1 mirrors each disk with a full image copy.  
Every write to a disk is also a write to a check disk.  
Although the check disk can be used to improve read 
performance, this is a costly option.  Although the integrity 
of the database can be checked by comparing the copies, 
there may not be an indication of which copy is good unless 
more than two copies are maintained.  Both user errors and 
malicious changes may be replicated on all copies of the 
data.  Possibly the strongest advantage of this RAID level is 
the ability to immediately substitute the mirror copy in the 
case of a catastrophic problem. 

RAID level 2 bit -interleaves the data across the disks 
in a group and adds enough check disks to correct a single 
error.  The error correction at level 2 is based on the 
Hamming code algorithm which is discussed in section 3.  
For a group of 10 data disks, this requires 4 check disks 
which is a cost saving improvement on the storage 
requirement from level 1.  For a large data transfer 

operation, performance may improve because the controller 
can transfer the I/O in parallel across several disks but 
unfortunately, for small data transfers, performance can be 
hindered because all of the disks in a group mu st be 
accessed for every I/O.   

The third RAID level takes into account that most disk 
controllers can detect which disk has failed and use the 
parity of the remaining good disks to reconstruct data after 
a failure.  This decreases the reliability overhead cost at the 
third RAID level.   

The fourth level was designed to bring down the cost 
of small disk transfers by striping the data across the array 
at the sector level instead of at the bit level.  This reduces 
the write access requirement to two disks, a data sector and 
the parity sector from the check disk.  This strategy suffers 
from a bottleneck caused by the number of accesses 
required of the single check disk.   

As shown in Figure 2 from [5], RAID level 5 improves 
upon level 4 by distributing the data and the check 
information by sectors over all of the disks in a group.  This 
design improvement allows for all of the disks in a group to 
be used to distribute the data access load and removes the 
bottleneck of having only a single check disk.  

RAID level 6 adds an additional set of parity 
information on each drive.  This allows a RAID 6 array of 
disks to recover from two simultaneous disk failures for a 
critical application.  The cost of RAID level 6 is a decrease 
in performance and an increase in the storage requirement 
compared to level 5 [6].    

Using large numbers of smaller capacity disks will tie 
up less of a database during the reconstruction that would 
be required after a failure.  Note that level 5 requires that all 
of the disks in a group participate in an offline recovery 
operation while the advantage of level 1 is that it only 
requires the single mirrored disk. 

The RAID strategies allow up to two disk failures to be 
recovered but were designed to be used with fail stop disk 
technology.  They als o require the cost of multiple disks to 
provide the necessary redundancy. 

 
2.2 Current Storage System Research 
 

Storage systems are moving toward the use of lower 
cost disks that do not follow the fail stop model which 
causes the disk to stop operating if there is a hardware 
error.  An undetected fault can lead to further data loss so 
that danger needs to be balanced against the considerable 
costs that can be incurred in both performance and storage 
utilization to provide an acceptable level of error detection 
and correction.  

RAID technology is not an option in the PC market 
where the standard is a computer with one disk drive.  It is 
estimated that to add a second disk to these systems would 
cause the price to increase one hundred dollars. Ongoing 
research is investigating ways to improve the current  
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In RAID level 5, the parity blocks (*) contain a 
representation of the data from the blocks in the same 
stripe. 

 
 

If a drive fails in the array, the data from the failed physical 
drive can be reconstructed onto the hot-spare drive.  
 

 
 
Figure 2: RAID level 5 design improvement [5] 
 
 

system’s ability to detect and recover from errors within the 
constraints imposed by a single disk drive.  

Vijayasankar, Sivathanu, Sundararaman, and Zadok [7] 
propose an improvement to the current systems which 
incorporates the use of error correcting codes and 
remapping of bad blocks and which distinguishes blocks by 
their relative importance on the disk .  A higher level of 
importance is given to reference blocks which they define 
as blocks that impact the ability to reach other disk blocks.  
They call their system Self-Recovering Disks (SRDs).   

The SRD stores the checksum of each disk block and 
computes a comparison checksum during each block read.  
Their design is able to distinguish reference blocks as 
blocks which contain outgoing pointers to other blocks.  
When a reference block is created, its contents are 
replicated on the same disk but in a physically separated 
location to provide a higher level of insurance against a 
locally contained error. 

 Their method uses the MD5 algorithm (explained in 
section 3) to provide a collision resistant checksum for all 
blocks. The checksum is updated as each block is written to 
disk and recomputed and verified on a read operation.  In 
particular if there is a problem in a reference block, there 
are three redundant pieces of information available; the 
original data block, the replicated data block and the 
checksum.  If two of the three agree, the data can be 
reasonably recovered.  They propose that their system can 
be used to help protect the lower cost SATA drives which 
are now often used in desktop computers. They have 
calculated only a 1 – 5% performance overhead as 
compared to traditional disks. 

They also have compared their method which works at 
the disk level as a lower cost alternative to a software 

solution such as the IRON file system described below 
which also computes checksums for all blocks, replicates 
meta-data blocks and provides recovery for corrupted or 
inaccessible blocks [3]. 

Another higher level approach to this problem is to put 
more responsibility at the software level of the file system.  
File systems traditionally could trust disks to work 
correctly or to fail completely.  Specifically, it is again the 
newer and less expensive SATA disks which do not 
guarantee fail stop operation and which are increasing in 
use for not only desktop computers but for large-scale 
computers and data storage systems.  

Prabhakaran et al. [3] have classified failure detection 
and recovery techniques in three open source file systems, 
ext3, ReiserFS, and IBM’s JFS and as much as possible in 
Windows NTFS, a closed source system.  They designed 
their test workload to include the Posix API calls, functions 
such as path traversal, and files of sufficiently large sizes to 
exercise special features such as triple-indirect pointers.  
They stressed the systems by injecting faults such as block 
failures or data corruption and targeted both data blocks 
and reference block such as inodes.  

In general, they made specific observations of 
inconsistency in failure policy, errors in implementing the 
policy, and inability to deal adequately with partial disk 
failures.  Based on their analysis, they have further 
proposed an improved IRON (Internal RObustNess) file 
system.  Their system addresses the same issues as the self-
recovering disks but at the level of a software solution 
which places responsibility on the file system software to 
keep a checksum for all metadata and data blocks, to 
replicate all of the metadata blocks, and to use parity-based 
redundancy to protect data.  

 
3. Database Tools  

 
3.1 MySQL Database  

 
Database management systems provide many 

administration tools to ensure the security and integrity of a 
database.  The following discussion refers to examples 
from the MySQL database since it is a widely-used open 
source database [8]. 

To support the security of the database system, MySql 
incorporates a privilege system to ensure that users may 
perform only the operations allowed to them.  A user’s 
identity is determined both by their username and host from 
which they connect. Privilege levels can be specified at the 
operation level such as SELECT, INSERT, UPDATE, and 
DELETE.  As an additional security measure user 
passwords are hashed and stored in a 41-byte field (a ‘*’  
and a 160-bit value based on a SHA-1 hash). 

Damaged database tables can result from many sources 
including the hardware and software failures discussed 
above, improper shutdown, or file manipulation errors.  A 
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database administrator has many commands available to 
safeguard the database tables including: 
§ CHECK TABLE can be used at several levels to 

verify that a table was closed properly through 
doing a full key lookup for all keys to ensure 
100% consistency. 

§ CHECKSUM TABLE to report a table checksum.  
The CREATE TABLE statement option 
CHECKSUM will maintain a live checksum for 
all rows.  There is a small performance cost but it 
allows corrupted tables to be identified quickly.  

§ REPAIR TABLE to repair a possibly corrupted 
table. 

 
In addition, there are many system administration tools 

provided with MySQL that combine these commands into 
useful utility programs such as: 
§ mysqlcheck that checks, repairs, analyzes, and 

optimizes tables. 
§ mysqlbinlog that can read the binary log 

statements to help recover from a crash. 
§ mysqldump that dumps a MySQL database into a 

file as SQL, text, or XML 
§ mysqlhotcopy that can be used while the server is 

running to makes backups of MyISAM tables. 
 
Traditionally, MySQL had been designed to put the 

burden of incoming data validation on the application code.  
This philosophy has changed since version 5.0 to give an 
administrator an additional tool to specify an “sql_mode” 
variable which can choose server-enforced data integrity.  
The database will then validate incoming data and reject 
data that is the wrong datatype or data that violates basic 
integrity rules (such as a date of November 31st).   

In addition, if InnoDB tables are specified, foreign key 
constraints can be specified and enforced by MySQL.   
Table inserts or updates will be rejected if a foreign key 
value is specified that does not have a matching key value 
in the referenced table.  If a referenced key value is to be 
deleted or updated and there are matching foreign key 
values, MySQL provides the user with action options to 
choose such as CASCADE, SET NULL, or NO ACTION. 

System design choices are available to ensure the 
required level of protection for an application.  An 
application can use the protection of ACID-compliant 
transactions if they choose an InnoDB storage engine.  This 
protection costs CPU cycles and disk space so MyISAM 
tables can be the choice if transaction protection is not 
required and performance is the deciding factor. 

 
3.2 Tools for Backup and Recovery 
 

In a production environment, there are many strategies 
at the database level that are recommended as best practices 
to maximize the availability of a database.   

Advice from the IBM website strongly encourages 
database administrators to create offline backups on a 
regular schedule to provide periodic checkpoints and to 
combine that with the journaling options that are available 
to ensure that data is not lost [9].  This strategy can be used 
in the case of a failure while an update is taking place by 
using the journal to reapply or roll-back a transaction.  It 
can also recover if a database is corrupted, if for example a 
hardware failure occurs, by reinstalling the backup copy 
and applying the journal from that point forward. 

As another example, Microsoft SQL Server™ 2005 
software includes the ability to maintain a mirror database 
that is kept up-to-date with the production database, 
provides ways to perform automatic as well as manual 
failover in an emergency, and allows the mirror database to 
be located at a remote data center [10] to ensure a means 
for disaster recovery. 

In choosing the database storage configuration, an 
administrator must consider not only the long term safety 
and recovery of the data but also the amount of system 
down time that may be required to restore a database to a 
consistent state.   

Lennie et al.  [11] patented an algorithm to check a 
large and/or replicated database by forming a checksum for 
each entry in the database and then using an exclusive OR 
to combine the individual record checksums  to form a 
database checksum.  They propose that this checksum 
could be recomputed periodically to ensure that the entries 
of the database have not been corrupted.  They also propose 
that this checksum would be maintained at each legitimate 
database update by exclusive ORing the checksum of the 
entry both before and after modification with the database 
checksum.  In a distributed environment, the master 
database checksum could be used to ensure periodically 
that all nodes are synchronized with the master database. 
Specifically, they also recommend that this check could 
quickly ensure that a replicated database was available to 
provide a backup in the case of a system failure.    

 
4. Error Correcting Codes – Hamming  
 

RAID level 2 storage depends on the binary code 
developed by Richard Hamming in the 1940s and 1950s 
[12].  The code is  able to correct any single error in a 
sequence of bits and to detect a double error.  Check bits 
are interleaved with the data bits at the positions with 
numbers that are a power of 2.  The check bit at position 2k 
checks bits in all positions which have bit k set equal to 1 in 
their binary representation. The value of the check bit is 
determined to make the parity of those bits even.   

The tables from Wagner’s book, The Laws of 
Cryptography, [12] are reproduced in Figure 3.  The table 
which he labels as Table 6.1 shows the parity bits 1, 2, 4, 8, 
and 16 and indicates which data bits that they would check.  
Table 6.2 shows the check bit values in positions 1, 2, 4, 
and 8 for the data value 1101101.  Table 6.3 illustrates that 
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a bit error in position 11 would cause the 1, 2, and 8 
positions to be incorrect.  This points exactly to the 
incorrect value at the position of 1 + 2 + 8 = 11. 

 
5. Checksums and Secure Hash Algorithms 
 
5.1 Overview 
 

Checking the integrity of the information in the storage 
system is essential.  The use of checksums is a well 
accepted way of ensuring data integrity [13].  Checksums 
may be able to detect data corruption due to a hardware 
malfunction that could otherwise go unnoticed and cause 
further damage.  They are routinely used to validate data 
that must travel over network links.  They can guard against 
malicious modification of data.   They can be used to check 
for changes in metadata access time or modify time fields 
which could detect a breach in confidentiality even if file 
data has not been modified.  Several cryptographic hash 
functions that are designed to be collision resistant are 
required by government standard.   

Computing, storing, or retrieving a checksum needs to 
be done in a critical section of a file read or write to ensure 
integrity [1].  The calculation and storage decisions for 
checksums can affect system performance. Checksumming 
can be performed at the byte, block, page, or file level [1].  
If the granularity of the data that is checksummed is too 
fine, too many computations will be required.  At the other 
extreme, large granularity will cause additional I/O for 
applications which rely on small reads because the entire 
amount of data for the integrity check will need to be read.  
In general, network traffic is checksummed at each request.    
RAID systems perform their physical redundancy checking 
at the block level.  Integrity checking implemented at the 
file system level often operates on pages.  Checksumming 
by programs such as Tripwire [14], an open source 
application level security and data integrity tool that is used 
for monitoring and alerting if specific file changes occur, 
operates on a file level. 
 
5.2 Cyclic Redundancy Check 
 

A cyclic redundancy check is a type of hash function 
that leaves the data intact and appends a checksum to it.  It 
is often used in network traffic because the recipient of the 
message can easily recompute the checksum to confirm the 
correctness of the data received.  

The number calculated is a 16-bit unsigned number so 
there is a 1 in 65535 chance of an error not being detected 
because two files would have the same checksum.  The 
CRC-16 is able to detect all single errors, all double errors, 
all odd numbers of errors and all errors with burst less than 

16 bits in length. In addition over 99% of other error 
patterns will be detected [15].     

 
5.3 Secure Hash Algorithms  

 
A hash function H is a transformation that takes an 

input x and returns a fixed-size string called the hash value.  
In cryptography and in the government standards for secure 
hash functions, the requirements are more strictly defined 
as:  
§ The input can be of any length.  
§ The output has a fixed length.  
§ H(x) is relatively easy to compute for any given x.  
§ H(x) is one-way.  
§ H(x) is collision-free.  

 
A hash function is “one-way” if you begin with a hash 
value h, it is “computationally infeasible to find some input  
x such that H(x) = h”.   A hash function is “strongly 
collision-free” if it is  “computationally infeasible to find 
any two messages x and y such that H(x) = H(y)” [16].  

These requirements that are defined for a secure hash 
function mean that if you download, copy, or receive a file;  
you can use the secure hash value to guarantee that you 
have the correct, unaltered data by comparing its hash with 
the original.  

The MD5 algorithm was developed by Professor 
Ronald L. Rivest of MIT in 1994 as a way to verify data 
integrity that would be much more reliable than a 
checksum.  It takes a message of an arbitrary length and 
produces a 128-bit “message digest” also called a 
fingerprint.  It was developed for digital signature 
applications.   

The MD5 algorithm was classified as a secure hash 
function which means that it is “computationally infeasible 
to find a message which corresponds to a given message 
digest, or to find two different messages which produce the 
same message digest” [17].  It was later shown that this 
function was not collision-free and it was improved in the 
series of currently used algorithms called Secure Hash 
Algorithms.  

These algorithms were developed by the National 
Institute of Standards and Technology (NIST) and are 
specified in federal standards to be used when a secure hash 
algorithm is required in federal applications.  The 
fingerprint that is produced is also non-reversible which 
means that although the fingerprint uniquely identifies the 
data, the data cannot be reconstructed from the fingerprint. 

The SHA-1 hash produces a 160-bit output fingerprint 
for any message that is less than 264 bits in length.  It is 
acknowledged to be slower that MD5 but is considered  
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Figure 3: Illustrating Hamming Code calculation and error recovery ability [12] 

 
 

stronger against an attack.  A SHA-2 group of functions has 
also been developed which produce longer message digests 
ranging from 224 to 512 bits.   

In cryptography, an attack is considered a successful 
break if is accomplished in less than a “brute force” search 
even if it is not a practical risk.  Collisions have been found 
for MD4, MD5, and SHA-0 algorithms.  In 2005, Wang, 
Lin, and Yu [18] announced that they were able to find a 
method to find a collision in SHA-1 that required less than 
269 operations whereas a brute force method would require 

280 operations.  Even with the existence of a method, 
currently a collision for SHA-1 has not been demonstrated 
and a practical break for the SHA-2 functions has not been 
documented.   

However, in light of the research time that is being 
invested in breaking the hash algorithms, on November 2, 
2007, the government announced a request for candidate 
algorithms to be considered for a SHA-3 standard [19].  
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6. Additional Benefits 
 
6.1 Security 
 

System integrity, security, and recovery go hand-in-
hand. The use of data integrity assurance techniques can 
enhance the security of computer systems.  In the last few 
years the number of system intrusion attacks has increased 
[13].  By detecting malicious modifications in files, damage 
caused by an intrusion can be reduced or prevented. 

Redundant information contained in mirrored files, 
parity checks, or secure hash functions can be used to check 
for file changes or for changes  in metadata fields such as 
access time or modify time which could indicate a breach 
in security even if file data has not been modified.   

The database checksum calculated by the methods 
patented by Lennie et al. [11] could be recomputed 
periodically to ensure that the entries of the database have 
not been corrupted.  It is also proposed that this check 
could quickly ensure that a replicated database was 
available to provide a backup in the case of a system 
failure.    

 
6.2 Performance  

 
The redundant information that exists as part of a 

system’s mechanisms to ensure data integrity can also be 
used to improve system performance.    

Since duplicate data objects would share the same 
checksum value, potential duplicates could be identified.  A 
128-bit checksum comparison could eliminate the need to 
compare a set of much longer data blocks.  SFSRO, a 
secure read-only file system, names blocks and inodes with 
the checksums of their contents to provide an efficient way 
to have access to the checksum of the contents of a disk 
block [1]. 

The RAID level disk arrays can provide opportunities 
to realize a performance improvement.  The mirror disk in 
RAID level 1 can be used to improve read performance.  
For a large data transfer operation, RAID level 2 may 
improve performance because the controller can transfer 
the I/O in parallel across several disks. Unfortunately, at 
this level the effect can be the opposite for a small data 
transfer because all of the disks in a group must be accessed 
for every I/O.  The fourth RAID level was designed to 
bring down the cost of small disk transfers by striping the 
data across the array at the sector level instead of at the bit 
level so that a write access requires only two disks, the data 
sector and the parity sector from the check disk.  To further 
improve performance by reducing the bottleneck caused by 
the number of accesses required of the check disk, RAID 
level 5 distributes the data and the check information by 
sectors over all of the disks in a group.  Although the disk 
configuration is targeted to ensure data integrity and 

recoverability, all of these RAID levels can offer potential 
I/O performance gains [4][5][6]. 

 
 

7. Conclusion 
 

Business, research, and decision making applications 
are increasingly dependent upon the availability of data.  
The value of a database is dependent upon a user’s ability 
to trust the completeness and soundnes s of the information 
contained in the data.  It is the database administrator’s 
responsibility to choose wisely from the available tools to 
safeguard the data integrity.   

Database integrity problems can have many sources:  
hardware malfunctions, software bugs, malicious attacks, or 
user errors.   There are current tools  available to avoid, 
detect, and correct these problems .  There is ongoing 
research to further improve the choices.   

System performance and availability requirements 
must be considered and balanced by cost constraints. Some 
methods used to ensure database integrity may also have 
some additional welcome side-effects in system security 
and performance.   

 It is the methods developed to use cyclic redundancy 
checks and secure hash algorithms to ensure data integrity 
that I propose to explore further in the minidb application. 
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8. Minidb Implementation – Using Checksum 
Information in Database Methods  

 
Section 6.2 on performance discusses methods in use 

which leverage the redundant information that is necessary 
for ensuring data integrity to also improve system 
performance.  Specifically, the methods which incorporate 
checksums of data can use those checksums to compare for 
equality.  The method can be used at any level of 
granularity that checksums are kept: the record, table, page, 
or database level.   

The CRC-16 checksum is widely used in monitoring 
message traffic.  It is able to detect all single errors, all 
double errors, all odd numbers of errors, and all errors with 
bursts less than 16 bits in length.  In addition over 99% of 
other error patterns will be detected.   It does not have the 
security performance of the MD5 or SHA hash algorithms 
but it also does not require their complexity.  The CRC-16 
method returns a two-byte field to validate the data in 
comparison to fields of length 32 to 512 bytes for the MD5 
and SHA hashes.   The two-byte field can easily be kept 
and validated at both the record and table level while 
developing and testing the checksum database methods 
outlined below for the minidb system. 

 
8.1 Minidb Structure Overview 

 
The structure of the minidb application is illustrated in 

Figure 4 and includes the methods implemented to take 
advantage of the CRC-16 checksum information.   

A minidb table is composed of variable length records 
written sequentially to a data file.  The record structure of 
the data file is described by the metafile class.  The index 
file uses a hashed key value to provide direct access to the 
active records in the data file.  The index file is  used to 
store the CRC-16 checksums for the methods implemented.  
The table class is composed of the methods which combine 
information from the data, meta, and index files into a 
working table.  The sequentialIO and randomIO classes 
provide the necessary file access methods. 

The rel_algebra class provides a set of user functions 
for table creation; record insert, update, and delete 
operations; set operations such as union, intersection, and 
difference; and select, project, Cartesian product and join.  
The class calls the table class to implement the methods.  
The relational algebra class has been expanded to include 
the additional intersection method that takes advantage of 
the CRC-16 checksums.  

The database_tools class has been added to the minidb 
system to provide administrative functions to check tables 
for equality and to checksum tables based on the CRC-16 
values stored at the record and table levels. 

 

rel_algebra table database_tools
temp_table_count: static int table_name: char * tools_table_count: static int

MTA_name: char *
DTA_name: char *
IDX_name: char *

metafile datafile indexfile
table_name: char * index_recor: IDX_Record *
num_fields: int IDX_Record: struct
table_fields: list<field_spec>     key: long
field_spec: struct     address: unsigned long
    field_name: char *     flag: bool
    field_sixe: char *     collision: bool
    field_type: char *     crc_16: unsigned int
primary_key: char * number_records: unsigned long

hashing: bool

sequentialIO randomIO
field_delimiter: char file_name: char *
record_delimiter: char rand_file: fstream
record_offset: long

 
 

Figure 4: Minidb structure overview 
 

 
8.2 The Use of Checksums  for Security and 
Integrity 

 
A checksum at the record level can be kept in the index 

file for the minidb database.  The new index file record 
format can store the checksum of each data record as 
shown in Figure 5.   

 
 
struct IDX_Record { 
 long    key;  // key to search for
 unsigned long  address; // offset in the DTA file 
 char    flag;  // A = active  

       // D = deleted flag 
 bool    collision;     // hash table collisions 
 unsigned int  crc_16;  // checksum 
 }; 
 

 
Figure 5: Modified index file record structure 

 
 
A table class method calculates the CRC-16 value.  

The function inputs  a record as a character string, processes 
the individual bytes, and returns a two-byte checksum for 
the record.  Since the records are stored on disk and 
processed based on their field delimiters, the delimiters are 
included in the checksum.  An online tool [20] was used in 
testing to check the CRC-16 results from the function. 

The method developed and patented by Lennie et al. 
[11] to check a large and/or replicated database by forming 
a database checksum can be modified for the minidb 
application.  The method proposed in [11] can be used to 
maintain a table checksum to determine if two tables are 
equivalent.  This checksum test will be valid even if one of 
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the tables has been reorganized since it is based on the data 
file record contents.   

To calculate the table checksum, the CRC_16 value for 
a table is  initialized to zero when the table is  created.  As a 
record is inserted into the data file and its address and 
CRC-16 value are written to the index file, the CRC-16 
value for the record is XORed with the CRC_16 value for 
the table.  When a record is deleted by updating the index 
record active flag to a ‘D’, the deleted record’s CRC-16 
value is XORed with the table value to remove it.  An 
update to a record is the equivalent of a delete followed by 
an insert.  

The table checksum maintenance has been 
incorporated into the index file methods, and the table 
CRC_16 value is currently maintained in the last record in 
the index file.     

  
8.3 The Use of Checksums for Query Optimization 
 

The relational algebra methods that implement set 
functions can incorporate the use of the CRC-16 to check 
relations to find duplicates.  If the two-byte CRC-16 
checksums stored in the index files are not equal, the 
records do not have to be compared.     

As an example shown in pseudo code in Figure 6, the 
intersection method can be modified to reduce the number 
of records that need to be read from disk for comparison.  
The greatest performance benefit would be realized in an 
application that did not expect to find many duplicates 
between large files.  The crc_intersection method call has 
been added to the rel_algebra class and is primarily 
implemented in the table class. 

In this method, all of the records in one index file are 
read to see if they are active.  For each active record, the 
key is used to read the second index file to check for an 
active record.  If one is found, the CRC-16 values that are 
stored in the index records are compared.  File records are 
only read from disk and compared if the CRC-16 values are 
equal.  If the file record comparison is equal, the record is 
written to the new intersection relation. 

In comparison, the hash_intersection method reads 
each record of the one file and hashes the records by key  
into an array.  It reads the second file, hashes the record 
key, and checks the array for an intersection.  All records of 
both files must be read at least once for this method.  If one 
of the files is not small enough to be hashed into memory in 
its entirety, it would need to be partitioned and the second 
file would need to be reread and compared to each 
partition’s hash array. 

In using the CRC-16 hash key value for the records, 
there is a one in 65535 chance that two different records 
would produce an equal hash key.  In an application which 
is using a more secure hash algorithm such as MD5, SHA-
1, or SHA-2; it can be reasonably assumed that if the hash 
value is equal, the records are the same without performing 
the comparison step.   

 

 read each record of index file 1 sequentially 
 for ( each active data record in file 1 ) 
 { 

 use the key to read index file 2 record 
 if ( data record 2 is active ) 
 { 
  if ( record 1 crc_16 == record 2 crc_16 ) 
  { 
   if ( data record 1 == data record 2 ) 
   { 
    write data record to intersection table 
} } } } 
 

 
Figure 6: Pseudo code for file intersection using CRC-16 

 
 
8.4 Using Checksums for Table Comparison  
 

In the MySQL database, if the CREATE TABLE 
statement option “CHECKSUM” is specified, a live 
checksum for all table rows will be maintained.  The 
command CHECKSUM TABLE can be used to report the 
live table checksum. It can also be used to recalculate the 
table checksum.  This tool can be used to check to see if a 
table has been corrupted, for example if the system was not 
shutdown properly.   Similar tools are implemented for the 
minidb system in the database_tools class. 

The quickest comparison implemented for the minidb 
is a method to compare any two tables for equality by using 
the table checksums as shown in Figure 7.  Each time a 
table is reorganized, the old and new checksums can be 
compared as an additional way to check table integrity. 

 
 

//  Check tables for equality using CRC-16 
//----------------------------------------------------------------------  
bool check_tables_equal(char * relation2) 
{ 
 open index file of table 
 open index file of relation2 table 
  
 get_table_crc() for table 
 get_table_crc() for table relation2  
 
 // Compare CRC_16 values returned from indexfiles 
 if ( CRC-16 values are not equal ) 
            return (false); 
 else 
  return (true); 
// There is a small chance of two unequal tables 
//  returning the same CRC value with CRC-16. 
} 
 

 
Figure 7: Comparing tables for equality 
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Two more complete table checking tools are 
implemented in the database_tools class.  The prototypes 
for the commands are: 
§ char * checksum(char * relation); 
§ char * checksum_index(char * relation); 

These commands recalculate the value of the checksum for 
each active record in the file and validate it against the 
checksum stored in the index file.  In addition, the methods 
recalculate and validate the table checksum.  If any record 
checksums are found that don’t match the index file 
checksum, the record is written to a new relation that is 
returned by the method.   

The methods differ in the order that they read the data 
file.  The “checksum” method reads each record of the data 
file sequentially.  It then reads the index file record to 
check if the data record is active and to validate the 
checksum.  The “checksum_index” method reads the index 
file sequentially and for each active record, reads the data 
file directly by the record address stored.   

The “checksum” method may be expected to be more 
efficient in I/O by accessing the data file sequentially.  The 
method can determine that a table is in error by the table 
checksum and can indicate the exact records in error if the 
errors are not part of the primary key.  But it cannot specify 
an exact record if the error is in the key because the record 
key is used to access the index file; the index record for a 
data record with a key error will not be found.   

The “checksum_index” method was written to check 
the table by reading the index file and checking every 
active record by data file address.  In this way, every active 
record that has a CRC-16 error can be flagged.  The cost of 
the additional information comes from accessing each data 
file record directly instead of sequentially as in the 
checksum method.   

 
8.4 Sample Results  

 
The performance of the CRC-16 methods was 

evaluated using files of up to 50,000 random records.  Key 
values in the range from 0 to 65535 were generated using 
the C++ rand() function.  The keys are hashed into index 
files which have 65536 records; a maximum of 76% of the 
index capacity was used. 

The “crc_intersction” method was compared to the 
“hash_intersection” method using these files.  The timing is 
compared by saving the value of the system clock() 
function before and after each method is used to intersect 
two tables.  Sample timing code and the associated console 
output are shown in Figure 8 for both intersection methods.   

The results from the first set of comparisons are shown 
in Figure 9.  Sets of files containing 50,000 records each 
were constructed to produce intersection result sets of 
different sizes. The crc_intersection and hash_intersection 
functions were timed and the results are shown in Figure 9. 

 
    

#include <time.h> 
#include <stdio.h> 
  
int main() 
{ 
 clock_t before, after; 
 double timing; 
 
 rel_algebra rel_test; 
 
 before = clock(); 
 rel_test.crc_intersection("new_ hash3","new_hash4"); 
 after = clock(); 
 timing = (double)after - (double)before; 
 timing /= CLOCKS_PER_SEC; 
 cout << "Timing for crc_hash intersection = "  
     << timing <<  “ sec.” << endl; 
 
 // The same code was repeated with hash_intersection
 return(0); 
} 
 
/* Console Output: 
 
 Number of records in crc_intersection table = 3080 
crc_intersection table okay: new_hash3 and new_hash4 
Timing for crc_hash intersection = 1.343 sec. 
 
Number of records in hash_intersection table = 3080 
hash_intersection table okay: new_hash3 and new_hash4 
Timing for crc_hash intersection = 2.625 sec. 
*/ 

 
Figure 8: Comparing intersection methods 
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Figure 9: Time required as number of records in 
intersection result set increases 
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The CRC-16 intersection method required less time in 
each case tested but was approaching the hash intersection 
time as the number of records in the intersection set 
increased. 
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Figure 10: Comparing time required as file size increases 
for intersection result set of a fixed size 

 
The second comparison, shown in Figure 10, was 

completed by generating files of sizes from 10,000 to 
50,000 records which would contain the same intersection 
result set of approximately 2000 records.  As expected, the 
time required for either intersection method increased with 
file size but the increase was much slower for the CRC-16 
method.  For a file size of 10,000 records, the CRC-16 
method required 73% of the time of the hash intersection.  
At 50,000 records this percentage had decreased 
significantly, down to 25% of the hash intersection time. 

As the file size increased, the CRC-16 method needed 
to read an increased number of index file records but the 
number of data file records read was held constant.  In 
contrast, the hash intersection method needed to increase 
from reading 20,000 data records to 100,000 data records.   

The file size of 50,000 records could still be hashed 
into the memory array at once.  If that was not the case, the 
first file would have needed to be partitioned and the 
comparison file would have to be reread for each partition’s 
hash array. 

Table checksum test results are shown in Figure 11.  
Tests were run in which an error was introduced in the 
body of a record and in the key of a record.   

The “checksum” method can find an error in the body 
of a record and print out the record affected.  If the error is 
in the key of the record, the table is flagged but the record 
is not identified.   

The “checksum_index” method can be used to identify 
the record in the case of a key error.  The additional 
information comes with a time penalty.  Reading the index 
file to identify active records and then reading the data file 
directly by record address took 20 – 25% longer for these 
test files of 10,000 records.   

 
checksum(“new_hash2”) results: 
---------------------------------------- 
29257^29258^29257 crc_16 not equal to index value. 
Checksum error in table new_hash2 
The following records were found to have a checksum 
error. 
 newhash1     newhash2     newhash3 

29257           29258           29257 
Number of records printed = 1 
Timing for checksum new_hash2 = 1.203 sec. 

 
checksum (“new_hash2”) results:  
------------------------------------------------ 
Checksum error in table new_hash2 
The following records were found to have a checksum 
error. 
  newhash1     newhash2     newhash3 

 
Number of records printed = 0 
Timing for checksum new_hash2 = 1.187 sec. 
 
checksum_index(“new_hash2”) results: 
------------------------------------------------ 
29258^29257^29257 crc_16 not equal to index value. 
Checksum error in table new_hash2 
The following records were found to have a checksum 
error. 
  newhash1     newhash2     newhash3 
        29258           29257           29257 
Number of records printed = 1 
Timing for checksum_index new_hash2 = 1.469 sec. 
 
 

Figure 11: Comparing checksum and checksum_index 
methods 

 
 

8.5 Conclusion 
 
The CRC-16 functions were used successfully to 

improve performance in the set intersection and to 
demonstrate some useful administrative tools.  The CRC-16 
checksum provided a manageable method to tes t the 
program logic and provide some time comparisons.  A 
secure hash function such as MD5, SHA-1 or SHA-2 could 
be used to improve the model.   

Another improvement in the minidb implementation 
would be a collection of statistics for each table.  At a 
minimum, the table checksum as well as the number of 
index records and data file records could be tracked.  This 
would allow the system to increase the index file size when 
needed and to develop strategies to optimize queries based 
on choosing table methods for different file sizes. 
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