
System Development: A Project Based Approach

Hossein Hakimzadeh, Robert Batzinger, Susan Gordon
Department of Computer and Information Sciences

Indiana University - South Bend
South Bend, IN 46615

hhakimza@iusb.edu

ABSTRACT
As computer science continues to move toward a more

pragmatic market driven discipline, some of the traditional core

topics in computing have become less popular. At-risk topics

include compilers, file organizations, and operating systems.

Viewed collectively, it appears that courses that either deal with

the internal working of computers or courses that require system

programming are being systematically removed from the

undergraduate curriculum. This paper describes a project-based

approach to seamlessly reintroduce system development topics

in today’s contemporary computer science curriculum.

1. INTRODUCTION
Most computer science programs base their curriculum on

Computing Curricula recommendations put forth by the ACM

/AIS / IEEE joint task force for computing curricula [1, 2]. With

each new report, these recommendations move away from core

computer science topics and toward contemporary topics such as

cyber security, distributed computing, bioinformatics, and game

programming.

Core topics such as compilers, file organizations, and operating

systems appear to be at risk. There appears to be a growing

trend where courses dealing with the internal working of

computers or system software are being systematically replaced

by contemporary electives. This trend can be seen in the 2001

and 2005 ACM/IEEE Computing Curricula recommendations.

This paper proposes increasing student exposure to system level

topics by incorporating a series of project-based system

development courses into the undergraduate curriculum. It will

discuss a course in “Advanced Database Systems” as a case

study for this approach. The objective of this course is to design

and implement a database engine as the vehicle for fostering

system development skills. The engine in turn serves as a

platform for research and study of contemporary topics such as

security, concurrency control, performance tuning, and data

mining.

2. BACKGROUND
In an article published in 2002, Mary Shaw [3] advocates

constructing the computer science curriculum around abstract

themes that cut across the discipline. She further criticizes the

teaching of “compiler construction” and “operating systems” as

teaching “system-artifact dinosaurs”. It is clear that members of

the CC2001 Task Force were inspired by this article and

consequently, the Computing Curricula recommendations

clearly place less emphasis on system development topics such

as compiler construction and file organizations.

Naturally, the CS curriculum at Indiana University South Bend

has mirrored the CC2001 and CC2005 recommendations. The

department is offering more courses such as graphics,

networking, computer vision, game programming, software

engineering, artificial intelligence, bioinformatics, and computer

security. Although an excellent case can be made for teaching

any of the above courses, the fact remains that students leave our

program with significantly less exposure to system development

skills. Two questions remain unanswered: First, can computer

science graduates thrive without these core skills? And

second, how will the loss of these skills affect the next

generation of system designers?

Although, the concept of creating courses that cut across the

discipline is appealing, we must be careful not to deprive the

future computer scientists from an important body of knowledge

fundamental to computing.

This paper profiles the implementation of a course in “Advanced

Database Systems”. The primary focus of this course is to

study the inner working of system software, specifically how

database management systems work. The course systematically

leads the students through the design and implementation of a

database engine called MiniDB [4] which is then used to

explore advanced database topics.

Similar project-based courses in advanced database design were

introduced by David DeWitt [5] and later extended by Mike

Carey and Raghu Ramakrishnan [6] at the University of

Wisconsin. Another system inspired by the DeWitt has been

implemented by Albano et al [7].

In the remainder of this paper, we will summarize the structure

of this course, and discuss some future directions.

3. THE MiniDB SYSTEM
The MiniDB system is developed as a semester long project to

introduce the underlying theories, principles and practices

needed to implement a simple but flexible database engine. The

prerequisite for the course is an undergraduate database course

that introduces the students to data modeling, the relational

model, relational algebra, SQL, and additional topics such as

transaction management, concurrency control, and data mining.

Conceptually, the course and its project (MiniDB) are divided

into five phases: preparation; design and implementation of core

algorithms; research in advance algorithms; implementation of

advance algorithms; and presentation of the final project [4].

The interactions between these phases are shown in (Figure 1).

The above phases are planned such that in the first ten weeks of

the semester, students construct a fully functional mini database

engine. In the last five weeks, each student chooses to research

one or more advanced topics in databases and integrates their

research findings into their MiniDB implementation. The full

poster will describe each phase of the course.

Preparation

Core

Algorithms
Design and Implementation

(MINI-DB Engine)

Advanced

Algorithms
Research

Implementation

(Final Project)

Presentation

Figure 1. MiniDB Conceptual Model

4. DESIGN CONSIDERATIONS
Initially, most students will find it difficult to envision creating a

database engine from scratch. In order to guide the design and

implementation process, the task is broken down into a series of

deliverables which are due at two week intervals. Each

deliverable serves two purposes. First, it seeks to incrementally

construct new building blocks that move the project toward the

goal of a working database engine. Second, it allows the

students to systematically refine the previously constructed

components. This ability to incrementally refine one’s work is

an essential yet underdeveloped skill among many students.

The remainder of this section discusses the project deliverables.

These include the creation of access mechanisms, data definition

language (DDL), data manipulation language (DML), relational

algebra operators, meta-data, XML, and index structures.

4.1 Access Mechanisms
The goal of the first deliverable is to construct a series of classes

for creating and manipulating simple data, index and meta-data

files. These three classes provide the basis for creating a

database table. The data file is a sequentially organized but

randomly accessed file. The index file is a direct access file. The

meta-data file is a sequential file that will maintain schema

information about the database.

4.2 Data Definition and Manipulation
The goal of the second and third deliverables is to develop a

data definition and data manipulation component for the

MiniDB system. Relational algebra is chosen for this purpose.

As shown in Figure 2, the basic relational algebra operations

include select, project, cartesian product, join, union,

intersection, and difference are implemented.

Class Mini_Rel_Algebra {

bool create(relation_name, schema);

bool insert(relation_name, attribute_list, value_list);

bool delete(relation_name, attribute_name, condition,

 attribute_value);

bool modify(relation_name, search_attribute_name,

 condition, search_attribute_value,

 modify_attribute_list,

 modify_value_list);

result_rel select(relation_name, attribute_name,

 condition, attribute value);

result_rel project(relation_name, attribute_list);

result_rel cartesian_product(relation_1, relation_2);
 result_rel join(relation_1, relation_2, condition_list);

result_rel union(relation_1, relation_2);

result_rel intersect(relation_1, relation_2);

result_rel difference(relation_1, relation_2);

}

Figure 2. Relational Algebra Operations

4.3 Advanced Algorithms
The final phase of the course involves the creation and

integration of advanced components on top of the basic MiniDB

engine. During past offerings of this course, students have been

able to develop algorithms for concurrency control, database

security, access control, database integrity, external sorting, data

mining, join optimization, distributed databases, and deductive

databases [4].

CONCLUSION
This paper describes the design and implementation of a

database engine as a vehicle for reinforcing system development

topics in the computer science curriculum. Further, this paper

describes the use of a project-based approach to systematically

develop and refine code components for the database engine

known as MiniDB. The project enables the students to

successfully integrate the system development with the research

and implementation of advanced database topics.

The above project-based, system development approach can be

applied to other courses such as computer networks, computer

graphics, and computer security. For example, a computer

networking course can be augmented such that, through a series

of assignments, students finish the course with their own

MiniNetwork API based on the OSI model. Students in

computer graphics could build their own MiniGameEngine.

Finally, students in computer security could build a simple

vulnerability scanner. As the computer science curriculum

continues to refine and redefine itself, we hope that system

development will regain more prominence in the curriculum.

REFERENCES
[1] IEEE/ACM-CS Computing Curricula 2001,Computer Science, Final Report, The Joint Task

Force on Computing Curricula, IEEE Computer Society, Association for Computing

Machinery, December 15, 2001.

[2] ACM/AIS/IEEE-CS, Computing Curricula 2005, by The Joint Task Force for Computing

Curricula 2005, 30 September 2005.

[3] Shaw, M., “We can teach software better.” Computing Research News 4(4):2-12, September

1992.

[4] Hakimzadeh, H., “MINI-DB: project website” www.cs.iusb.edu/minidb

[5] DeWitt, D., the Minirel project. A database course project that involved building a small

relational DBMS.

[6] Carey, M., Ramakrishnan, R., the Minibase project. Extension and redesign of Minirel

project. www.cs.wisc.edu/coral/mini_doc/project.html

[7] Albano, A., JRS (Java Relational System) is a relational DBMS implemented in Java and

designed for educational use. Accessed on the web on March 2008,

www.di.unipi.it/~albano/JRS/project.html

