
MINI-DB: Demystifying the Inner Workings of a Database Systems

Hossein Hakimzadeh, Robert Batzinger, Susan Gordon
Department of Computer and Information Sciences

Indiana University - South Bend
South Bend, IN 46615

[hhakimza, rbatzing, sgordon] @ iusb.edu

ABSTRACT
As computer science continues to move toward a more

pragmatic market driven discipline, some of the traditional

core topics in computing have become less popular. At-

risk topics include compilers, file organizations, and

operating systems. Viewed collectively, it appears that

courses that either deal with the internal working of

computers or courses that require system programming are

being systematically removed from the undergraduate

curriculum. This trend can be seen in the 2001 and 2005

ACM/IEEE Computing Curricula recommendations. This

paper advocates a project-based approach to reintroduce

system development topics into the computer science

curriculum. The authors describe the structure of a

database system development course, and provide

additional ideas for similarly structured courses.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]

General Terms
Algorithms, Design.

Keywords
System Development, Advanced Databases, Algorithms,

Database Engine, Project-based Approach

1. INTRODUCTION
Most contemporary computer science programs base their

curriculum on Computing Curricula recommendations put

forth by the ACM /AIS / IEEE joint task force for

computing curricula [1, 2]. With each new report, these

recommendations move away from core computer science

topics and toward contemporary topics such as cyber

security, distributed computing, bioinformatics, and game

programming.

Core topics such as compilers, file organizations, and

operating systems appear to be at risk. The trend suggests

that courses dealing with the internal working of

computers or system software are being systematically

removed from the curriculum. Although most computer

science graduates will not be expected to develop file

systems, compilers, or operating systems at their jobs, the

knowledge and skills they obtain in these core topics

create an intuitive understanding of “system software”

which fine tunes their ability to design more efficient and

more reliable “application software”.

This paper proposes increasing student exposure to system

level topics by incorporating a series of project-based

system development courses into the undergraduate

curriculum. It will discuss a course in “Advanced

Database Systems” as a case study for this approach. One

objective of this course is to design and implement a

database engine as the vehicle for fostering system

development skills.

2. BACKGROUND
In an article published in 2002, Mary Shaw [3] advocates

constructing the computer science curriculum around

abstract themes that cut across the discipline. She further

criticizes the teaching of “compiler construction” and

“operating systems” as teaching “system-artifact

dinosaurs”. It is clear that members of the CC2001 Task

Force [2] were inspired by this article and consequently,

the Computing Curricula recommendations [1, 2] clearly

place less emphasis on system development topics such as

compiler construction and file organizations. Fortunately,

the study of operating systems still remains prominent in

the computer science curriculum; however, there are

pressures to create a hybrid operating system course

which integrates topics such as networking and security.

Naturally, the CS curriculum at Indiana University South

Bend has mirrored the CC2001 and CC2005

recommendations. The department stopped offering

“Assemblers and Compilers” and “Information

Organization and Retrieval” in the late 1990’s. In their

place, more courses such as graphics, networking,

computer vision, game programming, software

engineering, artificial intelligence, bioinformatics, and

computer security are offered. Although an excellent case

can be made for teaching any of the above courses, the

fact remains that students leave our program with

significantly less exposure to system programming skills.

The central questions remain: Can computer science

graduates thrive without these core skills? How will

the loss of these skills affect the next generation of

system designers? Although, the concept of creating

courses that cut across the discipline is appealing, we must

be careful not to deprive the future computer scientists

from an important body of knowledge in computing.

Since 2000, the department has attempted to increase

course and degree offerings in the area of

“interdisciplinary computing”
1
[4, 5]. At the same time, it

has introduced courses that increase the coverage of

“system programming” concepts and practices.

This paper profiles the implementation of a course in

“Advanced Database Systems”. The primary focus of this

course is to study the inner working of system software,

specifically how database management systems work. The

course systematically leads the students through the

design and implementation of a database engine called

MiniDB[6].

Similar project-based courses in advanced database design

were introduced by David DeWitt [7] and later extended

by Mike Carey and Raghu Ramakrishnan [8] at the

University of Wisconsin. Another system inspired by the

DeWitt has been implemented by Albano et al [9].

In the remainder of this paper, we will discuss the

structure of this course, future directions, and lessons

learned.

3. THE MiniDB SYSTEM
The MiniDB system is developed as a semester long

project to introduce the underlying theories, principles and

practices to implement a simple but flexible database

engine. The prerequisite for the course is an

undergraduate database course that introduces the students

to data modeling, the relational model, relational algebra,

SQL, and additional topics such as transaction

management, concurrency control, and data mining.

Conceptually, the course and its project (MiniDB) are

divided into five phases as shown in (Figure 1):

1. Preparation

2. Design and implementation of core algorithms

(implementation of MiniDB Engine)

3. Researching advanced algorithms

4. Implementation of advanced algorithms

5. Presentation of final project

1 In 2002 the department introduced a new degree program in

Informatics which emphasizes applications of information

technology to other disciplines such as sciences, arts, and

health care.

The above phases are planned such that in the first ten

weeks of the semester, students construct a fully

functional mini database engine. In the last five weeks,

each student chooses to research one or more advanced

topics in databases and integrates their research findings

into their MiniDB implementation. Sections 3.1 to 3.4

below describe each phase of the course.

Preparation

Core

Algorithms
Design and Implementation

(MINI-DB Engine)

Advanced

Algorithms
Research

Implementation

(Final Project)

Presentation

Figure 1. MiniDB Conceptual Model

3.1 Preparation
The preparation phase (Figure 1) includes an introduction

to I/O devices, file organizations and basic I/O facilities.

Each student selects a programming language and

investigates its file manipulation API. The result of their

investigation is compiled into a survey paper. Most

students select C++ or Java for this purpose, although

languages such as C# and Ruby have also been selected.

The goal of this phase is three-fold. First, it provides the

students with extensive exposure to file I/O, a topic which

is often lightly-covered in earlier programming and data

structure courses. It also allows them to refine their

research skills and provides an opportunity to collect and

organize a comprehensive paper with useful examples of

I/O facilities in their chosen language. The paper serves

as a quick reference guide as they work toward the

development of the MiniDB.

3.2 Design and Implementation of MiniDB
The design and implementation of the MiniDB engine is

performed in three stages, each corresponding to an

assignment. During the first stage, the students construct

classes for performing sequential, random, and index

sequential file access. These classes create the underlying

infrastructure for constructing the data, meta-data, and

index files [10] which are necessary for creating a

database table.

During the second stage, the meta-data class is extended

to allow the storage of meta-data in XML format. In

addition during this stage, students begin the development

of a minimal set of relational algebra operators such as

select, project, and cartesian product[11].

The third stage refines the functionality and extends the

relational algebra class to include additional operators

such as join, union, intersection and difference. It also

extends the index class to include hashing [12]. At this

point, each student has implemented a simple yet

functioning database engine based on relational algebra.

(Figure 2)

MINI-DB Engine

Random

IO

Index

File

.IDX

Meta

File

.MTA

Data

File

.DTA

Sequential

IO

Table

B-Tree
Hash

Index

Mini-DB

Engine

GUI
Rel

Algebra
Schema Tables...

Cluster

Index

Figure 2. MiniDB Implementation Model

3.3 Research in Advanced Algorithms
During the implementation of the MiniDB, while the

students are engaged in constructing the engine,

approximately 50% of the lectures are devoted to the

discussion of advanced database concepts. This is done to

prepare the students for the research phase of the course.

Topics include query optimization, security, concurrency

control, replication, distributed databases, and deductive

databases.

At this point, the students are asked to select a topic,

review the related literature and write a research paper. As

part of their paper, they are asked to propose an

“Implementation Plan” to incorporate one or more of the

techniques discussed in their paper into their MiniDB

engine. During the next several sessions, class lectures

turn into class discussion and brainstorming of the above

mentioned proposals.

3.4 Presentation and Demonstration
In the final phase of the project, students follow through

with their implementation plan, develop a test plan and

present their results to their peers. In the discussion that

typically follows the presentation, students share their

memorable experiences.

4. DESIGN CONSIDERATIONS
Initially, most students will find it difficult to envision

creating a database engine from scratch. In order to guide

the design and implementation process, the task is broken

down into a series of deliverables which are due at two

weeks intervals. Each deliverable serves two purposes.

First, it seeks to incrementally construct new building

blocks that move the project toward the goal of a working

database engine. Second, it allows the students to

systematically refine the previously constructed

components. This ability to incrementally refine one’s

work is an essential yet underdeveloped skill among many

students.

The remainder of this section discusses the project

deliverables. These include the creation of access

mechanisms, data definition language (DDL), data

manipulation language (DML), relational algebra

operators, meta-data, XML, and index structures.

4.1 Access Mechanisms
The goal of the first deliverable [10] is to construct a

series of classes for creating and manipulating simple

data, index and meta-data files. These three classes

provide the basis for creating a database table.

The data file is a sequentially organized but randomly

accessed file. The sequential organization provides for

better space efficiency. At the same time, the direct access

improves speed. The data file has a simple format which

separates the fields and records using delimiters such as

the "^" and "~" characters respectively.

The index file is a direct access file. Records in this file

are fixed size and have the structure shown below,

allowing for records with numeric primary keys.

unsigned long Key; // Key to search for

unsigned long Address; // Physical file location

char Flag; // ACTIVE / DELETED

The meta-data file is a sequential file that will maintain

schema information about the database. Meta-data files

are central to creating the initial database engine as well as

future advanced optimization algorithms. Meta-data files

are used at many levels; first, they are associated with

each data file created by the user. Later, meta-files can be

used to maintain schema information such as user access

and authorization, log information, or query optimization

statistics. Initially, the meta-data file format is quite

simple, with each record having the following format:

Tag Name=^ Field information[^Field information…]~.

Figure 3 below provides an example of meta-data file.

DATABASE_NM=^University~

TABLE_NM=^Student~

NUM_FIELDS=^2~

FN=^StudentID~

FS=^5~

FT=^String~

FN=^StudentName~

FS=^25~

FT=^String~

PK=^StudentID~

Figure 3. Sample meta-data file

4.2 Creating the Data Definition and Data

Manipulation Language
Once the initial data access objects are implemented, the

next goal is to construct a simple data definition and data

manipulation language for the MiniDB engine [8].

Relational algebra is chosen for this purpose. The basic

relational algebra operations include select, project, join,

union, intersection,
Class Mini_Rel_Algebra {

bool create(relation_name, schema);

bool insert(relation_name, attribute_list, value_list);

bool delete(relation_name, attribute_name, condition,

 attribute_value);

bool modify(relation_name, search_attribute_name,

 condition, search_attribute_value,

 modify_attribute_list,

 modify_value_list);

result_rel select(relation_name, attribute_name,

 condition, attribute value);

result_rel project(relation_name, attribute_list);

result_rel cartesian_product(relation_1, relation_2);

}

Figure 4. Relational Algebra Operations

difference, cartesian product and divide. However, we

split the implementation of these operators with the select,

project and cartesian product implemented first (Figure 4).

In addition to creating a new class for relational algebra

operators, this assignment also incrementally refines the

meta-data class. During this phase, we replace the initial

meta-data file format with a simple XML format (Figure

5). In addition students create a new XML parser.

<SCHEMA_NAME>

Database Name

</SCHEMA_NAME>

<TABLE_NAME>

Table Name

</TABLE_NAME>

<NUM_FIELDS>

Number_of_Fields_In_Table

</NUM_FIELDS>

<FIELD>

<FIELD_NAME>

Field Name

</FIELD_NAME>

<FIELD_SIZE>

Field Size

</FIELD_SIZE>

<FIELD_TYPE>

Field Type

</FIELD_TYPE>

</FIELD>

::

<PRIMARY_KEY>

Field Name

</PRIMARY_KEY>

<FOREIGN_KEY>

Field Name

<REFERENCES_FOREIGN_TABLE>

Table Name

</REFERENCES_FOREIGN_TABLE>

</FOREIGN_KEY>

Figure 5. XML definition of the meta-data file

4.3 Extending the Relational Algebra Class

and Refining the Indexing Mechanism
In this phase [9] students extend the set of relational

algebra operators to include join, union, intersection and

difference (Figure 6).
Class Mini_Rel_Algebra {

…
result_rel join(relation_1, relation_2, condition_list);

result_rel union(relation_1, relation_2);

result_rel intersect(relation_1, relation_2);

result_rel difference(relation_1, relation_2);

}

Figure 6. Relational Algebra Operations (Extended)

The index class is refined and optimized using hashing

techniques (Figure 7). This Hash_Index class can inherit

the Index class and override its find() method. As an

option, some will also develop a cluster index class to

handle indexing based on non-key attributes (Figure 7).

The Cluster_Index can be based on the Index or

Hash_Index class, or it can be a separate class.

Class Hash_Index {

long insert(char *key);

long find(char *key);

}

Class Cluster_Index {
long build_index(relataion_name, char *nonKeyArtribute);

long find(char *nonkey); // return the pointer to cluster

}

Figure 7. Refined Index Classes

The Cluster_Index class is often implemented using one

of the existing primary index classes and extends its

functionality to accommodate cluster indexes for non-key

attributes (Figure 8).

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Primary Index
Unique values

Pointer Pointer

PointerPointer

Data record

Data record

Data record

Data record

Data record

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Secondary Cluster

block of n pointers to
records

Data file

Data record

Figure 8. MiniDB Cluster-Index

4.4 Final Phase (Advanced Algorithms)
The final phase of the course involves the creation and

integration of advanced components on top of the basic

MiniDB engine. During past offerings of this course,

students have been able to develop algorithms for

concurrency control, database security, access control,

database integrity [14], external sorting, data mining [15],

join optimization [16], distributed databases [17], and

deductive databases.

5. FUTURE DIRECTIONS
Our plan for the future is two-fold. First, our goal is to

make the course more manageable for undergraduate

students. Second, we plan to make MiniDB an open

source, teaching and research platform.

Toward this end, we have developed an open source API

for the first phase of the project which will provide the

students the proper infrastructure to begin the course.

Students will use the first few weeks of the semester to

study and master the MiniDB concepts, learn its API, and

begin to customize the API for future use. The current

open source API, a set of assignments, and suggestions for

research ideas are available through the MiniDB web site

www.cs.iusb.edu/minidb. Interested faculty are

encouraged to contact the first author to obtain the source

code for the MiniDB project.

In addition to aiding our pedagogical goals, MiniDB will

continue to be used as a tool for database research. Both

undergraduate and graduate students who finish this

project are well positioned to conduct research in database

systems. In the recent past, two graduate students have

used their project as a stepping stone in developing their

graduate thesis proposals. Having source-level access to

the MiniDB platform will also allow students to propose

their own algorithms and benchmark their

implementations against previously published algorithms.

CONCLUSION
Computer science is an evolving and growing discipline.

The computer science curriculum is under constant

pressure for change. This pressure comes from many

constituencies, including the ACM / AIS / IEEE-CS report

on Computing Curricula [1, 2]; ABET / CAC / EAC [9]

accreditation guidelines; business and industry demands;

and the general globalization of information technology.

Although these forces are not always aligned, the

combined trajectory appears to be toward contemporary

topics such as cyber security, distributed computing, data

mining, bioinformatics, and game programming and away

from traditional core topics. The cumulative and

compound effect is a reduced understanding and

appreciation of system software among computer science

graduates.

This paper describes the design and implementation of a

database engine as a vehicle for the reintroduction of

system development topics into the computer science

curriculum. Further, this paper describes the use of a

project-based approach to systematically develop and

refine code components for the database engine known as

MiniDB.

The above project-based, system development approach

can be applied to other courses such as computer

networks, computer graphics, and computer security. For

example, a computer networking course can be augmented

such that, through a series of assignments, students finish

the course with their own MiniNetwork API based on the

OSI model. Students in computer graphics could build

their own MiniGameEngine. Finally, students in

computer security could build a simple vulnerability

scanner. Each of the mentioned projects help to improve

the students’ system development capabilities. As the

computer science curriculum continues to refine and

redefine itself, we hope that system development will

regain more prominence in the curriculum.

REFERENCES
[1] IEEE/ACM-CS Computing Curricula 2001,Computer

Science, Final Report, The Joint Task Force on Computing

Curricula, IEEE Computer Society, Association for

Computing Machinery, December 15, 2001.

[2] ACM/AIS/IEEE-CS, Computing Curricula 2005, by The

Joint Task Force for Computing Curricula 2005, 30

September 2005.

[3] Shaw, M., “We can teach software better.” Computing

Research News 4(4):2-12, September 1992.

[4] Wolfer, J., Schwartz, R. B., Hakimzadeh, H., "Informatics

and the Diversification of the Computing Curriculum",

International Conference on Engineering and Computer

Education (IEEE/ICECE’05). Nov. 13-16, 2005, Madrid,

Spain.

[5] Schwartz, R. B., Hakimzadeh, H., Wolfer, J., "Meeting

Computing Curriculum Challenges: A Profile of the Indiana

University South Bend Informatics Program", The 9th

Annual IJME / INTERTECH Joint International Conference

on Engineering and Technology. (Oct. 19-21 2006), New

York.

[6] Hakimzadeh, H., Batzinger, R., Gordon, S. ASystem

Development: A Project Based Approach@, ACM-SIGCSE

2009 Conference, Chattanooga, Tennessee, March 4-7, 2009

[7] DeWitt, D., the Minirel project. A database course project

that involved building a small relational DBMS.

[8] Carey, M., Ramakrishnan, R., the Minibase project.

Extension and redesign of Minirel project.

www.cs.wisc.edu/coral/mini_doc/project.html

[9] Albano, A., JRS (Java Relational System) is a relational

DBMS implemented in Java and designed for educational

use. Accessed on the web on March 2008,

www.di.unipi.it/~albano/JRS/project.html

[10] http://www.cs.iusb.edu/minidb/assignments/assign2.pdf

[11] http://www.cs.iusb.edu/minidb/assignments/assign3.pdf

[12] http://www.cs.iusb.edu/minidb/assignments/assign4.pdf

[13] Computer Science Accreditation Criteria (CAC), and

Computer Engineering Accreditation Criteria (EAC),

accessed on web on Dec. 2007 http://www.abet.org/

[14] Gordon, S., “Database Integrity: Security, Reliability, and

Performance Considerations”, Technical Report: TR-

20071226-1, accessed on web on Dec. 2007.

www.cs.iusb.edu/technical_reports/TR-20071226-1.pdf

[15] Batzinger, R., “Calling R from Ruby”, Technical Report:

TR-20080109-1, accessed on web on Jan. 2008.

www.cs.iusb.edu/technical_reports/TR-20080109-1.pdf

[16] Rupley, Michael, Jr., “Introduction to Query Processing

and Optimization”, Technical Report: TR-20080105-1,

accessed on web on Jan. 2008.

www.cs.iusb.edu/technical_reports/TR-20080105-1.pdf

[17] Rababaah, H., “Distributed Databases Fundamentals and

Research”, Technical Report: TR-20050525-1, accessed on

web on Dec. 2007. www.cs.iusb.edu/technical_reports/TR-

20050525-1.pdf

[18] Robergé, James, Carlson, C. R., “Broadening the computer

science curriculum”, Proceedings of the twenty-eighth

SIGCSE technical symposium on computer science

education, San Jose, California, ISSN:0097-8418, 1997, pp.

320 – 324.

[19] Dahlbom, B., Mathiassen, L., “The future of our

profession”, Communications of the ACM, Volume 40 ,

Issue 6 (June 1997) Pages: 80 – 89, 1997, ISSN:0001-0782

