

Assignment-4

MINI DB-ENGINE (Phase III)

Building the Relational Algebra Class (Continued)

Complete the development of the MINI_Relational_Algebra class.

Step 1: (Review, Reflect, Brainstorm and Reorganize)

The outcome of this process should be a list of recommendations which will

guide you to redesign and re-code some aspects of assignment 3.

Specifically, you may identify a better way of organizing your classes, such

that they are more reusable, flexible, etc. Also, this process will provide you

with the opportunity to clean up and document your code.

Step 2: (Completion of the Relational Algebra Operators)

Extend your MINI_Relational_Algebra class to include the following operators.

(join, union, intersection, difference)

Your final implementation should include the following methods:

Class Mini_Rel_Algebra {

bool create(relation_name);

bool insert(relation_name, attribute_1, value_1,attribute_n, value_n);

bool delete(relation_name, attribute_name, attribute_value);

bool modify(relation_name, attribute_name, attribute_value);

result_rel select(relation_name, attribute_name, condition, attribute_value);
result_rel project(relation_name, attribute_list);

result_rel cartesian_product(relation_1, relation_2);

result_rel join(relation_1, relation_2,
 condition_list); // condition in the form
 // AAAAattrib_name^condition^attrib_value~@@@@ or
 // AAAAattrib_name^condition^attrib_name~@@@@

result_rel union(relation_1, relation_2); // make sure the two relations are union

compatible
result_rel intersect(relation_1, relation_2); // make sure the two relations are union

compatible
result_rel difference(relation_1, relation_2); // make sure the two relations are union

compatible
}

Functional Specification:

 # result_rel join(relation_1, Relation_2, condition_list);

Join the two relations based on the join condition(s) provided in Acondition_list@. The condition_list may appear as:

AAAAattrib_name^condition^attrib_value~@@@@ or

AAAAattrib_name^condition^attrib_name~@@@@

Once the condition list is parsed into the corresponding attribute_name, condition, and attribute_value. The Join module

should call the cartesian_product() followed by a call to select() operation.

For now the condition is only restricted to equality.

MINI-DB Engine

Random

IO

Index

File

.IDX

Meta

File

.MTA

Data

File

.DTA

Sequential

IO

Table

B-Tree
Hash

Index

Mini-DB

Engine

GUI
Rel

Algebra
Schema Tables...

Cluster

Index

XML

 # result_rel union(relation_1, Relation_2);

First make sure the two relations are union compatible by checking the meta-data for relation_1 and relation_2. Once

union compatibility is established, create a temporary relation for maintaining the union. Note that based on our design of

a table, each new relation must have a key attribute. Therefore, we must add a new attribute which will serve as the

primary key for the result relation. The new attribute can be called RRN (Relative Record Number) and will be a unique

number for each record in the union. (essentially an autonumber field)

Don=t forget to eliminate duplicate records.

 # result_rel intersect(relation_1, Relation_2);

Similar issues discussed in the implementation of union() must be considered.

 # result_rel difference(relation_1, Relation_2);

Similar issues discussed in the implementation of union() must be considered.

Step 3: Extending your Index File Class (Hashing Algorithm)

Overload one or more methods in your index-file class to allow hashing of keys.

Current index addresses are calculated by multiplying the key with the index record size:

Address = key * Index_Record_Size

Overload this method so that the client can use a hash algorithm instead:

Address = hash(key) * Index_Record_Size // the key may be numeric or string

Of course your new hashing algorithm should also handle collisions. (Will be discussed in class)

This new index structure and its access algorithm should still have a O(1) performance, but provide much better and more

efficient space utilization for the index file. In addition, the new algorithm will accommodate non-numeric key values.

Extra Credit: Extending your Index File Class (Cluster Index) (20 points)

Extend your Index File Class or simply create a

new class to allow cluster indexes.

In order to provide a cluster index on a non-key

attribute, you need to have a primary and a

secondary index structure:

1) create a primary index on all the unique values

in that attribute. This structure will be very similar

to your current .idx file. With the primary

difference being that it=s pointers point to

another index structure, and not to the records in

the data file. (Note that the uniqueness property

specified above will make this index similar to an

index on a primary key!)

2) create a secondary index file (cluster of

pointers) which will point to records in the data

file. For the purpose of our assignment, each

cluster should accommodate a block of up to 4

pointers. (This can of course be easily expanded

to 8, 16, 32, etc.) In addition, you may designate

the last pointer as chaining pointer. Which means

that, if we have a block with 4 pointers, 3 of them

refer to data records, and the 4
th

 will refer to a new cluster block.

What to hand in:

 3 Cover page with proper title, your name, course # and name, assignment #, date, etc....

 3 Source code (documented)

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Primary Index

Unique values

Pointer Pointer

PointerPointer

Data record

Data record

Data record

Data record

Data record

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Secondary Cluster

block of n pointers

to records

Data file

Cluster Index for Mini-DB

Data record

